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A calculation is made of the energy levels of multiply charged two-electron ions in the I s2s + I s2p 
configuration with a nuclear charge in the range 10 ~ Z ~ 50, subjected to an external electric field which is 
either weak or strong compared with the Coulomb interaction of electrons. It is shown that the crossing of 
levels (as. a function of ,Z), which occurs in the absence of the field, changes to pseudocrossing ·when the 
field is applied. However, new crossings of levels appear in the field. 

PACS numbers: 32.10.Ks 

1. Recently there have been many experimental and 
theoretical investigations of the spectra of multiply 
charged ions. This is due to the fact that such ions are 
important in the processes occurring in the sun and 
other stars and also becausEl of practical applications. 
The prinCipal experimental methods for generating mul­
tiply charged ions in the laboratory are the transmis­
sion of a beam of ions through a foil (the beam-foil 
method) and the action of laser radiation on matter. In 
the latter case, multiply charged ions are created in a 
strong electric field: the electric field intenSity in the 
laser beam may reach 109 V /cm, which is comparable 
with the internal atomic fields. Therefore, it would be 
interesting to investigate theoretically the spectra of 
multiply charged ions in strong electric fields. 

Such an investigation should have another useful re­
sult. In recent years a conSiderable effort has been 
made to search for possible effects of parity noncon­
servation in atomic spectra. In particular, it has been 
pointed out that such effects may be observed in the 
spectra of multiply charged two electron ions. [1] The­
oretical calculations of the spectra[2] have led to the 
prediction of crOSSing of levels of different parity when 
the nuclear charge Z is varied. It is clear from the re­
sults given below that a strong electric field produces 
new crossings and, in prinCiple, this also can be used 
for detection of parity nonconservation effects. 

2. As in[21, we shall consider here two electron ions 
in the ls2s + ls2p coirligurati.on with an arbitrary nucle­
ar charge Z. We shall assume that the external elec­
tric field is homogeneous. If this field is suffiCiently 
weak compared with the Coulomb interaction of elec­
trons, we can calculate the splitting and shift of the en­
ergy levels by the external field ignoring the interaction 
of states of different parity. Then, the matrix elements 
in the first order perturbation theory in the external 
field vanish, i. e., the quadratic Stark effect is ob­
served. 

When the field intensity is increased, the. splitting be­
comes comparable with the separation between the 
terms and mixing of states with different parities is con­
Siderable. If the external field is stronger than the 
Coulomb interaction, the linear Stark effect should be 
observed. One of the present authors considered this 
situation in the case of two-Ellectron multiply charged 
ions. [3] In the present paper we shall discuss a more 
general situation, which is the splitting and shift of the 
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energy levels of two-electron ions with an arbitrary nu­
clear charge Z in arbitrary electric fields, which can 
be weak or strong compared with the Coulomb interac­
tion of electrons. However, we shall assume that the 
energy of the interaction with the external field is still 
much less than the binding energy of electrons. This 
assumption is justified particularly for multiply charged 
ions because the binding energy is Z times higher than 
the Coulomb interaction of electrons with one another. 

The problem can be solved, subject to the above as­
sumption, by diagonalizing the Hamiltonian which in­
cludes the interaction with the external field and is 
based on wave functions of states of just one configura­
tion. This assumption means that the levels of other 
configurations are located suffiCiently far away and in 
the first approximation their influence can be ignored. 
The Hamiltonian is 

H(12) ~h(1)+h(2)+alr,,+a'I'F(z.+Z2). (1) 

where h(i) is the relativistic one-electron Dirac Hamil­
tonian for an electron in the field of a nucleus; r12 is the 
distance between electrons; ZI,2 are the Cartesian co­
ordinates of electrons in the direction of the field; F is 
the field intensity; a is the fine-structure constant. 
Here and later we shall employ units for which 1i=c = m 
= 1 (m is the electron mass). 

We shall use the exact relativistic one-electron Ham­
iltonian but we shall assume that the interaction between 
electrons is purely of the Coulomb type. Clearly, this 
can be done provided Z -1« 1 and (aZ)2 «1. If the first 
condition is satisfied, the relativistic corrections to the 
interaction are smaller than the one-electron relativis­
tic terms, and if the second condition is satisfied, the 
Coulomb interaction is stronger than the magnetic and 
retarded interactions. Thus, we are going to ignore 
corrections of the order of Z -I(aZ)2 and in its simpli­
fied form our theory is applicable to ions with 10.,; Z 
";50. 

