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By starting with classical Boltzmann equation, inequalities are derived connecting the Hall and dissipative 
parts of the conductivity tensor in a magnetic field. If the isotropic carriers are all of the same sign 
(electrons or holes), the inequalities go over into equations of the Kramers-Kronig type, where the role of 

. the frequency is assumed by the magnetic field. 

PACS numbers: n.IO.Gm, 72.20.My 

1. The theory of kinetic properties of metals in a 
magnetic field has been developed quite fully. I. M. 
Lifshitz and his students (see [1J and the literature cited 
there) have established a connection between the struc­
ture of the electronic energy spectrum and the asymp­
totic galvanomagnetic characteristics in a strong mag­
netic field. The conclusions drawn in the cited papers 
were based on an investigation of the classical Boltzmann 
equation for electrons as charged fermions with a com­
plicated dispersion law E = E(p). The applicability of the 
classical equation can be justified by the smallness of 
the ratio tiwc IEF in comparison with unity (wc is the 
characteristic cyclotron frequency and EF is the Fermi 
energy). The scattering of the electrons is described by 
a collision operator whose structure depends on the con­
crete mechanism of the scattering {by phonons, by im­
purities. etc.). One of the most important results of the 
work by I. M. Lifshitz et al. [1) is the conclusion that the 
form of the asymptotic characteristics is independent of 
the collision integral. To be sure, it must be borne in 
mind that the coefficients in the obtained asymptotic ex­
pressions are functionals that depend on the collision 
operator and on the dispersion law. When describing 
this stage of the construction of the theory of galvano­
magnetic phenomena, it must be emphasized that a very 
important role in the development of the theory was the 
conviction that the electrOnic spectrum is insensitive to 
the magnetic field in a wide range of magnetic fields, 
and that the role of the magnetic field reduces only to a 
bending of the electron trajectories. 

It became clear in recent years that the electronic 
spectrum of many metals becomes restructured under 
the influence of a relatively-weak magnetic field!) -mag­
netic breakdown sets in ([1J, Sec. 10) and leads to a num­
ber of observable effects, particularly to a change of the 
asymptotic relations. For many metals (Cu, Au, Ag, 
etc.). however, and at arbitrary directions of the mag­
netic fields for most metals, there is a wide range of 
magnetic fields in which the spectrum of the metals and 
the colliSion operator can be regarded as independent of 
the magnetic field. and this region covers also the so­
called strong fields (wc T » 1, where T is the average 
relaxation time). 

As already mentioned, the asymptotic values of the 
galvanomagnetic characteristics contain as a rule coeffi­
cients that cannot be calculated without a detailed knowl­
edge of the colliSion operator. In [2,3J, however, it is 
shown that by using only the hermiticity and the positive­
ness of the collision operator it is possible to establish 
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definite nontrivial relations between the coefficients that 
enter in the asymptotic expressions (see also [4J ). 

The hermiticity and positiveness of the 'Collision 
operator, furthermore, suffice (see [1J, Secs. 24 and 26 
and [5J Sec. 88) to ensure satisfaction of the Onsager re­
lations a1·]· (H) = a '1' (-H) and the requirement a ,a ,a ] ~ xx yy zz 
> 0 that the entropy increase (a(H) is the tensor of the 
conductance in a magnetic field H). It will be shown be­
low (see the Appendix) that to satisfy the Kramers­
Kronig relations ([5J, Sec. 62) between the real and 
imaginary parts He u(w) and 1m a(w) of the tensor a(w) 
(w is the frequency of the electromagnetic wave) it is 
also sufficient that the collision operator be Hermitian 
and positive. 

It is convenient in what follows to start with an exam­
ination of an example. We shall describe the properties 
of a metal hydrodynamically. disregarding the electron 
dispersion. Then 

00 au, oow't 
a(w)=--=---+i--. 

1-i"" 1 +w',' 1 +w',' 

where ao == a(w = 0), The Kramers-Kronig relations 

Rea(w)=~P T Im~(w') dw', 
n _00 W-(() 

1 +m R (') 
Ima(w)=--PS~dw'. 

3't m-tJ) 

(1) 

(2) 

can be verified directly and are, of course, the conse­
quence of the fact that the poles of a(w) (one pole in this 
case) are in the lower half of the complex w plane. 

