
1)The direct transitions from A+ to A- centers[11l can be ig­
nored for samples with NA<5x1014 cmos. 

:)The formulas of the (3) and (5) type were first obtained in [IS]. 
)This value of Ej. represents the energy for the photodetach­
ment of a hole from an isolated A+ center, it is clear from 
the experiments that in the N A >10 15 cmos range this energy 
rises with NA (for example, [19] it may reach E t ;::; 5 meV for 
Si. B). 

4)In the ambipolar excitation case, [!4l their influence is im­
portant for any value of the compensation. 
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It is shown that the dynamic Jahn-Teller effect for a non-Kramers doublet leads, in the presence of 
phonon dispersion of active E vibrations, to the possibility of appearance of local and pseudolocal electron­
phonon states. Criteria for appearance of such states are found. The limits of applicability of the cluster 
model for impurity centers are discussed. Spectral effects of local and pseudolocal states in the optical and 
infrared absorption and in Raman scattering of light are considered. 

PACS numbers: 63.20.Dj, 63.20.Kr, 78.50.-w 

1. INTRODUCTION 

The problem of electron-vibrational (vibronic) inter­
action in systems with electron degeneracy or quasi­
degeneracy is extremely complicated, owing to the im­
possibility of separating, in the general case, the elec­
tronic and the nuclear motions. The manifestation of 
the vibronic interactions in such systems is customarily 
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called the Jahn-Teller effect (JTE). This effect has 
been the subject of many theoretical and experimental 
papers (see the books and reviews[1-6l). The greatest 
progress was attained in the solution of the so-called 
molecular vibronic problems, where the electrons, in 
the degenerate state, interact with a small number of 
vibrational degrees of freedom. This model is adequate 
for the description of phenomena connected with vi-

Copyright © 1976 American Institute of Physics 310 



bronic interactions in molecules or complexes. It was 
also used to interpret the properties of impurity cen­
ters of small radius in the so-called quasi-molecular or 
or cluster model (see, e. g., the book(7)), where the in­
teraction of the impurity electrons with an infinite num­
ber of lattice vibrations is replaced by an interaction 
with several "effective" modes. However, the use of 
the cluster model is justified, generally speaking, only 
in those cases when there are local or clearly pro­
nounced pseudolocal oscillations in the phonon spectrum 
of the impurity crystal, the interaction with which pre­
vails over the interaction with the remaining crystal 
OSCillations. Notice should also be taken of the case of 
dominant interaction with extremely narrow band of 
optical vibrations, when the phonon dispersion can be 
neglected and the problem can be reduced to a molec­
ular one. (8) Nonetheless, the cluster model is exten­
sively used for the interpretation of experimental data 
even in those cases when the separation of the effective 
modes cannot be justified. 

The present paper is devoted to an investigation of 
the dynamic JTE for a small-radius impurity center in 
an orbital doublet state (E-term), for the case of weak 
coupling with the crystal vibrations. The spectrum of 
the phonon frequencies of the impurity-containing crys­
tal, due to the differences in the masses and in the 
force constants, is assumed known. The impurity con­
centration is assumed to be so low that the interaction 
between the impurity centers can be neglected. 

2. HAMILTONIAN AND GREEN'S FUNCTION OF THE 
SYSTEM 

The effective Hamiltonian of a small-radius impurity 
center with E-term (non-Kramers doublet), separated 
from all other electronic. terms by a sufficiently large 
energy gap, has in the linear-harmonic approximation 
the form 

(1) 

Here w x are the frequencies of the normal vibrations of 
the impurity crystal, x is an index that numbers the 
wave numbers and the oscillation modes, q" and p" are 
the normal coordinates and momenta, kE is the coupling 
constant of the impurity electrons with the symmetrized 
displacements Q8 and Q ~ of the atoms of the first co­
ordination sphere, which transform in accordance with 
the rows e and f, (e- 2Z2 - x 2 -i; e - -/3 (x 2 -i» of an 
irreducible representation of the E type. The Pauli 
matrices ax and uy are defined in the basis of the elec­
tronic functions of the orbital doublet >¥± ='1' (I e) ± i Ie) )//2; 
the energy of the electronic term is assumed to be equal 
to zero. Expanding the symmetrized displacements 
Ql'(Y = e, e ) in the normal modes of the impurity crystal: 

