
ferent temperature dependences for the two terms. 
(Notice, for comparison, that the polaron parameter 
<I>(T) - <I> (0) in the case when the acoustic phonons 
predominate depends on T at low T also like (T/WD)\ 
while at T> wD we have <I>(T) - <I> (0) a:: T.) 

The fluctuational barrier lowering effect should play 
a very important role in subbarrier diffusion of atomic 
particles whose mass is large compared to the electron 
mass. The exponential dependence of the tunneling 
amplitude on the particle mass m for a fixed barrier 
and the virtual nondependence on In of the polaron ex
ponent of the exponential function clear ly lead to a 
situation in which the fluctuations of the barrier playa 
more and more decisive role as the mass of the dif
fusing particle increases. The effect can become so 
strong that it virtually amounts to a coherent prepara
tion of a "hole" in the atomic configuration, especially 
for heavy particles or for "soft" lattices with an ap
preciable zero-point vibration amplitude. We empha
size the coherent nature of the "hole" (or barrier) 
preparation, bearing in mind its Virtual character and 
the return of the lattice to the normal (with respect to 
the phonon number) state. Here we do not, naturally, 
postulate the actual creation of a vacancy. In this 
sense, the considered subbarrier-transfer mechanism 
differs radically from the vacancy mechanism, which 
has been widely discussed in connection with the prob
lem of diffusion in quantum crystals (see, for exam
ple, (6)), although in both cases there arises an exponen
tial growth of the coherent-diffusion coefficient with 
increasing T (in the case of the vacancy mechanism this 
growth is connected simply with the growth of the num
ber of real vacancies). In the case of diffusion of He3 

in He4, such a growth has been experimentally ob
served[4.5) (see also(6)). 

As the temperature increases further, the incoherent 

or phonon-stimulated diffusion mechanism begins to 
playa greater and greater role, going over subse
quently into the quasiclassical over-the-barrier diffu
sion. Not dwelling on the picture that arises in the 
fixed-potential-profile model and, in particular, on the 
role, discussed in detail in[21, of the many-level nature 
of the individual potential wells, we only note that, as 
follows from Sec. 3, the fluctuations of the barrier can 
sharply enhance the incoherent transfer mechanism. It 
is Significant that such a transfer mechanism becomes 
predominant at sufficiently high T and in the total 
absence of the polaron effect, leading to a change in the 
exponential growth in comparison with Deoh(T). The 
qualitative picture of the dependence D(T) naturally 
remains the same as shown in Fig. 2. 
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S. 8. Khokhlachev 
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A low-temperature phase transition in a two-dimensional Heisenberg model with weak anisotropy is 
considered. The transition is associated with spontaneous breaking of the symmetry group 0(2) of the 
Hamiltonian. The scaling dimension of the spin operator and the correlation length of the spin fluctuations 
that take the spin out of the easy-magnetization plane are calculated in the leading logarithmic 
approximation. 

PACS numbers: 75.1O.0j 

1. INTRODUCTION magnetic moment is equal to zero at all finite tempera
tures. Arguments in favor of the existence of a phase 
transition in the Heisenberg model were adduced in(2)o 
However, it was made clear in(3) that the screening of 
the interaction which takes place in this case was not 
taken into account in[2]. The question of the existence 
of a phase transition in the isotropic Heisenberg model 

The question of the existence of a phase transition in 
two-dimensional degenerate systems (the XY-model and 
Heisenberg model) has been considered in the pa
pers. l1- 4J Berezinskii showed that a phase transition 
exists in the XY-model, even though the spontaneous 
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remains open at the present time, although there are 
reasons to think that a transition does not occur at 
finite temperatures [4). In[2-4) the isotropic Heisenberg 
model was considered. In the present paper we con
sider a low-temperature phase transition in a Heisen
berg model with weak anisotropy. It is shown that for 
arbitrarily small anisotropy there is a phase transition. 
The transition temperature tends to zero when the an
isotropy disappears. 

In Sec. 2 we consider the asymptotic forms of the 
correlation functions. It is shown that at low tempera
tures the spin correlations have a power-law decay, 
and this implies spontaneous breaking of the symmetry 
group 0(2). [1) In Sec. 3 the temperature dependence of 
the exponent ~ is found in the leading logarithmic ap
proximation. In Sec. 4 the results are discussed and a 
comparison with the experimental data of[S) is given. 

