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The behavior of the population difference of a two-level system in a strong quasimonochromatic random 
field is considered. It is shown that the fluctuations of the field lead to a damping of the oscillation of the 
population difference. In the case when the amplitude of the field is a stationary normal process the effect 
of the lack of coherence can be taken into account by introducing an effective relaxation time. In the case 
of a field of constant amplitude, the fluctuations in phase bring about in addition to damping also a change 
in the frequency of oscillation. The damping rate in this case is not directly related to the field spectrum. 

PACS numbers: 42.50.+q 

An investigation of the interaction of a two-level 
system with a strong field is of interest for a wide circle 
of problems. As an example we refer to the theory of 
propagation of short light pulses in a resonant medium. 
An investigation of the problem in which both the ampli
tude and the phase of the field are deterministic functions 
of the time has been carried out in sufficient detail (ref
erences concerning this problem are given in Kaplan's 
papers[l, 2]). However, in a number of cases, including 
the example mentioned above, the external field is not 
always coherent. The coherence time of the field can be 
comparable to the characteristic time for the system: 
the period of oscillation of the populations or the relax
ation times. Naturally the evolution of the system in a 
noncoherent field will be determined not only by the 
characteristics of the system and the average value of 
the field, but will also depend on the coherence proper
ties of the field. It is therefore of interest to investigate 
the interaction of a two-level system with a strong non
coherent field and to determine the influence of the field 
parameters on the behavior of the population difference 
of a two-level system in those cases when the amplitude 
or the phase of the external field is a random function. 

1. The density matrix for a two-level system O'ik 
which is required to be Hermitean and to satisfy the con
dition TrO' = 1 is uniquely determined if three real para
meters are given. As such parameters we choose the 
difference in the diagonal elements (populations) 

(1) 

the value of x which is twice the modulus and the phase 
if! of an off-diagonal element: 

0'2= (x/2)e'·. (2) 

In future we chall choose the phase if! to lie in the inter
val (-7T/2, 7T/2), and we shall record the quantity x to
gether with its Sign. The equations of motion for the 
components of the density matrix of the system coupled 
to an external quasimonochromatic field 

V(t)=E(t) cos (Qt+q>(t», (3) 

where E(t) and cp(t) are the amplitude and the phase, 
which vary slowly compared with Q, and are well known. 
In the case of exact resonance they are of the form [3,4] 

x'+ax=ro(t)Y'sin e, 
y'+~ (Y-Yo) =-00 (t)x sin e, 

1j>'X=Ol(t)y cos e, 

(4) 

(5) 

(6) 

where the notation () = >Ir - cp has been introduced for the 
difference in the phases of the field and of the off-dia-

589 SOY. Phys.-JETP, Vol. 42, No.4 

gonal element. Here Yo is the equilibrium value of the 
population difference, 

are the reciprocals of the transverse and longitudinal 
relaxation times. The Rabi frequency is given by 

00 (t) =llk'E(t) , 

where Jl is the matrix element for the transition. 

We consider a monochromatic field (the amplitude 
and the phase are constant). The dependence of the 
population difference on the time is determined by the 
following formula 

(7) 

(8) 

{ a+~} a~ y=exp ---t (A sinat+B cos at) +--Yo, 
2 ro'+a~ 

a = [ ro' - (a:W r. 
(9) 

(10) 

The solution (9) depends only on the two constants which 
are determined by the initial values of the variables y 
and x sin (), and does not depend on the value of the inte
gral of the system: 

(11) 

The dependence of the phase on the time has the form 

{ . ro~Yo} tg 8=Z-' e<"-'H!2 (P sin at+Q cos at) + -- e"' , 
ro'+a~ 

(12) 

where the constants P ,Q and Z are determined by the 
initial values of all three variables appearing in the 
system (4)- (6). We note that in the case of arbitrary 
initial conditions (P,Q,yo '" 1) the phase begins to be 
established in the practically important case a » {3 at 
the time when the second term in (12) becomes the dom
inant one. This occurs at times much greater than T: 

1 Ol'+a~ 
't=-ln--

a Ol~' 
(13) 

The time for the establishment of the phase T in order 
of magnitude is equal to the transverse relaxation time 
(T2 ~ 10-10_10- 11 sec for atoms in solids) and depends 
only weakly on the Rabi frequency, and therefore on the 
magnitude of the field. The assumption of a rapid es
tablishment of phase[3] is not always valid in problems 
concerning the interaction of a two-level system with a 
field. The fact that the interaction with a coherent field 
at small values of the time is not coordinated in phase 
can result in a deformation of the leading front of the 
pulse propagating in a resonant medium. 