The static properties of the metal in the magnetic 
field are described in this case by the tensor 6(H): 

(
s -a 0 ) 

0= a sO, 

o 0 ao 

ao 
s = 1+We2'tZ", 

OOWe't 
a=---' 

1+wc2'{z' 
lelH 

ooc=-­
m'e 

(3) 

(m * is the effective mass of the electron). It is seen 
from (3) that it is possible to introduce a complex trans­
verse conductivity 

a(H) =aol (l-iw,'t). (4) 

whose real and imaginary parts describe the dissipative 
and Hall parts of a(H). respectively (s = Re a, a = 1m a). 
Just as in the preceding case, formulas (3) and (4) lead 
directly to relations of the Kramers-Kronig type, in 
which the integration is over the magnetic field 2): 
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. 1 +-a(H') ~ , 1 +- (H') 
s(H)=I-;pS H'_HdH'I, la(H)I=r-;S~'_HdH'I· (5) 

Direct generalization of relations (5) to an arbitrary case 
(it is only in this sense that relations (2) are of interest) 
is impossible. This is seen from two complicating exam­
ples. If the carriers are electrons and holes (m* < 0), 
then while remaining in the framework of the hydrody­
namic approximation, we have (the subscripts 1 and 2 
label the electron and hole bands) 

J 
2 

'i"------y 

X,t 

(6) It is easy to verify that in the approximation of two iso­
tropic bands (see (7» the inequalities (13) hold likewise 

(7) (s = Re a; a = 1m a). 

In spite of the outward Similarity of (6) and (7), we see 
that the two differ significantly: both poles of a(w) are 
in the lower half-plane (1m w < 0), while one pole of a(H) 
is in the lower and the other in the upper half-plane 
(we have in mind the complex H plane). This makes 
it impossible to establish relations of the Kramers­
Kronig type for Re a(H) and 1m a(H). 

We consider now the simplest anisotropic model of a 
metal: the carriers are n electrons per unit volume with 
a dispersion law E = p~ 1(2m 1) + p~ 1(2m II) (p~ = p~ + p~), 
the magnetic field is inclined at an angle J to the sym­
metryaxis. If we put m~ = m 1m* and l/m* = cos 2 Jim 1 
+ sin2 J/mll' then the components of the transverse (rela­
tive to H) conductivity matrix are 

lIe'T 1 Ile'T 1 
crv:=--;;;- l-;-(t)/T~' OJ/V = -;;;:- l-:-wc::T~ , 

leW 
W,=--. (8) 

It is seen that we have used the T approximation. The 
directions of the axes X and Yare clear from the figure, 
and the Z axis is directed as always along the magnetic 
field. Since axx F ayy• the question arises of construct­
ing the analytic function a = s + ia (cf. (4». It is natural 
to replace s by the arithmetic mean of the symmetrical 
part of the tensor a 0'{3( 0', (3 = x, y) 

s(H) ='/,[0= (II) +o",,(H) ], (9) 

which is invariant to the choice of the axes X and Y, 
while the quantity 

a(H)='/,[ol/X(H)-o,,(H)] (10) 

is also invariant. We shall henceforth use the definitions 
(9) and (10) also in the general case. Thus, according to 
(8)-(10), 

SQ 

S = l+w/T" (11) 

We have introduced 

"1(1 1) sJ=ne-"'(- -+- , 
2 mJ.. m· 

(12) 

{3 is a parameter that does not depend on H, {3 = 1 in the 
isotropic case (m1 = mil)' Comparing (11) with (3) and 
(4) we see that at J F 0 the dispersion relations of the 
type (2) do not hold. Attention must be called, however, 
to the fact that for any choice of J and for any ratio of 
the effective masses (3:5 1 it follows here directly that 
s(H) and a(H) satisfy in this case the inequalities 

1
1 S- a(H') " 

s(H)~ -p -,--dH , 
it H -H . 

(13) 

la(H) I..;; I~p +S- S\H') dH' ,. 
n H-Ii 
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The two considered examples suggest that in the gen­
eral case (arbitrary dispersion law, arbitrary Hermitian 
and positive collision operator) the inequalities (13) hold 
for s(H) and a(H) (see (9) and (10». The proof of this 
statement is the main content of this article. 

