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The question of the frequency dependence of the conductivity (7'(w) at low frequencies and of the 
corrections to the diffusion law <r(t» ex: Dt is considered for particles moving in a system of randomly 
distributed force centers. It is shown that besides the usual terms proportional to integral powers of w the 
series for (7'(w) or the diffusion coefficient D(w) contains terms _W3/2 in three-dimensional, or -wlnw in 
two-dimensional, space, which corresponds to corrections to the diffusion law - t -1/2 for d = 3 and -In t 
for d = 2 (d is the dimension of the space). In the quasi-unidimensional situation, i.e., when the transverse 
dimensions of the system are small, but finite, the nonregular corrections considerably exceed the classical 
corrections and tum out to be -vw for (7'(w) and -v t for <r2(t». These corrections lead to a situation 
in which at large t the velocity correlator for the diffusing particles ex: t -(d +2)/2. The presence of nonregular 
terms in the expressions for (7'(w) and <r2( t» is due to the existence in the perturbation-theory series for 
the diffusion coefficient of intermediate states containing diffusion poles corresponding to quasi-particles: 
"diffusions." The coefficients in the nonregular corrections are computed in the limit of weak interaction 
and low scatterer concentration. The anomalous corrections are of a quantum nature, i.e., they vanish in 
the classica1limit. 

PACS numbers: 66.30.0n 

1. INTRODUCTION 

The problem of the motion of a particle in the field of 
randomly distributed force centers has been investigated 
in a large number of papers (see, for example, the re­
view by Lifshitz [lJ). It is well known that if the particle 
energy is sufficiently high, then the particle propagates 
like a weakly damped plane wave; if, on the other hand, 
the energy is small, then the wave is heavily damped, 
and there arises the difficult problem of finding the en­
ergy spectrum near the band edge, a problem which has 
not been completely solved. 

In this paper we shall investigate the spatial and tem­
poral distribution of the particle density. It is clear 
from physical arguments (this will be rigorously proved 
below) that in the limit of large times and distances the 
particle density satisfies the diffusion equation 

~p,,(r, t)=D"V'p,,(r, t), at 
(1) 

where PE is the density of particles of energy E and ~ 
is the diffusion coefficient for these particles (Since the 
centers are static, energy is conserved in scattering by 
them, and we neglect the particle-particle interaction; 
therefore, particles with energy E diffuse with a diffusion 
coefficient DE)' In the general case DE is a complex 
function of the energy. We can only assert that in the 
limit of large energies 

(If) (d) 

D" =2E/dy" , (2) 

where Ytr = Y - Yl is the "transport attenuation factor" 
for the particle and d is the dimension of the space; we 
are using a system of units in which ti = 2m = 1 (it should 
be noted that, according to Mott [2J , diffusion in one­
dimensional systems is impossible; therefore, in (2) 
d = 2, 3; the last section of the paper is devoted to a 
discussion of diffusion in the quasi -unidimensional situa­
tion, i.e., when the wavelength of the particles is com­
parable to the transverse dimensions of the system). 

To the equation (1) corresponds the usual law, 

<r'(t) ),d)=2 dD~') t, (3) 
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according to which the particle density spreads out in 
time and which corresponds to the random-walk picture. 
The diffusion law (3) is valid only at the limit t - 00. Let 
us discuss the nature of the possible corrections to the 
expression (3), i.e., assuming in (3) that D(d) = D(d)(t), 

E E 
let us elucidate the behavior of the diffusion coefficient 
at large t 1= 00. On account of the Einstein relations, the 
diffusion coefficient is proportional to the conductivity, 
and, knowing its dependence on the frequency of the elec­
tromagnetic field, a(w), we could, in prinCiple, determine 
the dependence DE(t). Since it is known that at low fre­
quencies a(w) can be expanded in powers of the quantity 
(WTtr), where Ttr = yfi is the "transport time" between 
collisions of the particle with an impurity, the diffusion 
coefficient at large t should also be expandable in powers 
of (Ttr/t). These regular corrections are not connected 
with the quantum properties of the particle, and, if they 
are large, then this means that the system simply has 
not yet reached the diffusion regime, which obtains at 
t » Ttr . 

