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We use a diagram method to obtain an exact solution of the problem of the excitation spectrum of a 
mixture of two Bose·liquids with a condensate in the long-wavelength limit at T = O. 
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1. INTRODUCTION 

The recently significantly increased probability for ob­
taining experimentally a mixture of superfluid liquids 
has promoted an appreciably increased theoretical in­
terest in that system. (1] 

To begin with, already in 1957 Khalatnikov, [2] apply­
ing a hydrodynamic approach, suggested the study of a 
mixture of two superfluid liquids as a peculiar quantum 
system. A microscopic approach was proposed in[3] 
which makes it possible to validate the stability of a state 
with independently moving condensates of the compo­
nents of the mixture (the region of admissible velocities 
was determined in the Bogolyubov approximation); an­
other specific feature of the system was also noted in 
the same approximation-neither of the two sound 
branches of its spectrum is described in the general 
case at T = 0 by the formula for the classical elastic 
continuum u2 = aPia p. 

Andreevand Bashkin[l] indicated an effect which is 
not taken into account in Khalatnikov's hydrodynamic 
theory and which goes beyond the framework of the 
Bogolyubov approximation: each superfluid motion is 
accompanied by the transfer of a well-defined fraction 
of mass of both components of the mixture (in the mi­
croscopic theory: the motion of the condensate of one 
component drags along with it in a well-defined way the 
particles of both components of the mixture which are 
outs ide the condensate). Correspondingly, both ve­
locities of the superfluid motions are introduced in 
Khalatnikov's set of hydrodynamic equations in the ex­
preSSion for the mass fluxes: 

(the system of reference is given by the condition vn = 0). 
It is important that there is on the phenomenological 
level no unique definition of the superfluid velocities (in 
particular, a definition which masks the drag effect, 
Vi = jJp, is permissible). The meaning and necessity 
of the modification of the expression for II are explained 
in the microscopic approach: in the framework of a 
BCS theory it was shown in[1J that the condition for po­
tential flow 

rotv,=O , (2) 

which is taken into account in the set of hydrodynamic 
equations is in agreement only with (1). 
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There is, however, also another relation which is 
included in the hydrodynamical equations and which 
needs a microscopic basis: 

(3) 

It is impossible to obtain this relation by fixing the defi­
nition of the velocities VI merely by the requirement 
(2)-the remaining ambiguity (the possibility of arbitrary 
linear transformations of the VI with constant coeffi­
Cients) is not permissible in (3). If we take (3) as a 
phenomenological definition of the VI' there remains the 
open question of them satisfying the condition (2). 

The fact that (3) is not obvious is underlined by the 
"drag effect." One might even prove that the phenome­
nological expression for aElavl must be generalized 
(like jl): 

Indeed, if, for instance, the equations II = Pu V 1 and j2 
= P21Vl, which describe a state with a moving condensate 
of the first component, corresponded to a drift of the 
classical particles (with pair interactions) with velocity 
Vu instead of (3) the equation 

would be satisfied. 

Therefore, turning to the microscopic approach in the 
case of a mixture of superfluid liquids is not only re­
quired to give a foundation for the possibility of intro­
ducing non-operator denSities, fluxes, and so on, which 
describe long-wavelength excitations (as in the case of 
a single-component Bose-liquid) but also for the con­
struction itself of a correct set of hydrodynamic equa­
tions. 

We give in the present paper a microscopic theory of 
a mixture of two Bose-liquids with a condensate in the 
long-wavelength limit at T = O. We use a Green function, 
determined from the Dyson equation using a method 
analogous to the derivation of the Hugenholtz-Pines[4] 
relations, to find the excitation spectrum. The result 
is exact, i. e., it is not connected with any assumptions 
whatever about the relative concentrations in the mix­
ture or the weakness of the interactions. . When the rela­
tive concentrations are not too different we confirm the 
result obtained in[3] in the framework of the Bogolyubov 
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approximation: none of the sound velocities is connected 
in the normal way with the compressibility. Equation 
(3) is rigorously proven uSing the definition of the VI as 
the velocities of the condensates. We note the role of 
the density fluctuations as a source for the drag effect. 
The result for the spectrum is the same as the one ob­
tained at T = 0 from the set of hydrodynamic equations 
used in[1]. 

