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Two types of experiments on the interference of two-particle states of identical particles, namely, space
time and momentum-energy experiments, are compared. Either can be used to determine the size of a 
particle source. An experiment is now proposed which can be used, at least in principle, to investigate the 
transition from one of these mutually exclusive formulations to the other. 

PACS numbers: 03.60. 

A new method of measuring stellar diameters was 
introduced in astronomy twenty years ago, namely, the 
so-called intensity interferometry[l-3 J based on inter
ference between a pair of photons emitted by independ
ent sources on a star and detected by two receivers on 
the earth (when the two photons are detected, the random 
phase difference between them is unimportant and inter
ference becomes observable). A similar idea has been 
put forward in elementary-particle physics, namely, it 
has been suggested that it may be possible to use the 
interference between pairs of identical particles to de
termine the Size, shape, and lifetime of an excited re
gion in which elementary particles are produced (see[4] 
and[ 5J). 

In addition to similarities, there are also differences. 
In astronomy, one measures the time difference between 
the arrival of the identical particles (photons) and the 
difference in the position of the detectors. This then 
may be looked upon as a space-time formulation of the 
experiment. In elementary-particle physics, on the 
other hand, one must measure the energy and momen
tum differences between the recorded identical parti
cles (for example, positive pions). If they are of the 
order of mn, the space-time parameters of the meson
creation process determined from them are of the 
order of iii mn, i.e., they lie in the required range of 
distances and times. In elementary-particle physics, 
therefore, one is concerned with the momentum-energy 
formulation of the interference experiment. A simple 
theory of this experiment and its possible implications 
are discussed in detail in a number of papers[ 6-9J (see 
also[loJ). 

Our present paper is concerned with the comparison 
of these two variants of the experiment. In Sec. 1, we 
briefly analyze the momentum-energy variant and are 
mainly interested in the temporal parameters that may 
be determined in this case. 

In Sec. 2, we give a brief theory of the space-time 
variant and compare it with the momentum-energy 
variant. In particular, we examine a useful symmetry, 
namely, the fact that the expressions for the phases of 
the interfering states in one variant of the experiment 
are obtained in the other by interchanging particle 
sources with particle detectors. Finally, in Sec. 3, we 
propose a gedanken experiment, two limiting cases of 
which are the space-time and momentum-energy vari
ants discussed in Secs. 1 and 2. 

Some additional details are given in[llJ, Throughout 
this paper, we use the system of units in which fi = 1 
and c = 1. 
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1. MOMENTUM-ENERGY CORRELATIONS 

When a pair of identical particles (to be speCific, we 
suppose that they are pions) is emitted by two point 
sources 1 and 2 with lifetime T, which are switched on 
at times tl and ta and are separated in space by the 
distance rl - r2, the probability of observing particles 
with 4-momenta ps = {W3, Ps} and P4 = {W4, P4} is given 
by (see[sJ) 

w _/ exp (ip.r,,+ioo,t,) exp (ip,r;,+ioo,t,) 
oo,-oo,+ir/2 oo,-oo,+ir/2 

+ exp (ip,r" +ioo,t,) exp (ip,r,,+ioo,t,) I'. 
oo,-oo,+irl2 oo,-oo,+if!2 

(1 ) 

In these expressions, r = II T is the energy width of 
each of the sources, and WI and W2 are the mean ener
gies of the emitted particles. If the quantities WI and 
W2 can be varied and are distributed uniformly in a suf
fiCiently broad energy band, equation (1) must be inte
grated with respect to WI and W2. The result is [see 
equation (63) in [8]1 

W-1+ cos[q(r,-r,)-qo(t,-t,)] (1') 
1+(q,T)' ' 

where qo = Ws - W4 and q = Ps - P4. By measuring W 
as a function of the difference between q and qo, we can 
determine (r I - r2) and (ti - t2). 

A similar possibility arises when the particles are 
emitted not by two sources but by a set of sources 
distributed in a sufficiently narrow space-time interval. 

Suppose that the sources are switched on at the same 
time t = 0 and are distributed near the origin in accord
ance with the law 

[ 1 (X' y' Z')] U(r)-exp --. --+-+-
2 A' B' C' . 