In the present paper we show that there exist, besides 
the classical corrections, other corrections to the diffu­
sion law that arise precisely at times larger than the 
microscopic times and that contain a quantum param­
eter-the ratio of the particle wavelength to the mean 
free path. Let us briefly explain the mechanism leading 
to the appearance of the nonregular-in t-corrections 
to the diffusion. The diffusion process can be treated as 
the propagation of a distinctive slow quaSi-particle with 
a purely imaginary mass: a diffusion. This diffusion is 
formed as a result of the random walk of the particles 
from one center to another. In such wanderings the rare 
processes in which the particles return to the force 
centers with which they had earlier interacted (multiple 
scattering) are possible. If the rescattering events occur 
after times comparable to Ttr, then this leads to some 
renormalization of the constants in the expansion of 
(r2(t) in powers of (Tt/t). If, on the other hand, the 
particle returns to the center after many wanderings, 
i.e., after a time t » Ttr, during which it traverses a 
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distance much longer than the mean free path, then such 
a return can be described as a slow process of diffusion 
scattering by impurities, a process which renormalizes 
the effective interaction ensuring a diffusion process 
such that there appear in it terms nonregular in w. 

The form of these quantum corrections depends on the 
dimension of the space. The dominant of them in the law 
(r2(t» for the three-dimensional case is ~t-l/2 or ~W3/2 
for D(w), while for the two-dimensional case we respec­
tively have lnt and wlnw. The correction to the conduc­
tivity in the three-dimensional case can be observed at 
low temperatures against a background of the first stan­
dard correction (WTt~). For the two-dimensional case it 
is clear that for suffIciently low frequencies (or at large 
times in D(t» the indicated correction becomes larger 
than the regular correction (wTti). It turns out to be 
especially large in the quasi-unidimensional case, where 
the contribution to the diffusion coefficient is of the order 
of /W, which corresponds to the appearance of a term 
~vt in the diffusion law (3). 

In conclusion of this section, let us note that the non­
regular corrections to diffusion have been discussed in a 
paper by one of the present authors [3J, as well as in 
other papers [4, 5J. In contrast to [3-5J, in our case we are 
able not only to ascertain the form and the physical cause 
of the resulting corrections in the general form, but also 
to carry through the computations for some concrete ex­
amples at the microscopic level. 

2. THE GENERAL STRUCTURE OF THE 
CORRECTIONS TO DI FFUSION 

In this section we discuss the structure of the per­
turbation-theory series for the particle-density propa­
gation function, as well as the mechanism underlying the 
appearance of the corrections to diffusion andthe con­
ductivity. 

The analysis is based on the usual diagrammatic 
techniques for a particle in the field of randomly distri­
buted force centers (see, for example, the book by 
Abrikosov, Gor'kov, and Dzyaloshinskil'[6J ). For the 
study of diffusion, it is necessary to consider the re­
tarded Green function, KR(k, w), for the particle density, 
this function being the analytic continuation to the real 
axis from above of the corresponding function of the dis­
crete frequencies: 

./T 

K(k, ioo n ) = J d't(Tp(Pk('t)p-k(O»)eXPiOOn't=TEK(k,iE, ioo n ) , (4) 
o ~ 

where Pk(T) is the Fourier transform of the particle­
density operator. The first few diagrams for K are 
shown in Fig. 1, where the lines with arrows correspond 
to the exact particle Green functions, the wavy lines 
correspond to the Fourier transform of the potential of 
the interaction with a center, and a point denotes a force 
center. To each point corresponds a factor n, the con­
centration of the force centers, and the law of conserva­
tion of momentum is satisfied at each vertex. Since the 
centers are static in all the diagrams, to the upper lines 
corresponds an energy IE + iw, while to the lower lines 
conesponds an energy iE; the function K is an analytiC 
function of the variables iE + iWn and iE, and has branch 
cuts along the lines Im(iE + iwn) = 0 and Im(iE) = O. 
Taking this circumstance, as well as the fact that iWn 
= 21TnT, into account, we can easily carry out the analytic 
continuation (4) in the general form (see Ginzburg's 
paper [7J): 
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1 J . KR(k,oo+i6)=- dE{[n(E+oo)-n(E) jK(k,E+oo+i6,E-i6) 
2ni (5) 