2. To calculate the static conductivity in a magnetic 
field it is necessary to use the kinetic equation for the 
vector-function I/J, which is connected with the nonequili­
brium increment f - nF to the equilibrium Fermi func­
tion nF by the relation 

. Oil, 
/-II,=-ea;-E1j> 

(E is the intensity of the external electric field),3) 

o 
-1j>+w.1j>=v, v=Vpe(p), 

ot1{ 
(14) 

where the variable tH has the meaning of the time of 
motion of the electron along a claSSical trajectory in a 
magnetic field, and Wp is a hermitian collision operator 
satisfying the positiveness condition ([I J, Sec. 23) 

(15) 

The angle brackets denote integration over p-space (this 
symbol emphasizes the fact that the resultant integrals 
have the meaning of scalar products): 

SOil. 2V 
(u,v>=-e' -u(p)u(p)dr, dr=--dp. 

OE (2n/i) , 
(16) 

The components of the conductivity tensors are scalar 
products of the type 

(17) 

Acting on both sides of (15) with the operator W-1 and 
carrying out elementary transformations, we ob~ain 

(U-i'lI)¢=-i'lW, w=Wp-'v, 

where TJ = c/H and 

(18) 

C ,0 
U=-i-W.- -

Ii ot1{ 

is an operator that is self-adjoint relative to the "new" 
scalar product (u, v) = (il. Wpv>; the bar denotes com­
plex conjugation. We emphasize that U does not depend 
on the magnetic field, since tH ~ l/H. The self-adjoint 
character of U follows from the anti-hermiticity of the 
operator a lotH with respect to the scalar product (16). 
The components of the conductivity tensor are expressed 
with the aid of the" new" scalar product in analogy with 
(17): 

(19) 

Changing over to complex notation for the vectors w 1 
and I/J 1 in the XY plane (H II Z), 
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and using (19), we get 

1 i 
0= (w, t)= 2[0=+0"]+2[Ox.-0.x] =s+ia. 

From (18) we have 

'I>=-i1') (U-i1')I)-'w=-illR;,w, 

where Ri'1 is the resolvent of the self-adjoint operator 
U. For (J we obtain the expression 

o(1')=-ilj(w, R"w). (20) 

As follows from the theory of linear operators in Hilbert 
space ([8], Chap. 6), for the resolvent of any self-adjoint 
operator the function cp(z) = (W, Rzs), where w is an 
arbitrary vector of Hilbert space, is analytic at 1m z " 0 
and has the following integral representation: 

( ) _ +Jw dw(u) 
q>z- -­

u-z 
(21) 

with a monotonically non-decreasing function of limited 
variation w(u). We obtain accordingly for CJ 

+Jw dw(u) 
O(l1)~-i1') --.-. 

_W U-tlj (22) 

As will be shown below, the integral representation (21) 
leads to the system of inequalities (13). 

We express the function cp(z) having the integral 
representation (21) in the form 

q>(z) =q;(z) -w,/z, 

where 

00,= lim 1') Imq>(ilj) .-, 
is the discontinuity of the function w(u) at the point O. 
The function ;P(z) has a representation analogous to (21): 

S' d1il(u) +s· d1il(u) 
q;(z)= --+ --='I'-(z)+'I'+(z), 

u-z u-z (23) 
• 

but w(u) is continuous at the point O. Each of the func­
tions cp - and cp + corresponding to the first and second 
integrals in (23) satisfies on the imaginary axis the re­
lations 

(24) 

In that and only that special case when one of the func­
tions cp- or cp+ vanishes identically, the relations (24) are 
obviously satisfied also for the function cpo Then, making 
the substitution cp(i'1) = iCJ('1)/'1 in (24), we arrive at the 
equations that lead to relations (5). 

In the general case (neither cp - nor cp+ equal to zero) 
it must be recognized that the sign of 1m cp±(i17) coincides 
with the sign of 17. while Re cp-(i17) < 0 and Re cp+(i17) > 0 
for all 17. From this we easily get 

11m if (i1') ';;>I~p +S~ Re~(i'l') d'l' I, 
n _~ 1]-1] 

11 +Swlmip(ill') 'I !Reip(ill) I~ -p , d'l. 
n -x 1]-1] (25) 

Changing over to integration in the direct field and using 
the connection between cp(i17) and CJ(17), we obtain immed-
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iately inequalities (13). The transition from the function 
cp to cp is connected with the elimination of the Singular­
ityat '1 = 0 (Le. as H - 00). Therefore in formulas (13), 
s(H) should be taken to mean the difference 
Y2[CJxx(H) + CJyy(H) - CJxx(H - 00) - CJyy(H - (0)]. In the 
case of a closed Fermi surface we have CJxx(H - 00) = 0 
and CJyy(H - (0) = O. On the other hand in the case of open 

surfaces the procedure of separating the values at infin­
ity is analogous to the separation of the static conductiv­
ity in the Kramers-Kronig relations for the dielectric 
constant of a conductor (['5], Sec. 62). 