(2) 

we rewrite (1) in the form 

H = .E [Ii;. (p.'+q.') +kEa.q. ] , . 
a.=a.(e) a.+a.(e)a •. (3) 
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The expression for the Van Vleck coefficients a" (y) in 
the particular case of an octahedral surrounding of the 
impurity center, can be found, for example, in(6). 
Subjecting the Hamiltonian (3) to a unitary shift trans­
formation that eliminates the linear terms of the elec­
tron-phonon interaction, we obtain, accurate to k~, 

1 
n=e"He-iS~H+i[S, Hl-- "2[S', Hl+ 

~ liw. (' ') k' ~ W p.q. =-EJT + .:...,. -2- p. +q. - E a,.:...,. •• liw •. .. 
Here 

(4) 

(5) 

It follows from (5) that the matrix W % ~ transforms in 
accordance with the irreducible representation A2 of 
the point group of the impurity center. Evidently the 
Hamiltonian (4) is diagonal in the space of the electronic 
states >¥±, so that in second order in kE the electron 
motion is separable from the nuclear motion, and the 
weak dynamiC Jahn-Teller effect leads to a redefinition 
of the phonon spectrum. We shall therefore engage 
henceforth in finding the redefined density of states and 
the corresponding spectral manifestations of the in­
dicated effect. 

We introduce the phonon Green's functions 

D~~) (t)=«q.(t) Ip.»; 

D.i') (t) = «p.(t) Ip.», D~' (t) =«p.(t) I g», D~' (t) =«q.(t) Iq.», 

in which, however, no averaging is carried out over 
the electronic variables and which thus remain elec­
tronic two times two matrices. Here, as usual, 
«A(t)IB»=ie(t)([A(t),B].), and the Hamiltonian (4) en­
ters in the formulas for the statistical averaging and 
the Heisenberg representation of the operators. Chang­
ing over to the matrix notation D(O = IID~i111, we write 
down the equations of motion for the Fourier transforms 
of the Green's functions D(l) and D(2) in the form 

k 2 ) D\I'(w)=E(iW- ;, a,WE D(2)(w), 

1 k') D(2)(w)=-E-E(iw-~a,EW D(I)(w), 
2n Ii' (6) 

where E ='11 o,,~/wxll. The system of equations (6) 
turned out to be closed, owing to the bilinearity of the 
Hamiltonian (4) with respect to the phonon variables. 
From (6) we obtain for D(2) the Dyson equation 

(7) 

where the zeroth Green's function takes the form 

(8) 

and the role of the perturbation operator is played by 

V=2n 2!w-a,EWE--EWEWE . ( . kE' kE' ) 
Ii' Ii' 

The scattering matrix T satisfies the equation 

T-TD:"V=V. 
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Using the orthogonality of the Van Vleck coefficients, t51 

we can show that 

1: w""W,.'f(ro,) =-R •• , I:a"('Y)/(ro,), (11) 
, , 

where 

R .. ,=a.(O)a.,(O) +a.(e) ax, (e). (12) 

The matrix R = IIR)(~II is transformed in accordance 
with a fully-symmetrical representation A1 of the point 
group of the impurity center, and by virtue of the same 
orthogonality relations it has the properties of a pro­
jective operator: 

R'= 1:a;R. 