+n (E) K (k, E+oo+i6, E+i6) -n (E+oo) K (k, E+oo-i6, E-i6)}, 

where n(E) is the Fermi or Bose distribution function, 
depending on the statistics of the particles under consid­
eration. It is evident that the formula (5) is valid for any 
distribution function of the particles over energy that 
does not correspond to thermodynamic equilibrium. 
Thus, as was to be expected, the problem has been re­
duced to the study of the behavior of the density of par­
ticles with a fixed energy. Now in the diagrams of Fig. 1 
the arguments of the upper and lower Green functions 
are respectively E + wand E. Further, if the imaginary 
correction to the energy is positive, then to a line corre­
sponds the retarded Green function Gp(E) = a:(E + io), 

whi~e if the correction is negative, then a:(E - io) 

= Gp(E). 

It is not difficult to verify by considering the pertur­
bation-theory series for K(k, E + w + io, E + i6) that in 
the limit when k, w = 0 (cf.t7J) 

1 J a K(O,E+i6,E+i6)=- (2n)' dpTEG.(E). (6) 

Using this relation and the analogous formula for 
K(O, E - io, E - iO), we obtain from (4) for small k and w: 

1 J antE) { KR (k,OO+i6)=2n7 dE~ ooK(k,E+oo+i6,E-i6) 

+ (2~),J dPImG.(E)}=J dE(_a;~E) )K(k,E,OO+i6). 

(7) 

On account of the law of conservation of the total particle 
number, Pk = O(t) does not depend on the time, and, 
therefore, KR (k = 0, w + io) == O. This implies the 
validity of the exact equality 

K(k=O,E+oo+i6,E-i6)= 2nip(E) , 
00 

np(E)= - (2!)d S dp 1m Gp(E). 

(8) 

Here p(E) is the usual density of states of particles with 
energy E. As shown below, at finite k, w in the denom­
inator of (8) is replaced by w + i~k2, and, as a result, 
we obtain: 

R( . S ( an ) D"k' K k,OO+l6)= dE -- p" . 
aE -ioo+D"k' 

(9) 

To derive this formula and obtain the corrections to it, 
we shall need some general relations connecting 
KR(k, w) with the retarded current correlator 

i 
PR(k, 00) = To <[ (kit), (kj_k) j>.R 

(Einstein's relations). These relations are easily der­
ived by differentiating the function KR(rl - ra. tl - t a) 
with respect to tl and t2 and substituting into the Fourier 

£'t'w E+w 

6+m-+~+ 
P'~-<D>:-®-~~,.'" 

FIG. I 
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FIG. 2 

transform of the expression for p obtained from the 
equation of continuity Pw k = -ikjw k: , , 

iro R 1 
--k' K (k,ro)=-;-[PR(k,ro)-2Nl. (10) 

lro 

According to [6J , the right-hand side of (10) is the con­
ductivity <1(k, w). To compute pR(k, w), we can easily 
introduce analytic-continuation formulas similar to (7). 
The quantity k2pR(k, w) is described by the same set of 
diagrams that describe KR(k, w), the only difference 
being that at the right and left vertices of each of the 
loops stands a scalar product of the vector k and the sum 
of the momenta of the lines converging at these vertices. 
USing the Ward identity 

2 1 J () P(k=O,E+ill,E+ill)=--- dpp-{) G,(E), 
d (2n)' p (11) 

which is obvious from the diagram series in Fig. 1, we 
can, in analogy to (7), write: 

PR(ro)=~J dE(~) roP(E+ill,E-iO) (12) 
2m ()E 

-~ J dE n(E)_1_ J dp 1m G,(E). 
n (2n)' 

Since the last term in (12) is Simply -2N, from (9), (10), 
and (12) follows the Kubo formula for the diffusion co­
efficient 

Let us return to the derivation of the formula (9). In 
Fig. 2 we graphically represent the equality connecting 
K(k, E + w + iO, E - Hi) with the quantity L, the complete 
four-pOint function, for which we have the equation 

L •• , (k, E, ro+io) =U •• ' (k, E, ro+io) 
1 . (14) 

+ (2n),' J dp, U •• ,(k,E,ro+iO)G.,+,(E+ro)G.:(E)L ••• ,(k,E, ro+iO) , 

where U is an irreducible four-pOint function, which 
cannot be divided into two parts by cutting only two lines 
corresponding to particles. 