We shall use equations (57) and (58) from[S] and will 
integrate (1') throughout all space with the weight 
U(ri) U(r2)' This yields 

W-1+1'(q)/[ 1+ (qaT) 'J, 

where 
(2 ) 

1'(q) =exp [- (qx'A'+qiB'+q,'C')]. (3) 

We shall assume that the narrow particle pairs in which 
we are interested are observed in the direction of the z 
axis. We shall also suppose that, when PI i':j P2, we have 
qo = q. v, where v is the particle velocity (VI i':j V2 ~ v); 
since v has the single component Vz, we have qz 
= qol v. The quantity q~C2 in (3) should now be written 
in the formq~(t L)2, where t L = CI v . Consequently, the 
formula given by (2) assumes the form 

W -1 + exp[ -qx'A '-q.'B'-qo'(tL )'] 

1+(q,T)' . (4) 
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This expression contains a new parameter, t L, which is 
the time for the created particles to traverse the ex
cited volume (see also[lO]). To estimate the role of this 
parameter, let us suppose that t L » T, Wave packets 
produced by sources in the front and rear (relati ve to 
the direction of observation n) parts of the excited 
volume will not then succeed in interfering: by the 
time the packet from the rear reaches the point at which 
the packet from the front is produced, the latter disap
pears, The interference term does, in fact, vanish in 
the region qo ~ 1/ T when t L » T, 

Finally, when the sources are not turned on at the 
same time, but the times at which they begin to operate 
are distributed uniformly within the interval (-T, T), 
the expression given by (4~ assumes the form 

W-1+ exp[-q.'A'-qv'B'-q,'(tL)'j (Sinq'T)'. (5) 
1+ (qot) , q,T 

It follows from (2)-(5) that it is possible, at least in 
principle, to determine the space-time parameters of a 
multiple-creation process by carrying out a momentum
energy experiment, Practical details of this experiment 
are discussed in[6-8,12j, 

2. SPACE-TIME CORRELATIONS 

I, In the preceding section, we considered three 
types of temporal parameter, namely, T, T, and t L, 
When any of these become very large, it is no longer 
possible to measure the size of the radiating system be
cause the interference effect remains in an unobserv
ably small range of values of qo, On the other hand, in 
astronomy, observations of two-photon interference 
correlations can be used to determine the angular 
parameters of stars[Z,S] despite the fact that their life
time (which has the same significance as T) can be re
garded as infinitely long, In actual fact, this is not in 
conflict with the conclusion that there is no interference, 
which follows from formulas such as (5). 

We shall now show that, in the space-time variant of 
the interference experiment used in astronomy, the 
time parameters t L and T are absent from the final 
expressions, in contrast to the momentum-energy vari
ant discussed above,l) Instead of these parameters, 
there is another temporal parameter which is analogous 
to T, namely, the correlation interval or the time of 
correlated emission of recorded particles. 

Let us briefly consider the fundamentals of the 
theory of the space-time experiment. Suppose we have 
two excited atoms at points 1 and 2. The photons 
emitted by them are recorded by detectors 3 and 4 at 
times ts and t4 (see the figure), Emission by the atoms 
is governed by currents whose time dependence is 
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!. FIG. I. Arrangement of sources and de
tectors of particles. 
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where gl(t) and gz(t) are slowly-varying (as compared 
with the exponentials) functions of time. To be specific, 
let us suppose that they are functions of the form 

~ (t-t') ~e(t-t,)A, i,xp ill,--- , 
, 2~ 

where (see, for example,PS]) the amplitudes At and 
phases 5l are random quantities, and the times tl in the 
argument of the e function are distributed in time in 
accordance with the Poisson rule, Finally, T » W ~-, 
w'21. It will be convenient to introduce the two correla
tion functions:2) 

A;({) =<g;(t)g;'(t+{)> (;=1,2), 

such that Aj(-J) = Aj (J), 

The amplitude for a double count at times ts and t4 
can be written, apart from an unimportant common 
factor, in the form 

A =g, (t,-r,,) exp (-iw,t,+iw,r13 ) g,(t, -r,,) 
x exp(-iw,t,+iw,r,,)+g,(.t,-r,,)exp(-icu,t, (6) 

+iw,r,,) g,(t,-r,,) exp( -iw,t,+icu,r,,) , 

where the symbols r lS, r ai, and so on represent dis
tances between points 1 and 3, 2 and 4, and so on. When 
we calculate the probability of a double count, we take 
into account the fact that the distance between the 
sources and the detectors is much greater than the 
distance between the sources and between the detectors, 
Under these conditions, 

where nl is the direction of the detectors seen from 
source 1; Similarly, rzs - ral = rS4·n2. 