2. THE GREEN FUNCTION EXPRESSED IN TERMS OF 
FORMAL THERMODYNAMIC DERIVATIVES 

A mixture of two Bose-liquids with pair interactions 
is described by the Hamiltonian 

X v, (r-r') lJli(r') 1Jl,(r)dr dr' } + IJlI + (r)'h (r) v(r-r') 1f2 + (r') If' (r')dr dr'. 

Let T = 0 and let the concentrations no; of particles in 
the condensate be non-vanishing. The Green function G 
and the irreducible self- energy part f; form a 4 x 4 ma­
trix corresponding to the four possibilities for incoming 
and outgoing lines: two directions and two kinds of 
particle. 

From the Dyson matrix equation (the upper indexes 
characterize the number of the components and the low­
er ones the directions): 

G ih ()= (Go(I)(P) 
Oml'). P - 0 

G (i) ( ) "" ( (e-e"i'+I!,+i6) -I 0 ) 
o P 0 (-e-ep;'+I!,+i6) -I ' 

i, k, ... =(1, 2), e • .'''''p'/2m" 

we find 

_~(12' _I 

a~2)-1 _~(2)) 
(G"""G(I), l:"""l:("). 

We can use the generalized Hugenholtz-Pines and 
Gavoret-Nozieres relations[41 for a mixture (see Appen­
dix, Sec. 1 for a derivation) to determine the asymptotic 
form of C(p) as p- O. These relations establish a con­
nection between the terms of the expansion 

(the ~f; contain in general non-analyticities and are de­
termined by the conditions lim p~O~nf;/pn-l = 0 and 
lim~nf;/pn* 0) and the derivatives of the Hugenholtz­
Pines[4] thermodynamic potential: 

(the volume 0= 1; n; =nl - nOi are the concentrations of 
particles outside the condensates, J.LI the chemical po­
tentials, and Pi the momenta of the particles in the con­
densates)ll; 
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A [,,(1) ,,(1)]- 1 (' , nl') 
02 ":::"11 -":::"12 --- e azz+p ~ , 

2no! m l 

i\,l:II12=;- [(~)'I' a23+(~)'I' a,,], 
2 nOI n02 

i\,l:I2I2=~ [(~)'I' a,,- (~)'I' a,,]; 
2 nOI n02 

1 
i\,[l:III2_l:I2"J= -=,(e'a,,+p'a); 

2l'n"n" 
aih==8zE'IOXiaX,u X 1,3==nO(t.2h X2,~==""'1,2' 

(6) 

(8) 

The constants ml and a can be expressed in terms of the 
derivatives of the energy of the system with respect to 
the condensate velocities VI (or the momenta PI = mlv i of 
the condensate particles, see Appendix, Sec. 1). The 
formulae for ~ (2)(0), ~n~(2), ~21(0), and ~n~21 are ob­
tained from (6) and (7) directly through the substitutions 
1,2= 3,4 and n01 = n02 in the aik • 

We can construct the quantity E' as follows. If the 
condensate and the system of particles outside the con­
densate did not exchange particles, their concentrations 
should be considered to be independent variables so that 

in another thermodynamic representation 

(9 ) 

We can retain the function E'(noo J.L~) as a special ther­
modynamic characteristic of the system and when ex­
change of particles is present between the condensate and 
the system outside the condensate we need only introduce 
the additional requirement 

(
DE. 