In the case of point centers, we have in the lowest 
order in the concentration n and in the interaction V the 
expressions 

U(q)=nV'(q),V(q)= Jd're,q'V(r) , 

G.(E) =(E-p'+i'Y'd» _I, 

- iEJ ,'IE 'Y(3'=-lml:'3)=no'lE=-- dQU(p-p )=-U" 
16n' 4n 

1 J ( ') U, 'Y"'=-Iml:"'=R,... dq>tJp-p =4' 

(15) 

FIG. 3 

The equation for L is easy to solve: 

[ Us ]-' LId, L(k,ro)=U 1--(2)d d'pGp+,(E+ro)G .. (E)".. . 
n -iro+D~'k' ' 

D,d,_ 2E 
E - d,,{(d) , 

I ,d,,= __ 1-J ddplG I' 
'(2n)' • , 

(16) 

The approximate equality on the right-hand side of the 
first formula in (16) obtains if we neglect the higher 
terms of the expansion in powers of k2 and w. As follows 
from (8), the cancellation of the constant term in the 
denominator in (16) is a consequence of the law of con­
$ervation of the total particle number. In the general 
case an analogous cancellatIon is realized owing to the 
following exact relation: 

Iml:.(E)=_1_J d'p'U •• ,(O,E,O)ImG,'(E). (17) 
(2n)d 

The validity of (17) can easily be verified by considering 
the sequence of irreducible diagrams for the self-energy 
part, 1:, of the Green function G (see Fig. 3). If we com­
pute 1m 1: with the aid of the equality 1m (AB) = A 1m B 
+ (1m A)B*, then the contribution to 1m 1: from each of 
the diagrams will consist of several terms, in each of 
which one of the internal Green functions will be replaced 
by 1m G; the Green functions standing along the solid 
line to the left of this Green function do not change, 
while those standing to the right are replaced by G*. 
As a result, each such term will have the form of an in­
tegral operator acting on 1m G. Further, each diagram 
corresponding to such an operator coincides with one of 
the diagrams for Upp' (0, E, 0). As can easily be verified, 
in such a procedure all the diagrams for Upp' are re­
produced, and there are no superfluous ones; for exam­
ple, the three simplest diagrams in Fig. 3 reduce to the 
six simplest diagrams shown in Fig. 2. Equation (17) is, 
essentially, a unitarity condition for G and ensures the 
singularity of L(k = 0, w = 0). In order to verify this, let 
us write Eq. (14) in the operator form as follows: 

L(k, ro) =U(k, ro) +U(O, 0) I GI'L(k, ro) +MU(k, ro) (GG')" .1L(k, ro), 

MU(k, ro) (GG·).,.l=U(k, ro) (GG'h,.-V(O, 0) IGI'. (18) 

If now we let an integral operator with a kernel 1m G act 
on this equation from the left, then we arrive at the 
equality 

-Iml:-ImGt1[U(k, ro)l=ImGMU(k, ro)(GG'). .• lL(k, ro). (19) 

A[U(k, w)(GG*\ ] tends to zero as k - 0, w - 0, from lK, w 
which it necessarily follows that L(O, 0) = 00, Taking into 
account the symmetry of I;,p' with respect to interchange 
of p and p', as well as Eqs. (8) and (13), we can easily 
understand that the solution (18) in the lowest approxima­
tion in k and w has the form 

(20) 

which corresponds with the formula (9), 

Here 1: is the self-energy part of G in the lowest approxi- To compute DE, we must expand A[UGG*] in (18) in 
mation and, like Upp" does not depend on the momenta, powers of k up to the k2 term and substitute into it the 
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+ ... 
a 

b 

FIG. 4 

expression (20). We can similarly find the corrections 
to (20). For this purpose, we should expand U and (GG*) 
in (18) up to the powers of interest to us, substitute into 
the resulting expression (20), in which the unit term in 
the numerator and DE in the denominator should be re­
placed by some functions lpp'(k, w) and DE(k, w) ex-
panded in the appropriate series, and equate the coeffi­
cients attached to identical powers in the expansion, re­
quiring the fulfillment of the condition (19) for each of 
the powers. We obtain a system of integral equations, 
for which the conditions (19) are Simply conditions for 
their solubility. The execution of this program requires 
the knowledge of the form of the expansion of (UGG*)k w. 
First of all, it is clear that for k2, w « E ' 

G,+k(E+oo) G,'(E) = I Gp(E) 1'+g,,(E) oo+g,,(E) k+g,p·J(E) k.kJ+ ... 