From the definition of the scattering matrix T and from 
relation (11) we easily see that T can contain terms that 
transform only in accordance with representations A1 
and A 2• Starting from the indicated properties, and 
also from the multiplicative structure of the matrix V, 
we seek T in the form 

T=rERE+icr,wEWE. (13) 

The locality of the interaction of the impurity center 
with the crystal and the symmetry properties make it 
possible thus to reduce the solution of the infinite alge­
braic system of equations (10) relative to the matrix 
elements T,,~ to a solution of two equations relative to 
the scalar coefficients r and w. 1 ) As a result we obtain 

1 ro'Y 
r=X-[a.-(a.'-ro'l')/(ro)]; w =T' 
~= [1- (a.+ro'Y)/(ro) ] [t- (a.-rol) I( ro) ], 

where 

(14) 

(15) 

(16) 

(17) 

Equations (13)-(17) and (7) determine the sort Green's 
function D(2)(W), and from (6) we get D(l)(w). The 
Green's function D(3) can be obtained with the aid of the 
r~ciprocity relationt91 D(3)(W) =:0(1)(_ w), and the func­
tion D(4) from the equation of motion that relates it with 
D(3): 

1 k' 
Dill =-E + (iroE __ E_cr,EWE) Di 3l. 

201 Ii' 

3. SPECTRUM OF THE SYSTEM. LOCAL AND 
PSEUDOLOCAL VIBRONIC STATES 

The phonon spectrum of the system, redefined by the 
Jahn-Teller interaction, is determined by the poles of 
the Green's functions, that is, by the zeroes of the 
function a(w). In the particular case of one extremely 
narrow oscillation band with frequency w" = wo, we 
obtain 

which coincides with the result of Moffit and ThorsontlOl 

and describes the splitting of the vibronic terms in the 
case of a weak electron-phonon coupling. This result 
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is understandable, inasmuch, as shown intal , in the 
case of an extremely narrow vibrational band the prob­
lem reduces to the molecular one with an effective 
coupling constant 

( ) '1. 
k=kE 1: a.' . 

Allowance for the phonon dispersion calls for resort­
ing to approximate computation methods for the solu­
tion of the equation a(w) =0. An analytic solution can 
be obtained only in the so-called resonance approxima­
tion, when the frequency w, which falls inside the band, 
is far from the frequencies of the pseudolocal oscilla­
tions and from the singularities of the state density. 
However, a detailed knowledge of the dispersion law as 
redefined by the Jahn-Teller interaction is not neces­
sary, since most of the observed quantities are ex­
pressed in terms of integral characteristics ofthe spec­
trum. We consider therefore the most characteristic 
changes which occur in the density of states when the 
Jahn-Teller effect is taken into account. These changes 
are connected with the possibility of the appearance of 
a new type of local and pseudolocal OSCillations, due to 
the vibronic interaction. The frequencies of these os­
cillations can be obtained from the equation 

where 

1 - a.' 
/.(ro')=-2 p ~ (2 ') , 

3t .l....J (Ux Wx-OO 

and the symbol P denotes the principal value in the 
sense of Cauchy. Using the dispersion relation 

1 f- f,(z) 
f,(x)=-. --dz, 

n z-x 

in which 

/,(x)=_l_~ a.'ll(ro.'-x), 
2l'x i...l 

we rewrite (18) in the form 

4kE ' f- fi(z) dz=(EJT±liro)-i. 
tt3 z-m2 

(18) 

(19) 

(20) 

(21) 

The corresponding peaks in the density of states have 
half-widths of the order off/(f~ +fU. The appearance 
of local or pseudolocal oscillations is connected thus 
with two circumstances. First, in order for (21) to 
have roots, it is necessary that the Hilbert transform2) 

(19) of the function!i(x) assume sufficiently large val­
ues. Second, in order for the resultant peaks to be 
narrow, it is necessary that the roots of (21) lie in the 
region of small values of the functionfi(x), It should 
be noted that the Hilbert transform can assume large 
values only in regions where the derivative of the in­
verse transformfi(x) is large (the converse, generally 
speaking, is not true). If thefi(x) curve has a section 
ax on which the derivative f;(x) is large, say f;(x) ;>A, 
and on the adjacent sections it is small, so thatf;(x) 
«A, then the Hilbert transform on these sections can 
be estimated from the inequality 
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1 
Ij,(x) I> -AAxlln(dx) I. 