In applying the Dirac theory the wave functions of a 
two-electron system are most naturally based on the jj 
coupling: 

(2) 

Copyright © 1976 American Institute of Physics 278 



EIl,at. units 

OM( 
a Ip 

I 

0.46 Jp 
Z 

"'r f'3S 

I 
0.3. 

0.30 

J ___ S, 

0.11 

to 3IJ 50 Z 

E/l, at. units 

0"[ b 
0.44 

0.40 

0.35 

o.3Z 

0.23 

0.16 

fO 30 50Z 

FIG. 1. Dependences of the energy levels on Z: a) in the 
absence of a field; b) in the presence of a field F=5.14XI09 

vi cm (the numbers alongside the curves are the indices of the 
levels E j ). 

where 1/JnJlm are one-electron wave functions; C ;}/z are 
the Clebsch-Gordan coeffiCients; njlm are the sets of 
the one-electron quantum numbers (n is the principal 
quantum number, j and m are the total one-electron 
momentum and its projection, and 1 is the orbital mo­
mentum for the upper component of a Dirac bispinor, 
governing the parity of the state); J and M are the total 
momentum of an atom and its projection. 

The Coulomb interaction of electrons mixes states 
with different values of j1 and jz, and the interaction 
with the external field mixes states with different values 
of J (in an external field the only quantum number is the 
projection of the total momentum M). Thus, the diag­
onalization of the Hamiltonian (1) based on the wave 
functions (2) gives a complete description of the split­
ting of levels in an electric field subject to the Coulomb 
interaction of electrons. The general expressions for 
the matrix elements of the Coulomb interaction operator 
based on the wave functions (2) are given in[Z] and the 
corresponding matrix elements for the operator of the 
interaction with the electriC field can be found in[3]. 

3. We shall :lOW consider the specific configuration 
ls2s + ls2p (the configurations ls2s and ls2p cannot be 
discussed separately because of the Coulomb degenera­
cy). In the absence of an external field this configura­
tion splits into six levels, which we shall describe-as 
in[Z]-by specifying the quantum numbers J and M, and 
by indicating the corresponding terms in the limits of 
the LS and jj coupling (corresponding to small and large 
values of Z, respectively): E"Mfs+1 L,jj '). These six 
levels are 

E'M('P, '/,'/,), E'M('P, '1.'/2). Eoo('P, '/,'/,), 

E'M('P, '/,'/,), EweS, '1.'/2), Eoo('S, '/,'/,). 

In a homogeneous electric field these levels become 

279 SOy. Phys.-JETP, Vol. 43, No.2, February 1976 

split in respect of I M I, i. e., a total of eleven levels is 
formed. We shall use the following labeling system for 
these levels: 

E" ('P, '/,'/,) "",E" Eto(,P, '1,'/,) "",E" E,,('P, '1,'1,) ... E" 

E 21 ('P. '/,'/,)"",E" E,,(,P, '/!/,) "",E" E lO ('P, '/2'/2)"",E., 

E,,(,P, '/,'/,)"",E7 , E,,('P, 'I,'/,)"",E., ElO('S, '/2'h)=E., 

E" ('S, '/,'/,) "",E lO , E,,(,S, '12'12) ""E", 

The complete eleventh-order matrix, subject to the 
symmetry properties of the states and the rules for ad­
dition of the momenta, splits into four submatrices cor­
responding to the following combinations of states: 

(E.+E.+E7+ElO )" (E,+E.+E"),, (E,+E.+E,) 0, (E,),. 

The indices after the parentheses represent the projec­
tion of the total momentum 1M I. Diagonalization of 
these values gives new levels E:, which are linear com­
binations of the old levels. The level E5 is not affected 
by the electric field (if we ignore the interactions with 
other configurations). 

In a relatively weak (compared with the Coulomb in­
teraction of electrons) external field the levels E; are 
close to some of the old levels E;. In a relatively 
strong field the mixing of the levels E; is complete. 
This applies particularly to the levels which intersect in 
the absence of a field: for such levels the external field 
becomes strong when its intenSity F is still relatively 
low. In spite of th!il mixing, the most convenient nomen­
clature for the levels in a strong electric field is usually 
the old nomenclature, i. e., it is usually most convenient 
to refer to a level E j , existing in the absence of a field, 
from which a given level E; originates. This method is 
unsuitable only for intersecting (due to variation of Z) 
levels in the absence of a field. In the latter case a 
pseudocrossing of the levels takes place: two levels 
which are transformed by a change in Z into specifiC 
limiting LS and jj levels (in the absence of a field) ex­
hibit an interchange of their limits in a field, This phe­
nomenon differs from the usual pseudocrossing by the 
fact that Z is a discrete parameter and, consequently, 
there is a value of the field intensity F min in which this 
effect appears: the fields should be sufficiently strong 
to mix the levels completely for that value of Z which 
corresponds to the minimum separations between the 
levels. 