(21) 

Therefore, the direct expansion of the function G does 
not lead to any nonregular corrections to the diffusion. 

The Simplest diagrams for Upp" which are shown in 
Fig. 2, also do not contain terms that are nonregular in 
k and w. We can, however, make, for example, the fifth 
diagram in Fig. 2 more complex, as shown in Fig. 4a. 
As a result of such a complication, the internal sequence 
of diagrams is gathered into an expression having a dif­
fusion pole, and the corresponding contribution to 
Upp,(k, E, w + Hi) can be represented at small k and w 

in the form 

Sd F(p,q,k,p') 
q -ioo+Dq' 

Jd F(p,q,k,p') +' Jd F(p,O,O,p') + 
q Dq' '00 q Dq'(-ioo+Dq') ... 

(22) 
=a+bl'to,+ek+doo+eoo'/·+ .•. 

in three-dimensional space. In the two-dimensional case 
the square root branchings in this series are replaced 
by logarithmic ones. 

Thus, we see that the presence in the internal parts 
of the diagrams for ~pp' of sequences, the summation of 
which gives rise to a diffusion pole, leads to the appear­
ance in the expression for Upp' of terms that are 
nonregular in w. We shall represent the propagation of 
such a diffusion pole, or, in other words, of such a quasi­
particle with an imaginary mass-a diffusion-by a 
dashed line. The Simplest diffusion diagrams are shown 
in Fig. 4. It is precisely the appearances of such diffu-
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FIG. 5 

sion intermediate states in the expression for Upp' that 
constitute the return effects discussed in the Introduc­
tion. Besides the single-diffusion diagrams shown in 
Fig. 4, it is clear that there also exist multidiffusion 
diagrams in which the diffusing denSity more than once 
is gathered into a diffusion. Some of these diagrams are 
shown in Fig. 5, it being clear that, for example, the dia­
gram in Fig. 5a gives a singularity of the same order as 
,the one given by the diagrams in Fig. 4, whereas the 
diagrams in Figs. 5b and 5c have singularities 
~ln(-iw + Dk2/9), the five-diffusion diagram in Fig. 5d 
already contains a singularity ~ (-iw + Dk2/25fli2, etc. 
It is precisely the appearance of similar large terms in 
the expression for ~ (E) at low energies that is the 
source of the difficuRies that are encountered in the 
study of the energy spectrum of particles near the band 
edge and that were mentioned in the Introduction[l]. But 
we know that the quantity entering into (17) is finite. 
This means that there exists a mechanism that ensures 
the absence of such large terms. Moreover, even if we 
make use of the simplest type of complication (Fig. 4) 
and attempt to solve Eq. (18), L(w) turns out to be pro­
portional to W-1/ 2, instead of the dependence, w-1, that 
follows from the law of conservation of particle number, 
(8). This fact means that there should also occur here 
certain cancellations that are such that they at least en­
sure the absence in L(w) of terms that decrease the 
order of its divergence as compared to w-1• In other 
words, since the above-described procedure for comput­
ing the denSity correlator leads to the formula 

K(k E oo+ic5)= (E) f(oo)iDE(k,oo)k' (23) 
, , p oo/(oo)+iDE(k,oo)k" 

the expansion of f(w) should, in any case, begin with 
unity. On the other hand, there are two circumstances 
that allow us to avoid the indicated difficulties. 

Our aim is to study the dependence on w of the ex­
perimentally observable value of the conductivity a(w) 
and of the asymptotic behavior at large times of the 
quantity (r 2(t). For the computation of a(w), we have 
the formulas (13), while (r2(t) is defined according to 
standard rules [3j as 

(r'(t» = ----------

S dr J doo 1m KR(r, 00) oo-'e-'·' (24) 

i.e., both the conductivity and the mean square distance 
are determined only in terms of the k-independent part 
of the diffusion coefficient DE(w), and, in this sense, 
f(w) does not carry any information. On the other hand, 
the homogeneous part of the dynamical diffusion coeffi­
cient can be directly computed, using the formulas (18). 
Before proceeding to do this, let us note that, because of 
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I 
the vectorial nature of the vertices of the current-density 
correlator pR(w), the w singularities do not strengthen 
as larger and larger numbers of diffusions are put in the 
intermediate states. To verify this, let us write out the 
obvious-from the diagram series for D and the formula 
(13)-equations determining the diffusion coefficient: 