2. ASYMPTOTIC FORMS OF THE CORRELATION 
FUNCTIONS 

The Hamiltonian of the system of spins with aniso
tropic interaction has the form 

(1) 

where nz is the direction of the spin vector at the point 
x (here and everywhere below, n2 = 1), the summation 
over x runs over all the sites of a two-dimensional lat
tice and that over a runs over nearest neighbors. Two 
types of transition are possible, depending on whether 
X is positive or negative. If X < 0 (easy axis), at low 
temperatures there is a spontaneous magnetic moment 
directed along the 3-axis. The transition in this case 
will occur at T-4rrJs2/ln(J/X), and the nature of the 
Singularities in the thermodynamic quantities will be 
the same as in the Ising model. In the case X> 0 (easy 
plane), there is no spontaneous moment at any nonzero 
temperature, and the transition is associated with the 
appearance of a "transverse stiffness, " as in the XY
model. Below we shall consider the case X> O. 

For the elucidation of the character of the asymptotic 
forms of the correlation functions at low temperatures 
T«J, only the long-wavelength fluctuations of nx, the 
scales of which are much greater than the distance be
tween neighboring spins, are importanL For these 
long-wavelength excitations, in formula (1) we can go 
over from the summation to an integration and replace 
the difference by a derivative: 

Is' 
H =2 S d'x[ (iI.n) , + m'(n"»)'J. 

where m 2 = X/ J I a 12 (I a I is the distance to the nearest 
neighbor). 

(2) 

In order to elucidate whether or not there is a phase 
transition, it is necessary, following U ), to find the 
asymptotic forms of the correlation functions 

(3) 
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(4) 

at large distances. In formulas (3) and (4) the integra
tion over n runs over the unit sphere; {3= T-1 (T is the 
temperature). In calculating (3) it is convenient to 
parametrize the unit vector n in the following way: 

n(3)=cr, -1~q:;~1; 

n±=n{t)±in(2)=1'1-ql e:!:ia., -:1~a.~jl. 

In this parametrization, the Hamiltonian (2) has the 
form 

(5) 

(6) 

(7) 

To calculate the asymptotic forms of the correlation 
functions at low temperatures T« J we shall make use 
of the low-temperature expansion in the parameter 
g2= T/Js2• We rewrite the definition (3), (4) of the cor
relation functions in the parameters <p and 0: by making 
the replacement <p -g<p, 0: -go:: 

(8) 

t/8 nil 

G~_ (x, - x,) = z-' S II arf, S II ary.xe- Tl 

_1 '0:: X -:tIt; x 

(9) 

where 

is --H = 2 d'x[ (8,,(f)' + m'q' +(ry" 11- g'r,'), -'-(1- g'q') (a"ry.)']. (10) 

In the calculation of (8) and (9) the finite size of the 
region of integration over <p and 0: leads to corrections 
that are exponential in g, and these, as shown in[ll, do 
not change the character of the asymptotic forms of the 
correlation functions if the correlations without allow
ance for the corrections have a power-law decay (G+jR) 
o:R-2 l>.). Therefore, in calculating (8) and (9) we can 
integrate over <p and 0: between infinite limits and use 
ordinary perturbation theory. 

We begin by calculating the asymptotic form of G33 (X). 
From the Dyson equation for 

it follows that 

G,,(x)=const·exp {-m"lxl}, 

(11) 

(12) 

where L R = L (q2, m~) - L (0, m~), L is the sum of Feyn
man graphs that cannot be cut into two by cutting one 
line, m~ = m 2 - L (0, m 2). The expansion of L (q2, m 2) 
goes in powers of g2; therefore, for g2 = (T /Js2)« 1 we 
shall have m~> 0 and G33 falls off exponentially in the 
region Ixl »m"R1. In first order in g2, 

2 z[ It I] mR = m i--1n--;- . 
4" /. 

(13) 
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We note also that the fluctuations of the field cp are 
small at low temperatures: (cp2> - g2ln(J /A), i. e., in 
the integrals (8) and (9) the principal contribution is 
made by those distributions of n" in which the vectors 
n" lie in the easy plane. 