n 
(22) 

The inequality (22) makes it possible to formulate the 
sufficient condition for the onset of local and pseudo­
local oscillations due to the Jahn-Teller effect: 

4k/ ~ 
/i'Adxl!n(dx) (EJT±hlx) I> 1. (23) 

Since the square of the Van Vleck coefficient a~(y) is a 
smooth function of the wave vector )( and exerts an ap­
preciable influence on the behavior offi(x) only in the 
long-wave region, where a2 - )(2, the singularities of 
the functionfi(x) coincide with the known singularities 
of Van Hove in the density of states 

g(x)= ~6«(i).'~X). 

An appreciable difference betweenfi(x) and the ordinary 
density of states occurs only in the low-frequency re­
gion of the acoustic oscillation band, where fi (x) - x, and 
in the high-frequency region of the optical band, where 
fi(x)- (O~ _xj3/2; here O2 is the upper limit of the opti­
cal band. For the sake of brevity we shall henceforth 
callfi(x) the density of states. We note that the pre­
sented estimate (23) is valid also near Van Hove singu­
larities. However (with the exception of the band 
boundaries, where the density of states is low), these 
singularities are located usually in places with large 
density of states and do not lead to pseudo local oscil­
lations. 

Sections with large values of the derivative f: are 
indicated in the figure, which shows schematically the 
characteristic dependence of the function 4n-3k~fi(X), 
its Fourier transform, and dependence of the right­
hand side of (21) on x = w2 • In Secs. 1 and 2, where 
there is a sharp peak, the Hilbert transform has an in­
verted s shape. If inequality (23) is satisfied in this 
case, then Eq. (21) has in this region four roots, two 
of which fall in the region with large density of states 
and are therefore of no significance, while the two 
others lead to two additional peaks in the density of 
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Graphic solution of the dispersion equation (see formula (21) 
in the text): a-density of states, b-its Hilbert transform, 
i. e., plot of the left-hand side of (21), c-plot of the right­
side of (21), d-sum of the local and pseudolocal vibronic 
states. The scale is arbitrary. 
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states, on opposite sides of the initial peak. The in­
dicated splitting has a clear physical meaning. In fact, 
a sharp peak in the density of states can be treated as 
a narrow oscillation band, for which the problem re­
duces to the molecular one. The peculiarity of the dis­
persion in this situation lies in the fact that the condi­
tions for the appearance of the splitting are limited by 
the inequality (23), which can be satisfied only on one 
of the slopes of the initial peak, and may not be satis­
fied at all. 

An interesting possibility is that of the appearance of 
local and pseudolocal oscillations in regions 3, 4, 5, 
and 6, where fi(X) experiences a jump similar to a dis­
continuity of the first kind. (The Hilbert transform of 
a function with a discontinuity of the first kind diverges 
logarithmically at the discontinuity point, and conse­
quently Eq. (21) always has two roots in such places.) 
When the inequality (23) is satisfied, a narrow peak can 
occur, in particular, in the low-frequency region 3, 
something that cannot be explained at all within the 
framework of the cluster model in the case of weak 
electron-phonon coupling, and is a unique manifestation 
of the phonon dispersion. 

As seen from the figure, the least stringent condi­
tions for the onset of local and pseudolocal oscillations 
obtain near the limiting phonon frequency, when the 
right-hand side of (21) is minimal. The conditions for 
the appearance of gap oscillations become worse with 
decreasing width of the forbidden band, since the values 
of the Hilbert transform on the upper limit of the acous­
tic band and on the lower limit of optical band decrease 
in this case. The decrease of the width of the optical 
band leads to an enhancement of the inequality (22), and 
in the limit we obtain the result of the dispersionless 
case. In other words, at arbitrarily weak coupling one 
can always find an optical-band width for which local 
and gap oscillations will exist. Different oscillation 
modes, by virtue of the linearity of the Hilbert trans­
formation, make additive contributions to fr(x) and can 
be considered independently only at a large value of the 
gap. With increasing gap size, the conditions for the 
appearance of a low-frequency pseudolocal oscillation 
improve, owing to the ensuing increase of the contri­
bution made to this region by the optical branches. 