4. Figure 1a Dhows the dependence of the energy lev­
els on Z in the absence of a field, whereas Fig. 1b 
shows the same dependence in a field F = 5. 14 X 109 V/cm. 
We can see that the levels Es and Ell intersecting in the 
absence of a field now repel one another. More exactly, 
we should speak of the "upper" (E6 + Ell)' and "lower" 
(E6 +E ll )" levels because the old nomenclature loses 
completely its meaning in the case of these two levels. 
We can also see that there are new crossings: the lev­
el (E6 +E ll )' intersects now the levels E3 , E 4 , and Es 
when Z = 20. The level E3 has the same value of the 
projection of the momentum M = 0 as the level (Es +Eu)'. 
Nevertheless, intersection is possible because the lev­
els E3 and E s , En do not combine in an external elec­
tric field. The latter is evident from the rilles govern-
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FIG. 2. Dependences of the level energies on the field intensi­
ty: a) for Z = 10; b) for Z = 30. The. numbers alongside the 
curves are the indices of the levels E, • 

ing the addition of momentum and parity conservation. 
If the levels do not combine, i. e., if the nondiagonal 
matrix elements of the operator of the external field 
between the corresponding states vanish, the theorem 
on the crossing of levels with identical quantum num­
bergC41 is inapplicable: the ll~vels "do not know" ofthe 
existence of one another and there can be no mutual re­
pulsion. 

Figure 2 shows dependences of a different kind: the 
level energies are plotted as a function of the field F for 

fixed values of Z. The maximum values of the field 
intensity in Fig. 2 are of the order of the internal atom­
ic field for the corresponding values of Z. The curves 
in Fig. 2 demonstrate also repulsion of the levels and 
the appearance of new crossings in an electric field. 

It should be noted that, in contrast to i; the field is 
a continuous parameter, i. e., we are dealing here with 
real intersections. In aU the graphs the level energies 
are divided, by convenience, by Z and represented in 
atomic units; the field intensity F is also given in atom­
ic units (1 at. unit = 5.14 x 109 V /cm). It is clear from 
Figs. 1b and 2 that the influence of an external field of 
fixed intensity F rises when Z is reduced. This is fair­
ly self-evident: the matrix element of the Coulomb in­
teraction of electrons is proportional to Z and the Stark 
matrix element is proportional to Z -1. 
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It is shown that the increase of density of a medium can result in a prohounced change in the 
nonresonant charge exchange cross section. even though the pairing condition for the process is satisfied 
with sufficient margin. At a large bare resonance defect the final result is determined by competition 
between an exponentially small cros& section corresponding to a nonadiabatic transition and a low 
probability of particle configurations in the mi!dium such that the effective defect is negligible. 

PACS numbers: 82.30.Fi 

When the density of a gas medium is increased, its 
influence on the inelastic collisions of atoms and mole­
cules begins to come into play even before triple colli­
sions become Significant. Indeed, this becomes a pair­
ing process if the criterion nor3/2 « 1 is satisfied, where 
n is the density of the gas and (J is the collision cross 
section. 1) However, the potential fields produced by 
the gas environment can lead to a shift of the terms of 
the colliding particles, which greatly influences the 
value of (J even in the region where the foregoing in­
equality is satisfied. The corresponding problem was 
considered earlier[1] with resonant charge exchar.ge as 
an example, while Lisitsa[2] investigated the crossing 
of the atomic terms under the influence of a random 
field of a gas medium. The present paper is devoted to 
nonresonant charge exchange in gases of finite density, 
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when the criterion for the pairing in the collisions is 
still satisfied. 

According to Massey's adiabatic criterion the cross 
section for nonresonant charge exchange is exponential­
ly small in comparison with the gas-kinetic cross sec­
tion if the resonance defect ~ greatly exceeds the quan­
tity'Yv, where v is the relative collision velocity and 'Y 
is of the order of the atomic momentum. The ion that 
takes part in the charge exchange polarizes the particles 
of the surrounding gas, and this leads to a shift of the 
terms of the quasi-molecule made up of the colliding 
atoms. Thus, an effective renormalization of ~ takes 
place and, in particular, particle configurations are 
possible in which the resonance defect is practically 
completely suppressed, that is, I ~eff I becomes less than 
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