DE(ro)k'= (2~)d J dp(2pk)'Gp(E+ro)GpllJ p(E,ro), 
(25) 

2pk<Dp(E, ro) =2pk+ ~1_ S dp, upp, (E, ro) Gp,(E+ro) Gp: (E) ·2p,kllJp, (E, ro). 
(2n)" 

For w = 0 the solution to these equations will give the 
static diffusion coefficient, while the expansion of 
Gp(E + w) and VpP1(E, w) will lead to equations deter-
mining the dynamical corrections to it. The function 4>p 
is determined by the quantity Vpp1(E, w) multiplied by 
the cosine of the angle between p and PI and integrated 
over this angle; therefore, upon the substitution of the 
formula (22) into (25), only the term bilinear in 
(p . q)(Pl . q) makes a contribution. In fact, let us consider 
the single-diffusion diagrams shown in Fig. 4. For the 
diagrams in Fig. 4b this fact is obvious. The series of 
diagrams with two interaction lines joining nondiffusion 
blocks (of the type shown in Fig. 4c) is distinguished by 
the fact that the terms in it with nonintersecting interac­
tion lines are canceled out after integration by terms for 
which these lines intersect. This phenomenon can also 
be observed in the case of diagrams with any number of 
interaction lines joining the nondiffusion blocks. 
Similarly, in multidiffusion diagrams each of the blocks 
not containing diffusion insertions should be expanded up 
to the first order in all the ingoing (into it) and outgoing 
(from it) diffusion momenta, and only the first-order 
(and nonzero) terms of the expansion will contribute to 
the nonregular corrections. But then it is clear that, 
being interested in only the dominant terms in the non­
regular correction, we need to take only the single­
diffusion intermediate states into account. The correc­
tion to D in ~he three-dimensional case is then propor­
tional to w3 2: 

D~3) (ro) =D~') (0) [1+iro,t~')+B!') i(iro)'/'+ ... J. (26) 

while in the two-dimensional case it is proportional to 
wlnw: 

D~') (ro)=D~') (0) [1+iro,,~')+Bi') iro In (rooliro) + ... J. 

which corresponds to corrections to the diffusion law 
that are proportional to t-1/2 in three-dimensional space, 
or to I nt in two-dimensional space: 

<r'(t) >~') =6Di')[t+B~') (nt)-'/'-ti~) + ... j, 
(2) (2) [BE2 (2)] 

<r2(t»E =4DE t-Tln(root)-,,, + ... , 

where Wo is some characteristic cutoff frequency. 

3. CORRECTIONS TO DIFFUSION IN 
PERTURBATION THEORY 

(27) 

The entire analysis, carried out in the preceding sec­
tion' of the corrections to the diffusion law and the con­
ductivity did not depend on the magnitude of the interac­
tion and the concentration of the scatterers. The results 
obtained there were based only on the smallness of k 
and wand the fact of the appearance in the diagrams for 
Vpp' of diffusion intermediate states. Therefore, the as-
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sertions made about the behavior of a(w) and (r2(t) are 
valid in the entire region of energies E where infinite 
particle motion occurs. In the present section we com­
pute with the aid of perturbation theory the coefficients 
in the frequency-dependent terms in the expansion of 
DE (w) and the coefficients in the higher-order correc­
tions to (r2(t), assuming that the concentration of the 
scatterers is low and that the particle-scatterer inter­
action is a weak interaction. Accordingly, we shall 
restrict ourselves to only the simplest diagrams. 