The foregoing calculation is limited to the linear­
harmonic approximation. However, after a new phonon 
spectrum is obtained from the solution of the dispersion 
equation .:l(w) =0, it is easy to take the anharmonicity 
into account and leads the well-known results are ob­
tained, particularly the broadening of the spectral lines 
([13], pp. 293-306). This broadening is important only 
for local states, which have no width at all in the linear­
harmonic approximation. 

4. OPTICAL AND INFRARED ABSORPTION, RAMAN 
SCATTERING OF LIGHT 

We consider certain experimental manifestations 
of the Jahn-Teller effect in local and pseudo local vi­
oronic states. 

a) Singlet-doublet optical absorption. Let the prin-
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cipal electronic term of the impurity center be an or­
bital singlet, and let the excited terms include a non­
Kramers doublet that interacts weakly with the E oscil­
lations. In the linear-harmonic approximation, the 
form function of the one-phonon satellite for E oscil­
lations at T =0 oK and at a weak electron-phonon cou­
pling is determined by the expression 

(24) 

Here d is the operator causing the optical transition, 
IA) and 1 Ey) are the electronic wave functions of the 
singlet and the doublet, while K~2i(n) is the spectral 
density of the correlator connected with the Green's 
function D~2{(n): 

K("(Q) 1 [("(' ('l . 
xl. =i D"" Q+le)-D., (Q-le)],_+O. (25) 

Formula (24) differs from the ordinary expression 
for the spectral curve of the one-phonon satellite in that 
it takes exact account of the restructuring of the spec­
trum by the electron-phonon interaction. Formula (24) 
is incorrect at T*O OK, for with increasing tempera­
ture, multiphonon processes begin to contribute to the 
coefficient of the one-phonon absorption, and these pro­
cesses are not described by the single-particle phonon 
Green's function. Substituting (25) in (24) and rear­
ranging the summation over 101., A, and y, we obtain: 

K(Q)=4M kE' /,(Q) (26) 
fl' [1-(a+Ql)/,(Q) ]'+/;'(Q) (a+Ql)" 

where M = 1 (A "d" E) 12 is the square of the modulus of 
the reduced matrix element. The equation .:l(w) =0, 
which gives the redefined phonon spectrum of the sys­
tem, has two systems of roots, corresponding to the 
two signs in (18). As seen from (26), only roots cor­
responding to only a positive sign of (18) appear in opti­
cal singlet-doublet absorption. This is connected with 
the selection rules with respect to the quantum number 
of the total electron-vibrational angular momentum of 
the vibronic system. The existence of such an integral 
of motion for a Jahn-Teller system with an E term, 
described by the Hamiltonian 

H = .E fl;n (Pn,'+Pn.'+qn,'+q .. ') + .E kn(qn,a,+qn,a.) , (27) 