2. We consider the change in the population difference 
of a two-level system being acted upon by a resonant 
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quasimonochromatic field whose amplitude E(t) repre
sents a random stationary normal process with a known 
correlation function. Such a model is applicable to the 
description of a field with large amplitude fluctuations
spontaneous radiation of thermal or gas discharge 
sources and radiation from superluminescent or multi
mode lasers. 

The solution of the system (4)- (6) in the case of an 
arbitrary form of dependence of the amplitude on the 
time is possible only when the relaxation times are 
equal to each other: (l = (3. With the initial conditions 

y(O) =Yo=1, z=o (14) 

it is of the form [1] 

• • 
y=e-·'coss(t)+ae-.t[sin6(t)J e"'sins(T)dT+coss(t) J ea'cos6(T)dT]. 

o 0 (15) 
Here we have introduced the notation ~ (t) for the dimen
sionless quantity: 

• 
W)= Illt- t J E(T)dT. (16) 

The quantity ~ (t) is also distributed according to the 
normal law with the dispersion given by D(t) the ex
pression for which depends on the form of the correla
tion function for the field E(t). For the sake of definite
ness we consider an exponentially correlated process: 

~-t<E(t) >-b, 
(17) 

ll'It-'<E(t+T)E(t) )=d' exp{-T) lTI}+b'. 

The quantities b and d defined in such a manner have the 
dimensions of reciprocal time. The quantity 1] can be 
interpreted as the reciprocal of the coherence time of 
the field. Under the assumptions (17) the dispersion of 
the process Ht) will be equal to ([5], Sec. 33) 

(18) 

The value of the average population difference will be 
determined by averaging the general solution (15) over 
the distribution. It is of the form 

I 

y(t)=cos~(t)exp{-at- D~) }+a Jdzcosf(z)exp{-a.z-D~Z)}. 
o (19) 

From formula (18) it can be seen that for times large 
compared to the coherence time 1]-1 , the dispersion D 
grows linearly. In this case an approximate evaluation 
of the integral in (19) is possible: 

y(t) "" e-tt{ cos bt (1- b~~') + b~:~' sin bt } + b~;~' ' (20) 

~=a+d'/T). (21) 

From a comparison with (9) it can be seen that the effect 
of the amplitude fluctuations on the behavior of the popu
lation difference reduces to the appearance of an addi
tional relaxation proportional to the intensity of the noise 
component of the field. The relaxation introduced by the 
field can be compared with the relaxation characteristic 
of the system itself. Thus, for transitions between the 
ground state and a metastable state the relaxation of 
which is due to spontaneous radiation (/-L2ti- 2 <'<:j 1014 g-l 
cm (l '::l 103 sec- 1), with coherence times 1] -1 <'<:j 10-9 sec 
typical for spontaneous radiation the relaxation being 
introduced becomes comparable to that characterizing 
the system when the average intensity of the noise field 
is of the order of magnitude of several W' cm -2. 
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We consider the special case of a system without 
relaxation and a field with an average amplitude equal 
to zero. Then for small times and a weak field (for 
D(t) « 1} we have 

y(t) ... 1-D(t)/2. (22) 

The probability of transition 

W""D(t)/4 (23) 

depends quadratically on the time for small t. For 
t ~ 1]-1 the dependence on the time becomes linear, and 
formula (23) reduces to the Fermi golden rule for tran
sitions in a discrete spectrum under the action of broad
band radiation, since the value of d21]-1 is proportional 
to the spectral intensity of the field at the frequency of 
the transition. 

3. We consider the variation of the population dif
ference of a two-level system without relaxation coupled 
to an external field of constant amplitude and with a ran
dom phase 

V(t)=E cos (Qt+<p(t». (24) 

Such a model can be applied to the description of the 
radiation field from single mode lasers. We denote the 
deviation of the frequency cp' by f and go over to dimen
sionless variables having chosen for the scale of reCip
rocal time the Rabi frequency w = /-Lti-1E. Then the sys
tem (4)- (6) can be reduced to a third order differential 
equation 

(25) 

or to the integro-differential equation which is equi
valent to it 

• y"(O) +11 (0) 
y"+II=-f(t) S y' (T)f(T)dd /(0) /(t). . (26) 

• 
We seek solutions of (26) in the form of iteration 

series, whose zero order terms are solutions of (26) 
without the right-hand side: 