We turn now to the calculation of the asymptotic form 
of C.Jx) in the region Ix I »mil. If we neglect the finite 
size of the limits of integration, the integration over Ci 

can be performed since the integral (9) over the vari
able Ci becomes Gaussian: 

Here F[ cp2] is the sum of the one-loop diagrams and 
C"I"2(cp2) is the correlation function (Ci"l Ci"2>' depending 
on CP. The next step in the calculation of C ... is to aver
age over cpo The main contribution to the asymptotic 
form is then given by the expression 

or 

G. _ (x,-x,) =A exp (-g'<[G",,('!') 
-',G"" ('( ') -G",,( 'I') ]>,} (15) 

where A is a constant, The graphs not taken into ac
count in (15), (16) fall off no more slowly than 
I x 1-2 1n I x I at large distances and therefore lead only to 
corrections to the asymptotic form. For q2 - 0, 

< 1,;(.I')=Z,(g', Ill,.) .q', (17) 

It is easy to convince oneself of this directly, by ex
amining the perturbation theory; we, however, shall not 
do this, since (17) follows from the Goldstone theorem, 
It can be seen from (16) and (17) that for IX121 - 00 

(18) 

where tl.=g2Z/4rr. 

Thus, as in the XY-model, at low temperatures the 
spin correlations have a power-law decay. In first 
order in the temperature, 

I'1=T/4nls" (19) 

which coincides with the result of BerezinskiL [ll 

3. CALCULATION OF Ll(T) 

We turn now to the calculation of tl.(T). First we find 
the next term in the expansion of tl. in powers of the 
temperature. It can be seen from (17), (18) that for 
this it is necessary to find the first correction to 
Zc(g2, m R), which is easily calculated and is found to be 
equal to 

(20) 
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In (20) we have neglected terms of the form (AjJ)". The 
appearance of In(J/:A) in (20) is not accidental and is 
connected with the fact that the correlation function 
(CPoCP r> to first order in g2 is equal to (.1/41T)ln(mr) in 
the region I a I «r« m-1• In this region fluctuations of 
the field cp turn out to be important. In the approxima
tion we are considering, with the Hamiltonian (10), the 
whole of the difference of Z c from unity is connected 
with these fluctuations, and therefore it is clear that in 
the expansion of Zc(g2, m R) there will be terms of the 
form [g21n(J/A)]"; the terms associated with the dis
creteness of the lattice will be of order g2" and so we 
can neglect them. We also neglect terms of the form 
g2[g2ln(J/A)]" and so on, assuming that 

g'«l, g'In (I/i.)';;1. 

Thus, we arrive at the problem of summing the prin
cipallogarithmic terms [g21n(J/A)]". The separation 
of the "leading logarithms" in the perturbation-theory 
series in g2 in the two-dimensional case encounters dif
ficulties associated with the fact that all the Feynman 
graphs make a contribution. However, this difficulty 
can be circumvented using the method developed inU,2]. 

We give here the arguments of Berezinskil and Blank, [2] 
since in our case their method makes it possible to cal
culate mR(T), i. e., the correlation length of the field cpo 

At low temperatures T« J the spins of large regions 
fluctuate weakly about the overall direction. 

We divide up the system of spins in the plane into re
gions of dimensions I a I «R « m-1• We integrate in 
formula (4) over the spins inside these regions, for a 
fixed distribution of spins on the boundaries. Then, 

Z = l\"-' J IT dn. IT Z{nr;}, (21) 

where r is the totality of boundaries and Z{nrJ} is the 
partition function of the region SJ with a specified dis
tribution of spins on the boundary r J of the region, It 
is well-known that in two-dimensional systems with a 
continuous symmetry group the spontaneous moment is 
equal to zero. [6] This is correct, however, only in the 
thermodynamic limit, i. e., for a system of infinite 
dimensions. If, however, we consider a system of 
finite dimensions, its spontaneous moment is nonzero 
and is determined by the distribution of the spins on the 
boundary. Corresponding to a given distribution of the 
spins nr on the boundary there is a distribution of the 
nJ , i. e" of the directions of the spontaneous moment 
(j labels the region SJ)' In (21), therefore, instead of 
integrating over distributions of the spins on the bound
aries we can integrate over the directions and magni
tudes in the spontaneous-moment distribution, In this 
case, 