- =0 
Ono, ) n, ' i.e., (10) 

By virtue of (10) we can not distinguish J.LOi and 11-;, and 
we denote them by J.Li' We construct a simple diagram 
technique for 

(iI' I cI» = E' I cI» ) (formally, as for the Hamiltonian of the 
system of particles outside the condensate; the no; play 
the role of parameters); the quantity E' corresponds to 
the sum of the vacuum diagrams. [4] 

Equations (6) to (8) determine the asymptotic form of 
the matrices occurring in (4): 
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while 

for G~2)"l_ £(2) and :£21 the relations differ only in the 
replacements 1,2= 3,4 and n01 = noo in the aik' 

Substituting (11) in (4) and after that evaluating the in­
verse 4 x 4 matrix up to terms of lowest order in p and 
E we get 

bll.C"ln 

G""."l.p)= Ae'-Be'p'+Cp' 

JJ, =-a" (a"o ,,-a ,,,')'T ( I-a" )'a,,·L2 ( I·-a.,) a"a"+a,,'a,.,, 
y=(/,. (a"a,,--a,,')., (i-a,.)a"a, ,c' (l-a ja"a." 

---:-(I-((IJ(t-(l,.)a l -a,.I(.f{L" 

.1~1""a.-a,.')(a"a, -a,')'-[(I--a,.)(I-a ) 
--Il j ,G-, .. ]-'-:2 ( 1-(11::) (a: (/, (f-,.-[J~·,a,Jl-, ) 

-2( ]-u,,) (a"a,.,a"-a,.n,,a,,) -1( 1 .. (/,,) ([-a")a,,,a,. 
- ~ I-at:) :2azua ., - (I-a,,) ~a Ila::~-a [La ,\a~ :~-aJ :a.!2al.~-2aIJa~;al"a~ 

(12) 

We draw attention to the multiplicative character of the 
way the G!.:'n depend on the indexes. It is important that 
in G only such combinations of the .o.n~ entered as are 
contained in Eqs. (6) to (8), i. e., they have an analytical 
form and can be expressed in terms of aik> mf, and a. 

3. TRANSITION TO PHYSICAL DERIVATIVES 

We show now that the combinations of formal deriva­
tives aik in G in (12) have a simple physical meaning. 
To do this we express the physical derivatives a Ili lank 

(Ili =ani ) in terms of the formal aik' It follows from (8) 
to (10) that 

d~ll =O!lcin 1-7al:dplTaI3dn",!T-al,d~l-'1 
d~l~=a.:!llli . -~a ,-,d~ll-~aJ3dn0~ --r-a.1.d!_l~. 

dll, = (I-a.,) dn"-a"dll,-a,,<iI1.;o-a,,<ifJ,,, 
dn,=-a, ,till",--n"dll,+ (I-a,,) dllc,-a, ,dll,. 

i, e, , 

c = (a" a,,) 
. Q:a a, .• 

Eliminating dno from (13) we find 

A A A........... 
dn=D d~, D=-C+ATB-'A. 

The evaluation of jj leads to the following equations 
(see (12), (13)): 

D,,=ilf,/det 8, D,,=M,IdeI8, 

D,,=D,,=-Nldet E, del D=Aldet B. 

(13) 

(14) 

Substituting (14) into (12) and using the obvious relations 
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0lt. = D" 
On, deli) 

Of!,=af!,= D., 
an, an, detD 
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(15) 

enables us to eliminate the quantities aik from G in (12): 

- 1 --
G=zPQ, 

( 
11.,[<JIl'", -~dP'.J, l'n,,,no, [alA'e'+adP' J') 

(jill m., Un:. 

!J= " ~ , 
,1~~-Vifl02 ['~~ll£:'-~-adP~]' n02[ fjJ..L~E~_~dp~], 

')II'}. f)ll:. In j 

( n,n, ) + p' -----, -7. d 
1111 m2 

Apart from the usual thermodynamic derivatives a2 E/ 
an/ank there occur in the expression for the long-wave­
length spectrum derivatives of the energy (see (A2) with 
respect to the velocities of the superfluid motion (which 
can be expressed in terms of a single "drag parameter" 
a-see beloW), The velocities of the superfluid motions 
play the role of peculiar additional thermodynamic vari­
ables, the occurrence of which is connected with the sta­
bility of the relative superfluid motion. 