A.(t) =A cos t, B.(t) =B sin t. (27) 

Since (26) is linear the iterated solution can be carried 
out independently for each of the functions A(t), B(t). 
The solution obtained from the first function is of the 
form 

A (t)= A cos t [1+P.E (-0 " (p'+q') " p] -A sin t[ q t (-1)"(P'+q')"p] , 

- - ~8) 
where p and q are operators defined by the relations 

t 

pg(t)-J f(x)sin(x)g(x)tk, p=p·1, (29) 

• 
• 

qg(t) = J f(x) cos (x) g(x) dx, q=q·1. (30) 

The solution which is obtained from the second function 
has a somewhat more complicated structure: 

B(t)= Bsint [ i+q t (-1)" IT (p'+(_1)m q') (1-.... 1 q] 
A_O _0 

-B cos t [i.E (-f)"iI (p·+(_1) .. q·)U-.... l q ], 
(31) 

ft._O ",_0 

where 0mO in the power index is the Kronecker symbol. 

It can be easily seen that the functions A(t) and B(t) 
are exact solutions of (25). In future we shall restrict 
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ourselves to an investigation of the solution A(t) which 
satisfies the initial conditions 

A (0) =A, A' (0) =0. (32) 

We assume that the deviation of the frequency f(t) is a 
random stationary normal process with an average 
value equal to zero and with the correlation function 

C(-r)=/)'exp (-11-ri). (33) 

We average expression (28) over the distribution. From 
the structure of the iterated solution it is clear that the 
n-th term of the expansion represents a sum of 
2n 2-fold integrals of products of functions of an ordered 
sequence of arguments. As a result of averaging terms 
of the form (f(xd ... f (X2n) will appear in the integrand 
together with trigonometric functions. Such averages 
in the case of a normal stationary process can be ex
pressed in terms of pair correlation functions 

n 

F,. = </(x,) ... /(x,.» = ~II C,(x;,x.), (34) 

where on the right hand side there appears the sum of 
(2n-l)!! terms corresponding to possible decompOSitions 
of 2n arguments into pairs. We note that the iteration 
series corresponding to the third linearly independent 
solution of (25), the zero order term of which is the so
lution of (26) without the integral term on the right hand 
side, can be expressed in terms of products of functions 
f(xi) of an odd number of arguments. Since we have set 
the average deviation of the frequency to be equal to 
zero then for arbitrary initial conditions such an iter
ation series will vanish when averaged over the distribu
tion. 

It is convenient to represent the different terms in 
(34) by numbering the initial arguments of pairs in de
creasing order and by denoting by the same numbers the 
final arguments of the corresponding pairs. For example, 

F,=(1. 1), 
F.=(1.1. 2. 2)+(1. 2.1. 2)+(1. 2. 2.1). 

(35) 

(36) 

The use of the correlation function (33) enables one to 
evaluate in an elementary manner all the integrals that 
are encountered. We examine the different terms cor
responding to F 2 : 

p'=e [.l(t - sin t cos t) - ~sin' t +_1_ {1- (1 sint + cos t)e-T'}] 
2 2 1+y' ' 

pq=e [~(t - sintcos t) +-"Lsin' t __ 1_ {1-(y sin t + cos t)e-T'}] 
2 2 1+1' , 

(37) 

qp=e [-~(t + sintcos t)+..Lsin't+-1-h-(ycos t- sin t) e-T'} 1 
2 2 1+12 , 

q;-;"'e [.l(t + sin t cos t)+~sin' t - _1_h_ (1 cos t - sin t) e-T'} 1 
2 2 1+y2 . 

Here we have introduced the notation 

e=/)'/(1+1')· (38) 

The averages of more complicated combinations of the 
operators p and if also have an analogous structure. We 
note the presence of terms of three types: those in
creasing with an increase in t (power terms), those 
bounded for any value of t (trigonometric and constant 
terms) and those exponentially decreasing with increas
ing t. ConSidering the case t ~ 1 we restrict ourselves 
to taking into account only the power terms. 

Elementary but rather awkward calculations show 
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the following. All terms of order 2n contain the factor 
En. In the term of order 2n the contribution of the n-.th 
power yields only a term in which the neighbouring 
arguments are paired: 

F,.'=(1, 1,2,2, ... , n, n). (39) 

All the other terms give a contribution with a lower 
power of t. The coefficient in front of tn In I is a poly
nomial in y. Regrouping the power terms, one can re
present the coefficients in front of Acost in the form 

et 1 (st)' 
Hg,(e,1)z+g:(e,1)2T 2" + ... , 

(40) 

g,(e, 1)= (-1)' Re(1+i)"+eG~'l (1)+ e'G2l (1) + ... (41) 

Gri,i> is a rational function of y without any singularities 
for real values of y. 