Since the here-investigated dependence of the com­
ponents of the tensor a ik on the magnetic field 4) is only 
insignificantly "perturbed" by quantum effects (byos­
cillations of the Shubnikov-de Haas type), for most 
metals, inequalities (13) can apparently always be used 
for the average values of s(H) and a(H). Of course, it 
would be desirable to establish relations between the 
magnetoresistance (in place of s) and the Hall "constant" 
(in place of a). So far, however, we have not succeeded 
in doing this. It is possible to use relations (13) by cal­
culating (Jik from the measured values of Pik (aik = pi~). 
The analogy with the "genuine" Kromers-Kronig rela­
tions (with respect to frequency) suggests that the in­
equalities (13) are more profound than established by us 
here. They hold possibly also if account is taken of the 
quantization of electron motion in a magnetic field. This 
question is not considered in the present article. 

Using inequalities (13), we can of course obtain differ­
ent corollaries, of the type 

I 2 JWa(H) I s(O);;> -- --dll . 
:t /I (26) 

In conclusion, the authors take the opportunity to 
thank I. M. Lifshitz for interest in the work and for val­
uable remarks. 

APPENDIX 

The kinetic equation for the conduction electrons, 
which we use to calculate the conductivity tensor that 
depends on the frequency wand wave vector k, is of the 
form 

-ioo'I>+i(kv)'I>+Wp'l>=V. (A.l) 

The solution of this equation is 

(A.2) 

where Riw is the resolvent of the operator Wp + i(k· v) 
satisfying the condition 

Re(u, [Wp+i(kv)]u)=(u, Wpu);;>O, (A.3) 

that follows from the condition (15), and the requirement 
that the operator of multiplication by the real function 
(k· v) be self-adjoint. The scalar product in (A.3) differs 
from (16) in that the first of the functions is complex­
conjugate: (u, v) = (ii, v> . 

We shall show that satisfaction of the condition (A.3) 
ensures the existence of Kramers-Kronig states for the 
components of the conductivity tensor <J(w). We consider 
the resolvent Rz = (A - zIr1 of a certain bounded linear 
operator A satisfying the condition 

Re(u, Au);;;>O (A.4) 

at all u. It is easy to verify that the left half-plane of 
the complex variable z is contained in the resolvent set 
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of the operator A. According to a known theorem [9], for 
any linear functional f the function F(z) = f(Rz) is analytic 
in the resolvent set of the operator A, and F(z) - 0 as 
z - 00. From this it follows automatically on the basis 
of the Cauchy theorem that dispersion relations exist for 
F(iw): 

1 +Soo 1m F (iw' -E) 
-p , dw'=ReF(iw-e), 

1t _1;10 W -0) 

(A.5) 
1 +S~ ReF{iw'-e) , 
-p . r/w =-lmF(iUl-e). 

.IT llJ -t,j 

In the case of the kinetic equation, € - + 0 corresponds 
to adiabatic switching on of an external field. The role 
of the functional f is played in our case by the scalar 
product 

f(R,)=(u, R,v)=F(z). (A.6) 

It is easily seen that by substituting (A.2) in (17) we can 
rewrite the components of the conductivity tensor Uij (w) 
in the form (A.6) whence, on the basis of the foregoing, 
follows the validity of the Kramers-Kronig relations (2) 
for the conductivity calculated with the aid of Eq. (A. 1). 
The Fermi-liquid interaction between the electrons, 
under likely assumptions concerning the Landau corre­
lation function, does not change the conclusion presented 
here. 

1) A measure of the weakness of a magnetic field under magnetic­
breakdown conditions is not the inequality hWc/EF <Ii; I, but hwc <Ii; 

t;2/EF, where t; is the minimal energy barrier that separates the 
classical trajectories; frequently t; <Ii; EF, especially at definite mag­
netic-field directions. 

2)The Kramers-Kronig relations "with respect to the magnetic field" 
were derived, as is well known, only for Re X and 1m X·(X is the 
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paramagnetic susceptibility), and use was made of the smallness of 
the nonresonant component ofx (see [6.7)). 

3)Fermi-liquid effects are taken into account automatically (see [1], 
Sec. 23). In the case when several bands take part in the conduc­
tivity, Eq. (14) should be regarded as a system of equations, and 
the integration with respect to dr includes summation over the 
bands. 

4)Consequence-solutions of Boltzmann's equation. 
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