Z = /V-I J IT dnjP{n;}, 
J 

(22) 

where P{nJ} is the probability distribution of the direc
tions of the spontaneous moments of the regions S/, In 
the calculation of P{nJ} for a division into regiOns with 
characteristic dimensions a« R J «m-t, following[2], 
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we write the distribution of the spins in the following 
form 

nx=no (xl (1-cp.' (x) ) '''+e. (x) cp, (x), (23) 

where no(x) is the direction of the spontaneous moment 
in the region SI to which the point x belongs; ea is a sys
tem of unit vectors (ea' no = 0, ea' eb = a ab); summation 
over repeated indices is implied, and each index takes 
the values 1 and 2; qJ a(x) is the deviation of the vector n 
from the direction of the spontaneous moment. Then, 

P{no(x)}=<exp {-pH(no, q:)}>." (24) 

where H is the Hamiltonian (2) in which nx is param
etrized by formula (23). With logarithmic accuracy, 
the averaging over the fields qJ a in (24) is performed 
over those 

for which WI < I q I < a-I. The fluctuations of the fields 
with such q are small if 

g'ln (Ria) <1. 

For regions whose dimensions satisfy this inequality, 

P{nx}=exp {-H(n)ITR }, (25) 

T -, T-I [ T I R] 
R = 1- 2rr.ls' n--;- , (26) 

JS2~ 2 mR2 ~ (3) 2 
H(n)= -2-~ (n,+.-nx ) +2,,-" (nx ). (27) 

(x,a) (J:) 

,,[ T R] 
mR =m 1- 2:tls,ln-; . (28) 

The sum over x in (27) denotes a sum over the regions, 
and the sum over a is over the neighboring regions. In 
(25)- (28) we have neglected terms of the order of 
mZTln(R/a), TZln(R/a), and so on. It can be seen 
from (25)- (28) that, after integrating over part of the 
spins, we have arrived at the original problem, but 
with changed parameters T and m and with a new lattice, 
in which the nearest-neighbor distance is of the order 
of R. 

Repeating the reasoning, we go from the lattice with 
spacing R to a lattice with spacing R' (R «R' «mill). 
The arguments can be repeated for so long as the dis
tance between neighboring "spins" R «mill. When the 
distance R becomes of the order of mill, the correla
tions of n~3) can be neglected, since the spontaneous mo
ment of regions with such dimensions lies in the plane 
and deviations that take it out of the easy plane can, 
with logarithmic accuracy, be neglected. Then, 

p{mx}=exp {- :;' .E (mx+.-mx)'}. (29) 
(S,.) 

where m is a two-component unit vector; 

TR-I=T-I [ l __ T_ln~]. 
4nls' J. (30) 

The distribution P{m} coincides with the distribution 
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of spins in the XY-model (cf. Lll) and, therefore, the 
correlation function 

where Ps(T TI) is the "superfluid density" in the XY
model (cf. [1,7]). 

(31) 

Thus, comparing (18) and (31), we find, with loga
rithmic accuracy, 

J.(T) T [ T 1 ]-' 
-4-:t-ls-'p-,(-T-R -) 1- ,,-':t-Is-' InT. . (32) 

o , [ T 1 ] mR-=m- l---In-
4:tls' i. . 

(33) 

4. DISCUSSION OF THE RESULTS AND COMPARISON 
WITH EXPERIMENT 

Thus, in Sec. 1 we have ascertained that the spin 
correlations at low temperatures in the two-dimension
al Heisenberg model with weak anisotropy of the "easy
plane" type have a power-law decay. As shown in [I), 

this means that at low temperatures the symmetry 
group 0(2) of the Hamiltonian is spontaneously broken. 
ThiS, in its turn, means that when the temperature is 
raised a second-order phase transition occurs in the 
system. The transition temperature is easily esti
mated. It follows from (32) that 

T,""4:tls'/ln (Iii.). (34) 

As Tc is approached, the index .:l(T) increases. The 
correlation length Rc = mill also increases. 

The behavior of the system above the transition point 
is not known, since it is not known whether a phase 
transition exists in the isotropiC magnet. If there is 
not such a transition, then above Tc all the correlation 
functions will decay exponentially. 