Since V p_p' is small, according to (15) and (17), the 
pole of the Green function lies near the real axis, and 
the dominant contribution to the computations will be 
made by momenta close in magnitude to YE, while the 
principal parameter of the perturbation theory will be 
the quantity (ETr1 « 1. When Upp/(E, w) = Vp_p/ the 

Eqs. (25) are easy to solve, and it turns out that 

DE(ro) =DE(O) [1-iro,,,l-" (28) 

where DE(O) is determined by the formula (2); Ttr = Yt~; 
and, ~cording to (15), in which p should be set equal 
to El 2, V = Vtr. To this standard expression for the 
low-frequency diffusion coefficient should now be added 
terms arising from the diffusion renormalization of 
Vpp/(E, w). It is not difficult to see that it is necessary 
to take into account only the diagrams in which the non­
diffusion blocks are joined by one interaction line. 
Diagrams of the type shown in Fig. 4c are small, since 
the requirement that all the momenta lie close to the 
energy surface leads to the restriction of the integration 
domain to the range of variation of one of the angles be­
tween them. This does not, however, mean that we can 
restrict ourselves to the diagrams in Fig. 4b. In the 
first place, it is necessary to complicate the right and 
left vertices of the nondiffusion blocks, which means that 
with these vertices must be associated the function 
2pk<l>p' In the second place, if we sum up the four dia­
grams in Fig. 4b, then it turns out that the dominant­
with respect to (ETr1-corrections in them cancel out 
(notice that cancellation occurs also in the summation of 
diagrams with two interaction lines between blocks). 
Therefore, it is necessary to take into account the dia­
grams in which the ends of the interaction lines are 
made complicated (in the simplest fashion), as shown in, 
for example, Fig. 4d. It is also clear that for the com­
putation of the diffusion correction the formula for the 
diffusion (20), which contains only the maximum singu­
larity with respect to k, is not enough, i.e., with a dashed 
line in the diagrams in Fig. 4 should be associated the 
expression 

2 (lp+l,p2pq) (lp·+I,p·2p'q) (29) 
Lpp' (E, ro, q) = ttp (E) -iro+DEq' 

Here 1 = 1m 2:: and for lip we clearly have the equation p p 

(30) 

+ (2~)d S dp, Upp,(O) IGp,I'2p,q1iP" 

Of interest to us in the expansion of the free term of this 
equation are the terms linear in q. Thus, the formula 
for the computation of the diffusion coefficient and con­
nected with the rescattering of the diffusion will have 
the form 

1 S 1 
fj,DE'(ro)k'=-(2)d dq . +D 2 np(E) tt q"" -lro Eq 

2 
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1 1 }' x {(2,,)' k' J dpIG.I'(2pk)'(qk) (lJ.A. V(O), 

A.~2 Re [ G. ( 1 - :;.)] l,.+2i rm [ Go' (1- :;.)] l •. 
(31) 

In the region of applicability of the perturbation theory, 
the Eqs. (25) for oI>p and (30) for lip are easy to solve: 

"( p-YE "(i 
(lJ.~-----. 

. 1" P 1" 
(32) 

The limitation in (31) to the domain of integration with 
respect to q is connected with the fact that the diffusion 
in the form (20) exists when q :5 ~ « y/IE. Since we 
shall not be interested in a minor renormalization of the 
static diffusion coefficient and in the renormalization of 
the regular corrections to it, this limitation is of no 
importance to us. The same result can be obtained with 
the aid of two (d = 3) or one (d = 2) subtraction. Substi­
tuting the expressions from (15) and (32) into (31), we 
obtain after simple calculations the expressions: 

B(') (I) 0 2 U(O) 1 
E ~-DE ( ) 3 4,,'1 E (D~3) (O)E)," ' 

(33) 
B(')~-D(') (0) U(O) __ 1_ B(') _ (D(') (0) )-dl'("')' 

E E 4"E D~') (0) E • BE". 

It should be noted that, while in the computation of the 
principal order of the self-energy part and of the static 
diffusion coefficient in the region of applicability of the 
pe'rturbation theory the nature of the dependence of the 
interaction Upp' on the momenta was not very important, 
in the computation of the corrections with the aid of the 
formula (31) this dependence cannot, generally speaking, 
be ignored. Thus, if in the equations determining 
1m 2;p' oI>p' and lip we allow, in first order, for the 
deviation of the momenta from the square root of the 
particle energy p = IE, i.e., if we represent yp and Yip 
as 

(34) 

then the values of B(d) should be multiplied by the quan­

tity (1- D~)(O)/D~J1(O)), where ~(d)(O) is determined by 

the formula (2) with Ytr replaced by yfr' 