was proved by Sloncjewski. [14l The Hamiltonian (1) 
considered in the present paper can be reduced to the 
form (27), if the summation over the wave vector )( is 
carried out in two steps: first run over all the values 
of )( on the equal-frequency surface w.( x) = w., and then 
integrate with respect to w.. By carrying out orthog­
onal transformations in the subspaces of the normal 
vibrations pertaining to each equal-frequency surface, 
in a manner similar to that used in the multimode dis­
persionless problem, [8l we can pick out for each such 
surface one pair of interacting effective modes, with 
the remaining vibrational degrees offreedom separated. 
Thus, the Hamiltonian (1) can be reduced to the form 
(27), and therefore the Jahn-Teller system described 
by the Hamiltonian (1) also has a conserved total elec­
tron-vibrational angular momentum. The existence of 
this integral of motion offers evidence of the "acci-
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dental" increase of the symmetry of the Jahn-Teller 
polyatomic system with E term, from point symmetry 
to axial symmetry. All the states of such a system are 
doubly degenerate-energy each value corresponds to 
two states with different directions of the projection of 
the angular momentum on the axis. Thus, for example, 
one-phonon. states correspond to total angular momen­
tum values 0 and 1. Inasmuch as in the ground state of 
the singlet electronic term the total angular momentum 
is zero, and the transformation properties of the vector 
d correspond to the angular-momentum projection ± 1/2, 
it is clear that this transition is allowed only to a state 
with total angular momentum projection ± 1. This hin­
drance is lifted with increasing population of the states 
whose total angular momentum differs from zero. 

The total single-phonon absorption coefficient is ob­
tained by adding to (26) the standard expression for the 
single-phonon satellite in the fully-symmetrical oscil­
lations. In the frequency regions far from the roots of 
Eq. (18), expression (26) can be expanded in powers of 
kio The first term of the expansion has the usual form 
of the one-phonon E-oscillation satellite, which ac­
counts, when allowance is made for the remarks that 
follow formula -(23), for the initial phonon density of 
states of the crystal: 

k' 
K(D)=4M-f,-t,(Q). 

In all the regions close to the roots of Eq. (8), the in­
dicated expansion is incorrect, and the form of the 
single-phonon satellite differs significantly fromfi(n). 
In particular, in those regions where, in addition to the 
vanishing of the expression 1 - (a + n Y)fr(~1), the initial 
density of states is small (see regions 3, 4, 5, and 6 
in the figure), narrow Lorentz-like peaks of pseudo­
local states and a-like peaks of local and gap states ap­
pear on the optical single-phonon absorption curve. It 
should be noted that even in those cases when there are 
no pseudolocal oscillations, but Eq. (18) is "almost" 
satisfied, the function K(n) differs greatly fromfi(n). 
Of particular interest is the possible appearance of 
pseudolocal states in the low-frequency region, which 
can be erroneously interpreted as splitting of the zero­
phonon line by low-symmetry fields. Analogous singu­
larities are possessed by the single-phonon satellite of 
the E-A luminescence. 

b) Infrared absorption. We consider impurity in­
frared (IR) absorption by centers of trigonal symmetry, 
where the Jahn-Teller E oscillations are dipole-active. 
Aligning the wave vector of the exciting radiation with 
the C3 axis, we can eli.minate the contribution made to 
the IR absorption by the fully-symmetrical oscillations. 
The form function of IR absorption is determined in 
this case, accurate to factors that depend little on the 
incident-light frequency n, by the expression 

KIR(Q) = (1-e-'OIhT) .E .Ea.(V)a,(V) (Ey IK~~' (Q) lEy>, (28) 
T ~" 

where K~4{(n) is the spectral density of the correlator 
connected with the Green's function DW(n): 

K~J (Q) = ~ [1_e-'OIhT]-1[D~~' (Q+ie) -D~~ (Q-ie) ].-+0. (29) 
l 
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Substituting (29) in (28) and rearranging the summation 
with respect to x, A, and y, we ultimately obtain 

J 1+(a+Q1)~[ax'/2n"h] 

KIR(Q)~Q2f,(Q) I [t- (a+Q1)t,(Q) ]'+t.'(Q) (a+Q1)' 

l-t- (a-i!1) ~ [ax'l2nw.] \ 
+ . l. 