The possibility to connect the long-wavelength spec­
trum with the thermodynamic potential Emi' Vi) (although 
through the enlarged inclusion of the variables Vi) is not 
self-evident for a quantum system; for instance, for a 
Fermi-system (zero sound) or for a quantum (coherent) 
crystal[Sl one needs a more detailed characteristic of 
the system than that given by E(n). 

When there is no interaction between the components 
of the mixture Eq. (15) would for each of the liquids lead 
to the well-known expression[4l 

4. CONNECTION BETWEEN THE DERIVATIVES OF 
THE ENERGY WITH RESPECT TO THE CONDENSATE 
VELOCITIES 

Using the diagram technique for a system of two Bose­
liquids with moving condensates[3 l we can easily evalu­
ate the derivatives BE(Vu v2)/avi" Differentiation of the 
contribution E' of any of the vacuum diagrams with re­
spect to Vi leads to a set of diagrams which differ from 
the original one by the replacement of one of the zero­
order Green functions of the i-th component G~j)(p) 
= (t:: - P' Vi - e~ + lli)-l by the expression 

i) Go'') (p) I aVi=pGo'i) (p)'. 

Hence it follows that 

(JE' 'S ,iJ "J dip 
-8' =, p[G" (p) -Go (p) 1-(.) )' 

\, _Jt 

. f U' dip S d'p., 
=1 pG" (p)-(~ )' = pni(p)-(~ )' =l. 

- .... ;1 ... 31 

(j~is the mass flux of the i-th component particles out­
side the condensate). Using (A1) and also the equations 
Pi =miv i we have 

• I mt 2n/ 
II =-_-Vt+ccm l m2v21 

m, 

w 
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For the total mass fluxes we get (see (A2) 

• • I m12n l aE 
ll=nOlrntVt+Jt = --. v t +am t m2V2 = -, -, 

m1 a'll 

mo'no iJE 
h=nOZm2vZ-r-l/ = --=-:-:Y:!.+Clmlm,~vl = -0 -. 

m:! (.IV:! 

(16) 

USing the law for the transformation of the l; when 
we change to another inertial frame of reference, we 
find 

(17) 

whence 

(18) 

Substitution of (18) into the equation for the spectrum 
(see (15» gives 

f'- [p,b,,+p,b,,-am,m, (b,,+b,,-2b,,) 1 f'P' 
+ (pip,-CLlII ,m,p) (b"b,,-b,,') p'=o. 

, DE ft, 
~i ;;;:;;;:;-.,-=-. P~~Jl~P~ 

'Jp; m 

or, after some transformations 

[( fjP) { am,m,}(":)] e'- -,- +- c(1-c)---" ~, ,'po 
ap c p J( . r' 

+{c(1-c l - am,m,}( o~) (9P) =il 
P Dc l' 8: 1 

where (see (A2), (17» 

c(1-c)- am,m, =~[~ D'E _ (~)'] >0 
P p' iJv,' av,' iJr'".iJv" 

(stability condition). It is clear that as 

iJ~ a~ ,a~' of (a; ) p- (ap ) ,,= P" ( op ) , / ( ']r ) ,* 0, 

(19) 

(20) 

none of the sound velocities is in the general case de­
scribed by the formula for a classical elastic continu­
um u2 = (a p fa P )e' For weak mixtures (c« 1) we find 

u, "" (~) + (p,-am,m,)p ( as )' / ( JP) , 
iJp , lip, Dp, 

u,"" (p,-a~,m,) (:c~ ) j fl' 

One verifies eas ily that the same result for the spec­
trum follows from a set of hydrodynamic equations[l] at 
T=O: 