Assuming the inequality e « 1 to be valid, we shall 
restrict ourselves in each of the coefficients in gn to 
the term of zero order in Eo To justify such an apprOXi
mation we must show that the expansion (41) does not 
diverge for any finite value of e. Although the result 
should not depend strongly on the specific form of the 
correlation function, with our choice of C(r) the inves
tigation of the functions gn (E, y) is considerably sim
plified. The magnitude of the contribution of a given 
term in F2n for each of the products pkqmpn ... is 
uniquely determined by the placing of the initial argu
ments of pairs in the sequence of 2n arguments and does 
not depend on the pOSition of the final arguments. For 
example, in the fourth order we have 

(1,2,1,2)=(1,2,2,1). (42) 

Instead of (2n-l)!!terms we shall have to deal with a 
significantly smaller number of classes of equivalent 
terms. As a representative of each class we choose the 
decomposition with nonintersecting pairings. It is im
portant to note that the number of terms K in each class 
increases with an increase in the length of pairings: 
From K = 1 for the leading term Fl2n to K = n 1 for the 
term with the imbedded pairings 

F;;:'l= (1, 2, ... , n, n, ... , 2, 1). (43) 

As an example we give the expansion of the term of the 
sixth order: 

F.=(1, 1, 2,2,3,3)+2(t,2, 2,1,3,3) 

+2(1,1,2,3,3,2)+4(1,2,2,3,3,1)+6(1,2,3,3,2,1). 
(44) 

In calculating the values of the terms with long pairings 
compensation of large numerical coefficients occurs by 
factors of the type of n- 1 , (n2 + m2/t1 which appear when 
exponentials with large exponents are integrated. As the 
number of embedded pairings increases the index of the 
power in the principal increasing term also decreases. 

The summation of the terms of zero order in formula 
(40) and in the analogous relationship for the coefficient 
in front of A sin t is not complicated. Returning to dimen
sional variables we arrive at the following expression for 
the average population difference: 

{ /)' t } [ 6' y(t)=A exp ---, '(- cos oot (1+ ) )]. 
00'+1 2 2(00'+1' 

(45) 

Thus, in an external field of constant amplitude with a 
fluctuating phase the population difference relaxes with 
time towards zero value. Evidently, in contrast to the 
case considered in Sec. 2, the effect of the fluctuations 
of the phase cannot be taken into account by introducing 
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effective relaxation constants in Eqs. (4)- (6) since the 
frequency of oscillations is not smaller than the Rabi 
frequency in contrast to a. 

We consider different limiting cases of formula (45). 
In the case of large and slow reductions in frequency 
(6)> 6, technical line shape) the condition for the ap
plicability of iterational calculations 

1I'<y'+oo' 

forces us to restrict ourselves to the case of strong 
field (w 2 » 62). The rate of effective relaxation 

as,.,II'y/2oo' 

(46) 

(47) 

turns out to be quite small. For typical values of 6 ~ 103 

sec -1 the condition (46) leads to the estimate as -;; 101 

sec-\ It is of interest to note that the spectrum of the 
field in this case depends only on 6, but not on y([5], 
Sec. 37), and a direct coupling between the spectrum of 
the field acting on the system and the relaxation in the 
oscillation of the populations is absent. In the limit 
y -- 0 formula (45) goes over into 

y(t) =A cos [oot(HII'/2oo') J. (48) 

In this expression it is not difficult to regocnize an ex
panSion in terms of the small detuning of the exact so
lution of (25) in the case f = /j = const: 

g(t) =A cos l'oo'+II"t. (49) 

In the opposite limittDg case of small and rapid re
ductions of frequency (/j « y, natural line shape), Eq. 
(46) does not impose any restrictions on the value of 

592 SOY. Phys.-JETP, Vol. 42, No.4 

W. The relaxation introduced by the fluctuations of phase 
is greatest in relatively weak fields, for'" -;; y. We then 
have 

(50) 

The rate of damping in this case is equal to one half of 
the width A of the Lorentz line . 

a,=II'/2y=M2. (51) 

In the case of a suffiCiently great line width (for example, 
in the case of a semiconductor lasers A can attain the 
value of 104 sec-I) the rate of relaxation (IF can exceed 
the rates of relaxation characteristic of metastable levels. 
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