[t- (a-[h) j,(Q) l'+f,'(Q) (a-Q1) ') (30) 

As seen from (30), in IR absorption, unlike optical sin­
gle-phonon absorption, there is no hindrance with re­
spect to the quantum number of the total electron-vi­
brational angular momentum, and both systems of the 
roots of (18) appear in the spectrum. In particular, 
local and pseudolocal oscillations that appear as a re­
sult of the Jahn-Teller effect in the frequency regions 
4 and 6 (see the figure) and do not manifest themselves 
in the single-phonon satellite of the E - A luminescence, 
lead to additional sharp peaks in the IR absorption. Just 
as in the single-phonon satellite of singlet-doublet opti­
cal absorption and luminescence, the dynamic Jahn­
Teller effect leads to an appreciable difference in the 
shape of the IR absorption curve from the denSity of 
states of the impurity crystal in the frequency regions 
where (O!±nY)fr(n)", 1. 

As noted in(151, a new type of IR absorption, connected 
with transitions between degenerate electronic states, 
is possible in impurity centers with the dynamic Jahn­
Teller effect, on the principal term. Unlike in the case 
considered above, this transition is caused by the 
dipOle-moment operator of the impurity electrons. The 
single-phonon contribution of the electrons to the IR 
absorption is given by 

where M' is the oscillator strength of the E-E transi­
tion. Substituting (25) in (31), we obtain 

K~ (Q)-8M' ~{ j,(Q) 
IR - fL' [1-(a+Q1)t,(Q)1'+j,'(Q) (a+Q1)' 

+ j,(Q) } (32) 
[1-(a-Q1)f,(Q) l'+f«Q) (a-Q1)2 . 

The spectral curves (30) and (32), which describe the 
contributions made to IR absorption by the dipole mo­
ments of the electrons and nuclei respectively, differ 
little in shape. The intensity of the electronic contri­
bution is determined by the vibronic-coupling constant 
and by the oscillator strength of the electronic dipole 
transition between the states 'lI. and 'lI_. This type of 
IR absorption can predominate in those cases when the 
effective charge of the nuclei is small. 

c) Raman scattering of light. The intensity of the 
impurity nonresonant Raman scattering (RS) into a unit 
solid angle is determined by the expression(7,131 

KR(Q) = 2~ [1-r,g/kT] J r,g'<P·P(t) >dt, (33) 

where n is the difference between the frequencies of 
the scattered and incident light, P is the operator of 
the electronic polarizability, which is the scalar con­
traction of the polarizability tensor P ik with the polar-
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ization vectors e and T of the incident and scattered 
light: 

p= ~e'T'P'" .. 
To write down the operator P in matrix form, we 
change over to a basis that makes it possible to rep­
resent the scalar P in the form of a contraction of ir­
reducible tensors of the considered point group. Thus, 
for example, for scattering by an electronic doublet of 
an impurity center with point symmetry 0h' the opera­
tor P can be reduced with the aid of the Wigner-Eckart 
theorem to the form 

P=PA ·l+P,<Jx +P,<J,. (34) 

The fully-symmetrical term P A makes no contribution 
to the impurity Raman scattering. From (34) and (33) 
it follows that the spectral curve of the single-phonon 
impurity Raman scattering is described by the same 
frequency dependence (32) as the impurity IR absorp­
tion on the electronic operator, differing from it in the 
selection rules and in the polarization dependence. 

Simultaneous use of Raman scattering and IR absorp­
tion makes it possible to distinguish the local and pseu­
dolo cal oscillations, due to the mass defect and to the 
change of the force constants, from the local and pseu­
dolocal states considered in the present article and con­
nected with the vibronic interaction. Thus, for ex­
ample, for impurity centers of cubic symmetry, the 
T 1u oscillations are the active ones in IR absorption, 
and consequently only the usual local and pseudolocal 
oscillations, connected, say, with the mass defect, ap­
pear in the IR absorption spectrum. On the other hand, 
the Raman-scattering spectral curve duplicates the 
state density, restructured by the vibronic interaction, 
of the Eg oscillations that are active in the Jahn-Teller 
effect, and makes it possible to observe local and pseu­
dolocal Jahn-Teller states. In the case of impurity 
centers of trigonal symmetry, the indicated separation 
of the Jahn-Teller local and pseudolocal states can be 
realized by comparing the spectral IR absorption curves 
of light linearly polarized in the plane of a triangle and 
perpendicular to the plane. Experiments on optical ab­
sorption and luminescence also make it possible to dis­
tinguish ordinary local and pseudolocal oscillations 
from Jahn-:-Teller oscillations. Indeed, Jahn-Teller 
local and pseudolocal states, in contrast to ordinary 
states, do not appear in the anti-Stokes region of the 
spectrum. We note, to be sure, that with increasing 
temperature, when multiphonon processes begin to 
make a contribution to the region of the anti-Stokes 
single-phonon absorption, the indicated states can ap­
pear there, too. The one-phonon satellite of the im­
purity luminescence of the A - E transition at T =0 will 
reveal a phonon density of states of the singlet term, 
where there are no Jahn-Teller local and pseudolocal 
states. 