Next, substituting t3 - t4 =", Wlnl = kl' and W2n2 

= k2, we obtain 

IAI'=lg,(t,-r,,)g,(t.-r,,) 1'+lg,(t.-r,,)g,(t,-r,,) I' 
+g, (t,-r,,) g,'(t,-r,,) g,(t,-r,,),,' (t,-r,,) . 
x exp (-iw,{)+ik,r,,) exp (iw,{)-ik,r,,) +K.C. 

It will be convenient to substitute T 1 = r34 'nl, T2 
= r34 'nz, and to average \ A \2 over the times of detec
tion ts and t4 for a fixed value of " = ts - t 4. 

The result is 

< IA 1')=21.., (O)A,(O)+A,'({}-T,)/ .. ,({)-T,) 
xexp[ -i(w,-w,){)+i(k,-k,)r,.]+c ,c. 

If we suppose that Al(") and AZ(") are equal, the last 
expression assumes the simpler form 

< IA 1')=2A'(O) +A'({)-T,)A ({)-T,)exp[ -i(w,-w,){)+i(k,-k,)r"j+c.C. 

(7 ) 

We have (J - Tz) - (" - Td = Tl - Tz = r34' (nl - nz) 
and this can be rewritten in the form T 1 - T z 
= rt4 . rtz/ L, where ri4 and rt are the projections of 
rS4 and r lZ onto the plane perpendicular to the direction 
of observation, and L is the distance between the re
gions containing the sources and detectors (see the 
figure). The argument of the exponential contains a 
similar term: 

(8) 

where W = (Wl + wz)/2 and r~ is the longitudinal com
ponent of r34. 

Thus, the distance rlZ between the source enters in 
(7) only in the form of the projection onto the plane per-
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pendicular to the direction of the line of sight n ~ n1 
+ n2. Consequently, the longitudinal size of the source 
cannot be determined through experiments based on (7). 
However, the formula given by (7) contains the longitudi
nal characteristics of the detector (namely, rJi, T 1, and 
T 2 ). 

It is interesting to compare the structure of the 
arguments of the rapidly varying factors in (1') and (7) 
corresponding to the momentum-energy and space-time 
experiments. 

In the momentum-energy variant, the argument of 
the exponential contains the phase 

(1.= (k;-k,) (r,-r,) - (ro,-ro,) (tt-t,). (9) 

In this quantity, the momenta and energies are deter
mined by the properties of the detectors, and the co
ordinates and times refer to the sources. In the space
time experiment, the argument contains the phase 

~= (kt-k,) (r,-r.) - (ro,-ro,) (t,-t.). (9') 

Here, the momenta and energies are determined by the 
properties of the sources, and the coordinates and 
times refer to the detectors, i.e., the sources and de
tectors have changed places. In the approximation in 
which the first term in (9') becomes identical with (8), 
the phase Q: in (9) can be written in the form 

(8' ) 

Consequently, in the momentum-energy variant, the 
formulas contain the longitudinal dimensions of the 
source whilst the longitudinal size of the region occu
pied by the detectors is unimportant. 

2. Let us now return to (7). The correlation func
tions A(J - T1) and A(J - T2) in this expression vanish 
for sufficiently large values of the arguments. Under 
real conditions, these values are usually very large in 
comparison with (T1 - T2). From now on, we therefore 
assume that T1 = T2 = T and, instead of (7), we use 

} (fi-t) , ro 
< Ii! I'> -1+ 1-'-. -( .-1 cos [(w,-ro,) (tI-T)- _r".Lr".L]. 