4. QUASI-UNIDIMENSIONAL DIFFUSION 

According to Mott [2J , in a one-dimensional system of 
scattering centers all the particle states should be local­
ized, and, in view of this, there should be no diffusion. 
In the present paper we shall not prove this fact in its 
general form on the basis of the formula (13), but shall 
discuss only the question of diffisuion in a system of 
point centers under the condition that E/y »1. (The 
question of diffusion in such a system in the purely one­
dimensional situation has been investigated by 
Berezinskir[8J .) In our method of description, the vanish­
ing of the diffusion coefficient is connected with the fact 
that in the one-dimensional case the cross diagrams for 
P(k, w) make, in order of magnitude, the same contribu­
tion as the diagram without interaction lines (which alone 
makes the dominant contribution to the coefficient of 
diUusion by point centers). This occurs on account of 
two circumstances. The first is that the cross diagrams 
in the one-dimensional case do not contain small terms 
that arise as a result of the smallness of the phase vol­
ume, a smallness which obtains in three and two dimen-
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sions; the second is that, because of the oddness of the 
vertex in P(k, w) the contributions from the integration 
domains near +vB and -vB add up and not cancel each 
other out, as happens in the case of the computation of, 
say, the imaginary part of the self energy. On the other 
hand, let us imagine a system infinite in the direction of 
the z axis and bounded by a barrier in the perpendicular 
directions. In such a system the energy is quantized in 
the transverse directions and has an arbitrary value in 
the direction of the z axis, and for the Green function we 
obtain: 

G(E, 8 ... , p)=(E-8n .. -p'+i1)-'. p~p,. (35) 

The two-particle Green function will now be a matrix 
with components corresponding to the values of the quan­
tized-in the transverse directions-energy. We shall be 
interested in only the component of this matrix that con­
tains zero transverse energy, since only this component 
has a singularity at w = O. For the computation of the 
diffusion coefficient from the formula (13), all the in­
tegrals over Px and Py in (25) should be replaced by sums 
over Enm, the summation being restricted by the condi­
tion Enm < E, since the terms of the sums with Enm > E 
strongly cancel each other out after integration over p, 
and the contribution from them turns out to be 
y IE - Enmrl times smaller than the contribution from 
the terms with Enm < E; we assume the particle wave­
length to be comparable to the dimensions of the system, 
and therefore we can neglect this contribution. 

On the face of it, it seems that the same difficulty 
encountered in the one-dimensional situation in connec­
tion with the cross diagrams obtains here, since only the 
diagonal terms in these diagrams are important, and it 
is as if we have the one -dimensional case for each term 
of the series. This, however, is not the case because the 
diagonal elements alone are not enough to compensate 
the smallness resulting from two extraneous interaction 
lines. In other words, as in two- and three-dimensional 
spaces, the cross diagrams are small because of the 
smallness of the phase volume of that region where they 
themselves are large, the phase volume of that region 
where they themselves are large, the phase volume 
being now represented by a number of large terms of 
the series. If the number of terms with Enm < E is not 
large, but greater than one (this is the most interesting 
case). then it is not possible to obtain a closed expres­
sion for the diffusion coefficient. We can only say that it 
has a normal order of magnitude DEt> ~ Ey-l. 

In such a quasi-unidimensional model, all our argu­
ments employed above in the two- and three-dimensional 
systems about the corrections to the diffusion coefficient 
that arise as a result of diffusion scattering are valid. 
It is not difficult to see that this correction is now pro-' 
portional to fW: 

Dil) =D~o (0) [1+iB!,o 'Iiro + iro'("j, B(I) "" _ V(O) f (36) 
B E'" (ED<;') (0» 'h • 

and, at small w, considerably exceeds the fir,st regular 
correction ~w. Correspondingly, there arises in the 
conductivity a(w) in a quasi-unidimensional system a 
term that depends anomalously on the frequency: 
a(w) = a(O)[l + a'.,f[W + ... ]. It is interesting to note that 
if we construct, in accordance with the diffusion law in a 
quasi -unidimensional system 

• (i) (i) [ 2B},i) . - ] <r (t»B ~2DB t - ---=- 'I t + ... 
'I" ' 
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f 
the graph for the root-mean-square distance R = (r2(t)1/2 
traversed by the particle in the process of diffusion (at 
large t) and joint it to the asymptotic form, it does not 
go through zero, but cuts off on the ordinate axis an 
intercept Ro = -2BErv'D£'. 
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