5. CONCLUSION 

Let us summarize the main conclusions arrived at 
by a study of the dynamic Jahn-Teller effect due to 
weak vibronic interaction of an orbital doublet with a 
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phonon continuum. 

1. Even a weak electron-phonon coupling can lead to 
appreciable restructuring of the spectrum of the sys­
tem, and in particular to the appearance of local and 
pseudolocal electron-phonon states. These singularities 
depend on the magnitude of the coupling constant and on 
the details of the structure of the phonon density of 
states. 

2. Whereas in the cluster model the dynamic Jahn­
Teller effect always leads to a splitting of the spectral 
peaks, in the case of phonon dispersion the appearance 
of new peaks cannot be of the splitting type. An ex­
ample may be the appearance of a pseudo local oscilla­
tion in that frequency region where the initial density 
of states takes the form of a small jump (see the figure, 
region 6). The new density of states can greatly differ 
from the initial one even in those cases when the dis­
persion equation (21) has no root at all and the pseudo­
local oscillations do not arise .. 

3. The specific features of the phonon dispersion 
make possible the appearance of low-frequency pseudo­
scalar states, which cannot be explained in any way 
within the framework of the cluster mOdel. 

We note, finally, that the results of the present study 
enable us to establish the limits of applicability of the 
cluster model of an impurity center. In those cases 
when in the initial density of states there are well-de­
fined narrow peaks, on the two slopes of which the in­
equality (23) is satisfied, the cluster model leads to 
correct results, namely the splitting of the correspond­
ing peaks. However, even in this case the cluster 
model describes the aforementioned splitting only qual­
itatively, since its magnitude can depend in a rather 
complicated manner on the coupling constant, and the 
dependence can in particular be non-analytic. 

Local and long-lived pseudolocal states due to the 
dynamic Jahn-Teller effect can be interpreted as bound 
states of a phonon with an impurity center. Similar 
states were investigated by Kogan and SurisC161 (local 
states), by Kochelaev and Aminov[171 (pseudolocal 
states) for the case of two close singlet electronic 
terms that are mixed by an electron-phonon interaction. 
The general theory of these bound states was developed 
in the papers of Levinson and Rashba, [181 where they 
are called dielectric modes and hybrid states. Favor­
ing the appearance of local and pseudolocal states is 
the increase of the coupling constant (see the inequality 
(23)), whereas all the indicated calculations, including 
those in the present paper, were made in the weak­
coupling approximation and are restricted by the cor­
responding criteria. There are grounds for assuming, 
however, that the increase of the coupling constants 
will not lead to a change in the qualitative conclusions 
concerning the spectral properties of Jahn-Teller sys­
tems. It appears thus that Sloncjewski was the first to 
ShOW[141 that in the limiting case of strong interaction 
of an electronic non-Kramers doublet with a phonon 
continuum, local and pseudolocal states of the electron-
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phonon type appear and can be interpreted as bound 
states of the impurity center with the phonons. Thus, 
the appearance of bound electron-phonon local and 
pseudo local states is a distinguishing feature of any 
Jahn-Teller situation. 
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