I.U) L. (10) 

This formula describes the emission of photons by two 
elementary sources. Suppose now that there is a large 
number of these sources, and that they are distributed 
uniformly over the surface of a circular disk of radius 
R, perpendicular to the direction of observation (or over 
the surface of a sphere radiating in accordance with 
Lambert's law). Equation (10) must then be integrated 
over the surface of the disk, and this yields 

1 A (tI-T) '1'( 2J,(p»)' <IAI'>-1+ --- --- cos[(ro,-ro,)(tI-T)). 
i.(O) p 

(11) 

where the Bessel-function argument 

p=w I r3\1.1 <P 

depends on the angular radius <p of the star. If the de
tectors define the frequency band between w - t.w/2 
and w + t.w/2, then (11) must be integrated with re
spect to W1 and W2. The result is 

<IAI'>-1+1 A(tt-T) 1'[2lt (p) sint/,/1ro(tt-T) ]'. (12) 
A(O) p '1,/1ro (tt-T) 

In the special case where g1(t) and g2(t) are given by 
the expression at the beginning of this section, we have 

IA({}-T)/A(O) I'=exp (-Itt-T I h:). 

The expressions given by (10) and (12) show that it is 
pOSSible, at least in prinCiple, to determine the angular 
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size of stars and the correlation time for elementary 
sources in the space-time variant of the interference 
experiment. By varying J, it is possible to ensure that 
the argument J - T becomes zero, so that (10) and (12) 
must be of the form 

<IAI'>.-'l' -1+[21t (p)/p)'. (13) 

Subsequent variation of the parameter p can be used to 
determine the angular radius <p. On the other hand, by 
measuring the delay J for fixed values of p, we can 
establish the structure of the correlation function and 
determine the correlation time. It is important to note, 
by the way, that the last quantity is of no interest in 
astronomy. 

3. SYNTHESIS Of THE TWO TYPES OF 
INTERFERENCE CORRELATIONS 

We have considered two different versions of the 
correlation experiment, namely, the momentum-energy 
and space-time variants. We shall now show that, in 
prinCiple, it is possible to formulate a unified approach 
in which the momentum-energy and space-time variants 
are limiting cases. 

Let us suppose that excited atoms located at pOints 1 
and 2, and have identical natural widths r (see figure). 
At points 3 and 4, there are identical resonance scat
terers with natural widths y. A pair of counters is 
located near these points and each records the time of 
arrival of photons from its own scatterer. The charac
ter of interference phenomena produced in this system 
depends on the ratio y/r. When y/r » 1, we have the 
space-time variant and when y/r « 1, we have the mo
mentum energy variant. 

We now calculate the probability that counters 3 and 
4 will fire at times t3 and t 4 , assuming for simplicity 
that atoms 1 and 2 are excited simultaneously at time 
t = O. The amplitude for the emission of a photon of 
frequency w by atom 1 is proportional to r / (w - W 1 

+ ir /2). The amplitude for the scattering of this photon 
by target 3 is proportional to y/(w - W3 + iy/2)Y4) 
The amplitude for the firing of counter 3 at time t3 is 
proportional to the product of these two fractions, and 
contains in addition the factor exp (-iw(t3 - r 13)] which 
takes into account the delay in the propagation of the 
field from point 1 to point 3. The amplitude for the 
firing of counter 4 due to a photon frequency n emitted 
by atom 2 can be obtained in a Similar way. The final 
result is 

• ( Q) _ I'l exp[ -iro (t,-rn») r"{ exp[ -iQ(t,-r .. ) ) 
A ro," - -,---'.--=~-,-:-"-----,--'-=- ~.--!--::"~:::-;:,:-,-.....:::c:",::",-:::7' 

(ro-rot+ir/2) (ro-ro,+il!2) (Q-ro,+ir/2) (Q-ro,+il/2) 

We also have the further expression 
A" (t'JJ Q) = rl exp (-iro (t,-r,,) ) r'( exp[ -iQ (t,-r,,) ) 

, (ro-ro,+iTI2) (ro-ro,+il/2) (Q-rot+ir/2) (Q-ro,+iT!2) , 

corresponding to the emission of frequency w by atom 
2 and the emission of frequency n by atom 1. Since the 
times at which the counters fire are accurately known, 
the frequencies wand n are completely undetermined. 
The resulting sum must therefore be integrated with 
respect to wand n. The final expression for the am
plitude is 

A(t"t,)- J drodQ[A'(ro,Q)+A"(ro,Q)]. (14) 

Evaluation of the integral yields 

(15) 
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where 

F J/l=yr[ 00;-,00,-i([-1)/2]-'6(t,-r,.) . 
~ {exp[ -I (oo,/f/2) (t,-r .. ) ]-exp[ -I (00,-iy/2) (t.-r,.) n. (16) 

The required probability that the counters will fire is 
given by 

(17 ) 

The next problem is to elucidate the behavior of this 
probability when y/r - 0 and when y/r - 00. In the 
former case, the frequencies of the scattered photons 
are, in fact, equal to the natural frequencies of the 
targets, Ws and Wt. One would therefore expect the 
realization of the momentum-energy variant in which 
the frequency of the photons is determined and there is 
no dependence on h and tt.. Conversely, when y/r 
- 00, the scattering process has no effect on the fre
quency of the scattered photons and the counters deter
mine only the times of detection. Under these conditions, 
one would, of course, expect the realization of the 
space-time variant. 