(21) 

Indeed, from (21) follows the dispersion equation for 
u=w/k: 

which is equivalent to (19) (here Pu =nImVmt, P22 
= ~mVmt, PI2 = amIm2, see (16), (17». 
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5. DRAG EFFECT 

The effect of dragging by the superfluid motion of a 
well-defined fraction of the mass of both components of 
the mixture from the point of view of a microscopic 
theory means the following: if the condensate of one of 
the components is "put into a state of motion," the par­
ticles of both components outside the condensates obtain 
a non-vanishing average velOCity. In the diagram lan­
guage the necessity of this effect is clear from the fact 
that when a moving condensate is present the diagram 
for the Green function C<il (p), and hence also the dis­
tribution functions n;(p) of both components become 
anisotropic. [3] 

In a microscopic approach the drag effect (a quantita­
tive expression for which is given by Eq. (16» emerges 
as the consequence of the appearance of a "cross" term 
in the energy of the state with a moving condensate (A2), 
i. e., of the non-additivity of the contributions to the en­
ergy of the superfluid motions. This is a quantum ef­
fect: although the interaction Hamiltonian can be ex­
pressed only in terms of the particle number density op­
erators while the average densities are not changed in a 
uniform superfluid motion, the average value of the in­
teraction energy depends on I VI - v21-an important con­
tribution to it comes from the density fluctuations which 
depend on the excitation spectrum and hence also on the 
relative velocity of the condensates. It is noteworthy 
that the constant a in the "cross" term serves as an 
exhaustive characteristic of all manifestations of the 
drag effect-in the expression (16) for the mass fluxes 
j;, in Eq. (20) for the spectrum, in the difference (18) 
between the "effective" masses mt and the "bare" ones 
m; (the constants mt play the role of their own kind of 
"effective" masses of particles when there is superfluid 
motion if we use Eq. (A2) for the energy, but not if we 
use Eq. (16) for the mass fluxes). 

It is interesting to note that in the limit of a strong 
rarefraction of one of the components of the mixture (let 
it be number 1) the constant mt acquires the role of an 
effective quasi-particle mass in the usual sense. To 
wit, using the generalization of equations of the Hugen­
holtz-Pines and Gavoret-Nozieres type we can show 
(see Appendix, Sec. 2) that as nOI - 0 one of the branches 
of the spectrum of the mixture tends to the behavior 

'" p' -
f" =-?m-.. +O(ln,,)p, 

Neglecting the drag effect (a = 0) leads to agreement of 
the spectrum with the results of the theory in[2] and to 
the absence of a renormalization of the particle mass of 
the rarefied impurity mt = mI' 

We express our deep gratitude to A. F. Andreev for 
discussing this paper and for important hints. 

APPENDIX 

1. The Hugenholtz-Pines kind of formulae (6) for the 
mixture are derived by complete analogy with the one 
Bose-liquid case. [4] The generalization (7) of the 
Gavoret-Nozi~res relations needs some additional re­
marks which we give below. 
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If we change in the vacuum diagram E' the "energy 
factor" of one pair of entry-exit condensate lines of any 
of the mixture components (1- e'fi et) the changes affect 
the internal Green functions of both components. How­
ever, when summing the contributions from the set of 
diagrams ~~n)(O, e) constructed on the base of some vac­
uum diagram E' we get by means of a discussion simi­
lar to the one given in[4] a result which is larger by a 
well-defined factor than the change in the contribution of 
the diagram E' when simultaneously we make the change 
1- e TiEt in all condensate lines of the given component 
of the mixture, which is equivalent to changing the 
chemical potential III - III + e in the internal Green func­
tions of only that component. This leads to equations 
for ~~:'i(o, e) which are analogous to the ones obtained 
in [4] • 

When deriving the relations for ~ l~li(O, f) we assume 
that the change 1- eT!'t Simultaneously affects the con­
densate lines of both components; after that we subtract 
from the total sum 