In the paper(7) by Pokrovskii and Uimin a simple the
ory of layer magnets, based on scale-invariance con
siderations, was developed. Of special interest is the 
case when the intraplanar couplings are ferromagnetic 
and the interplanar couplings are antiferromagnetic. 
An example of a substance possessing such properties 
is the compound (CzHsNH3)CuC14 , which was investi
gated by de Jongh, van Amstel and Miedema. [S) 

In(7) it was shown that, for such magnets, XII/X.L = .:l(T), 
where XII is the susceptibility parallel to the magnetic 
field and X.L is the transverse part of the magnetic-sus
ceptibility tensor. A comparison of our results (formu
las (32) and (34» with the results of the experiments 
of[S) shows that formula (32) gives not a bad description 
of the experimental susceptibility data. (In comparing 
with experiment it is necessary to take into account that 
XII = X.L.:l(T) is fulfilled when .:l.,;;l,) According to the 
estimate of the paper[S), the anisotropy maintaining the 
spins in the plane is (J/'A.) -10-3, and, therefore, T/J 
- O. 5 (the experimental value of T / J is O. 548 [S). 

In conclusion I wish to thank A. A. Migdal and A. M. 
Polyakov for interesting discussions, and V. L. Pokrov-
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skit, who did much to facilitate the completion of this 
work. 
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Measurements were made of the areas of the extremal sections of the Fermi surface of cadmium and their 
pre~sure depen~ences were determined for magnetic field directions lying in the crystallographic planes 
(1010) and (1120). These experimental results were used in a calculation-within the local pseudopotential 
model-of the matrix elements of the pseudopotential and their pressure derivatives. 

PACS numbers: 71.30.Hr 

1. The present paper reports an investigation of the 
Fermi surface of cadmium and the influence of hydro
static pressure on this surface. Cadmium is charac
terized by a strong compressibility anisotropy, so that 
one can expect large changes under pressure. Investi
gations of the influence of pressure on the dimensions 
of the various parts of the Fermi surface make it pos
sible to interpret more reliably the observed oscillation 
frequencies and to calculate, within the framework of 
the adopted model, the pressure dependences of the 
matrix elements of the pseudopotential. In these cal
culations use is made of the local pseudopotential model 
whose matrix elements W. are governed only by the recip
rocal lattice vectors q i and are identical at all points 
in the Brillouin zone. 

Like other hexagonal metals of the second group in 
the periodic table, cadmium has a Fermi surface which 
can be described qualitatively but satisfactorily by the 
model of almost-free electrons. This means that if we 
use the local pseudopotential approximation and the 
OPW method, we can calculate relatively simply and in 
a clear manner the areas of extremal sections of the 
Fermi surface and their pressure dependences, and to 
determine the matrix elements of the pseudopotential 
and their pressure dependences from a comparison of 
the calculated and experimental results. Such data can 
be used to explain the behavior of some macroscopic 
properties under pressure, such as the electrical re
sistivity, magnetoresistance, etc., and to estimate the 
pressure at which the topology of the Fermi surface 
changes. Investigations of the influence of pressure on 
the matrix elements of the pseudopotential are also im
portant from the point of view of the pseudopotential 
theory because they can give information on the depen-
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dence of the pseudopotential on the wave vector. 

In the one-wave approximation the Fermi surface of 
cadmium is of the same form as the Fermi surfaces of 
other divalent hexagonal metals, [1] but the radius of the 
Fermi sphere of free electrons kF is less than the side 
a of the hexagonal base of the prism and, consequently, 
there are no needles or electron surfaces in the third 
Brillouin zone (Fig. 1). 

The lattice potential alters not only the dimensions 
but also the shape of the Fermi surface of cadmium: 
the horizontal arms of the monster in the second Bril
louin zone are broken, and the butterfly in the third 
Brillouin zone as well as the cigar in the fourth zone 
are absent, as shown by calculations of Falicov and 
Stark. [2] 

Thus, according to the model of Tsui and Stark[3] the 
Fermi surface of cadmium consists of two hole pockets 
(a) in the first Brillouin zone and of the residue of the 
monster in the second Brillouin zone, and also of one 
electron lens (j3) at the center of the third zone. In the 
extended-zone scheme the monster is a corrugated cylin
der elongated along the [0001] axis and it has a minimal sec
tion J3 in the AL H plane in the region of the point H in the 
Brillouin zone. The section J3 includes the pocket a and it 
is separated from it by the spin-orbit gap. The maxi
mum section of the monster 'Y in the plane rMK of the 
Brillouin zone is formed by residues of three monsters 
in contact and it consists of three sheets. As shown in 
Refs. 3 and 4, magnetic breakdown in various fields 
gives either the total cross section Sy (in strong and 
weak fields) or tSy and ~Sy (in the range of intermediate 
magnetic fields). In addition to the frequencies of the 
oscillations corresponding to these sections, other 
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