In fact, when the width r is fixed, and y/r - 00, the 
second exponentials in the numerator of (16) are found 
to vanish, and Y/[Wj - wk - i(r - 1')/2] - -2i. There
fore, the amplitude assumes the form 

A (t" to) -exp[ - (ioo,+[ /2) (t,-r,,) )exp[ - (i00 2 - [/2) (t, 
-r,,) )8.(t,-r,,)8 (t,-r,,) +exp [ - (ioo,+[12) (t,-r,,) ). (18) 

x exp[ - (ioo,+ f/2) (t,-r,,) )6 (t,-r,,) 8 (t,-r,,) , 

which is identical with (6), since the currents gl and 
g2 are equal to exp( -rt/2) e (t), apart from a constant 
factor. 

Let us now suppose that r is fixed and y/r - 0, 
Le., I' - O. For practically all values of ts and t 4 , one 
can then neglect the first exponentials in the numera
tors of (16). The amplitude is therefore given by 

A(t t) exp[-ioo,(t,-rl3»)exp[-ioo,(t,-r,,») 8( )8( ) 
s, " -- ta-rl3 t.,-r24 

(oo,-ro,-if/2) (ro,-oo4-i[12) . 

+ exp[ -i~),(t,-r,,) )exp[ -ioo,(t,-r,,») ( )8( ) 
---''--''------'-''--:..:.:....:---''--'----'--''--:.:.:-.:.. 8 t, - r" t, - r" 

(ro,-ro,-i[12) (ro,-ro,-i[12) 

and contains the common factor exp(-iwsts - iW4t.) 
that disappears from the expression for the probability 
W(ts, ttl, so that 

W( ) I exp[i(oo,r,,+ro,r,,») 8(t - )8(t - .) 
t" t., - . (ro,-ro,-i[l2) (ro,-ro,-if/2) ,r" ,r,. 

[ .( +. )] , (19) 
2XP t ro,r" ro,r" 8 ( ) 8 ( ) I +---- t3~r23 t~-rH • 

(ro,-ro,-i[12) (ro,-ro,-tf/2) 

If the experiment continues long enough (the possibility 
of this is ensured by I' - 0), the arguments of the e 
functions become positive, and the e functions them
selves disappear, so that (191 takes the form 
. I exp{t(ro,r,,+oo,r,,)] + exp[t(ro,r,,+ro,r,,») \' 
w- (oo,-ro,-i[12) (ro.-ro,-t[/2) (oo,-ro,-if12) (ro,-ro,-ir/2) 

Le., we obtain a formula describing the momentum
energy variant of the interference experiment [when 
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(20) 

this is compared with (1), we must recall that, under 
the present conditions, tl = t 2). 

The foregOing discussion shows that the space-time 
and momentum-energy interference two-particle corre
lations do, in fact, have a common character and are 
merely different limiting cases of the same physical 
phenomenon. We note that this conclusion does not de
pend on the specific features of the model of scatterers 
with variable width I' which we have adopted. The same 
result is obtained when arbitrary frequency filters 
tuned to frequencies Ws and w. having variable trans
mission bandwidths are placed at points 3 and 4. 

The authors are indebted to V. L. Lyuboshits for 
valuable suggestions. 

1)ln elementary-particle physics, the position of the detectors must be 
known before the momentum can be determined. However, the pre
cision of their localization in space is always several orders lower than 
the limit imposed by the uncertainty relation AXAp - I. Conse
quently, the formulation of the experiment discussed in this case must 
be classified as the momentum-energy variant. 

2)StrictIy speaking, the correlation function is (gj(t)gl(t + Q» - (gj(t»f 
but we are assuming that (gj(t» = 0 since (At) = O. 
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