( ij ,j ) (DE' ifE') -l<--f]}=e 11,'1-. -+/1,,-. - --+-.-
()n O! fJn.,,:. a~(, (J~l:! 

the change in ~tP and ~~) • 

The derivation of the equations for ~l~t~(O, E) requires 
a change in the energy factors of the condensate lines 
which is equivalent to the transformations III - III + e, 
Ilz- Ilz - e. From the total sum of contributions of en­
try-exit pairs for the condensate lines of one kind and 
the entry-entry, exit-exit pairs for different kinds, 

we subtract the change in ~g) and ~a). 

We easily obtain the equation for ~I~~(O, e) - ~g(O, E)] 
through the substitution 1- eTW in all condensate lines; 
we must from the total sum 

'I, {In,, (r..'.') (0, e) --r.i;) (0, e) -II,) +11", (r.,'.') (0. e) - r.,':) (0, e) -,I,) 

+~r;;;;: (~!1"(0, £)_L,,12(O. f))] +[f~-e]} 
e' a'E' a'E' a'E' 

~ ~ ( <i,I,' + <i,I,' +:2 afl, all, ) 

subtract the terms connected with ~f~ l, ~I(:). 

When deriving the equations for ~~~(p, 0) we establish, 
Similar to the preceding, a connection between these 
quantities and the change in E' - in this case when each 
of the condensates of the mixture start separately to 
move (with an infinitesimal velocity): 

Ito, [L,'." (p. 0) -L,';' (p, 0) -'I,]=~E' (p, 0), 

,,"[I,'." (p, O)-I,(;' (p, 0) -'(,] =/lE' (0, p), 

l'n"n,,[I:~ (p, o)-L:i (p, 0) ]='/,[M'(p, p)-LJ.E'(p, O)-M'(O, p) l. 
It is clear from symmetry (isotropy of the initial state 

when the condensates are not moving) that the expansion 
of ~ '(PlO Pz) (PI are the particle momenta in the con­
densate) must start with second-order terms: 

(At) 
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(see Sec. 5 for the necessity of the inequality ml ", ml). 
When calculating G in terms n; p2 12ml occur only in 
combination with nOI pZ 12ml : 

J' (_1_+~) ~~ 
1 '.!.1n; :2fn,n o1 '.!.m/nu, 

(see (12». The physical meaning of mf follows from the 
expression for the total energy of a system with moving 
condensates: 

1E (P,.l',) = (~T n~) p,' + (~+ n~) p,'+ap,p, 
2m\ 2m! 2m:! 2m~ 

p,', p,', 
=Jl 1 2m

t
' -~ n~ 'l.m:!" T aptpz. (A2) 

2. Let the concentration of one of the components of 
the mixture tend to zero: nOl - O. Using the equations 
(see (7), (8» 

~(ll -v(t) _ DE'_ 
-, (0)-_12 (0)--., --II" 

(.111,.[ 

.,,(1) (J'E' 
~1""J1 =E---, 

fin" all. 

and using the fact that ~g)= O(nOl), ~!=O(~), we 
find 

{J'E' p' aE' 
=epo+e --- - ---. 

i)n~1 ')~ll 2nodn, a~ll 

As nOl - 0 the contribution to terms with derivatives of 
E' come only from diagrams E' with a minimum two 
non-vanishing number of condensate lines of the 1-st 
components (diagrams E' without these lines either do 
not contain either outside-condensate lines of the 1-st 
component Gri l ) = (e- e~ + III + ill)""!, or they contain loops 
of Grill which give zero when integrated over the fre­
quency). As each condensate line introduces a factor 
~ we find 

a'E' 1 aE' 

anolaJlI=~~ 

so that 

(11 p2 _ 

ep =-. + o (l'nOl)p. 
2ml 

1) An analysis of the divergences, similar to the analysiS in[51, 
for a mixture of Bose-liquids will be given separately. 
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