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The electronic part of the drag force acting on dislocations in metals at a low temperature is investigated 
for magnetic fields of arbitrary orientation. i.e. for arbitrary angles 4> between the magnetic field and 
dislocation axis. It is shown that for all but the smallest angles 4> the drag force is the same as in the 
absence of a magnetic field. A strong angular dependence (including nonmonotonous ones) of the drag 
force can be observed in the small.angle region (4)< al R, where a is the interatomic distance and R is the 
Larmor radius). Quantum oscillations of the deceleration force as a function of the magnetic field strength 
are observed. They are due to oscillations of the electron state density and their amplitude may reach 
several percent of the smooth part. 

PACS numbers: 72.10.Fk 

1. INTRODUCTION 

1. A dislocation moving with a specified velocity V 
through a crystal can be regarded as a source of sound 
waves, the connection between the frequency w of which 
and the wave vector q of which is given by the relations 
w =q' V. Each of these waves is absorbed by the crys­
tal via some mechanism whereby they interact with the 
thermal phonons, electrons, impurities, and other 
scatterers. 

In metals at low temperatures, an important role is 
played by absorption of sound by conduction electrons. 
If we calculate the power dissipated by the dislocation 
as a result of its interaction with the electron system, 
and divide this power by the velocity V, then we obtain 
the electronic component of the dislocation drag force. 
Inasmuch as the absorption of the energy of a phonon 
of given frequency and given wave vector has been 
thoroughly investigated, the problem of calculating the 
dislocation deceleration force reduces to integration of 
the sound absorption coefficient with respect to the vec­
tor q with a known weight. (11 The weight is determined 
by the number of the dislocation-generated phonons with 
wave vectors lying between q and q +dq, which in turn 
is expressed in terms of the Fourier transform of the 
known[2J dislocation deformations. 

We confine ourselves to the motion of an individual 
straight-line dislocation. It is obvious that its velocity 
must be regarded as perpendicular to the dislocation 
axis (the y axis). It is also understandable that the vec­
tor q of all the dislocation-generated sound waves is 
perpendicular to the y axis. In the absence of a mag­
netic field, an electron moving in straight lines between 
collisions draws energy from the "dislocation phonon" 
wave as a result of the deformation interaction. If the 
sound wavelength is much shorter than the electron 
mean free path l, then the absorption has a collisionless 
character, since the electron interacts many times with 
the sound prior to being scattered. Inasmuch as the 
elasticity-theory problem of dislocation deformations 
contains only one parameter with the dimension of 
length, the Burgers vector b, it can be stated that the 
characteristic wave vector of the dislocation phonons is 
qm -l/b. Since l» b always, in the absence of a mag­
netic field the absorption has a collisionless character 

753 Sov. Phys. JETP. Vol. 43. No.4, April 1976 

and accordingly the drag force does not contain param­
eter l. (111l 

2. When the magnetic field is turned on, so long as 
the Larmor radius R of the electron is much larger than 
the mean free path, the picture remains the same. In 
a strong magnetic field, however, when the electron 
begins to move along circles of smaller radius R« 1 (in 
a plane perpendicular to the vector H), the character of 
the absorption can change substantially. In fact, the 
electron interacts with the wave OT times more fre­
quently (0 is the cyclotron frequency and T is the time 
interval between collisions) than without a magnetic 
field before it becomes scattered. Therefore the ab­
sorption increases by a factor OT = l/R times. This in­
crease will continue so long as the "phonon frequency" 
qm V can be regarded as small in comparison with the 
collision frequency II (and all the more with 0) i. e., so 
long as the sound-wave front can be regarded as having 
become rigid. With increasing dislocation velocity, the 
characteristic period l/qm V of the sound oscillations 
becomes smaller than T, and consequently the effective 
energy pick-off by the electrons will take place in times 
on the order of l/qm V. Accordingly, the absorption will 
turnout to be only O/qm V times larger and not OT times 
larger than in the absence of the field. Finally, when 
qm V» 0, owing to the rapid changes of the deformations 
during the time of the revolution of the electron on the 
orbit, the magnetic field ceases to influence the absorp­
tion. 

3. The qualitative arguments presented above per­
tain only to the case when there is no drift motion of the 
electron in a direction perpendicular to the plane of the 
sound-wave front. This can occur only when the mag­
netic field H is oriented along the dislocation axis. On 
the other hand, if the vector H is inclined to the y axis 
even through a small angle, then the absorption becomes 
immediately collisionless, since the principal role is 
assumed by the indicated drift motion. 

Indeed, in the case of a parallel (to the y axis) ori­
entation of the magnetic field, the electron has time to 
land OT times in the region of equal phase of the sound 
wave prior to becoming scattered, so that the energy 
pick-off is quite effective. If the magnetic field is in­
clined a small angle <P to the y axis, then during one 
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revolution the electron will be displaced across the 
wave front a distance on the order of vHif>/O, where VH 
is a projection of the electron velocity of the H direction. 
In order of magnitude, vH coincides with the Fermi 
velocity Vp. IT the average displacement exceeds the 
characteristic sound-wave length q;.l, i. e., if> ~ (qmR)"l, 
then the electron drift along q upsets the condition of 
their in-phase interaction with the sound oscillations, 
and as a result the magnetic field exerts no influence 
on the absorption. However, even at angles smaller 
than (qmR)"t, the shift of the center of the Larmor circle 
during the time between collisions (which is OT times 
larger than the shift during one revolution) can exceed 
the sound wavelength. This occurs at if>>> (qmzrt, as a 
result of which the effect of the magnetic field on the 
drag force, which is appreciable at if> = 0, becomes 
much weaker in the region (qmW1 < if> < (qmR)-l, and dis­
appears completely at if> ~ (qmR)"l • 

It follows therefore that only in the case of almost 
parallel orientation of the magnetic field relative to the 
dislocation axis should one expect an influence of the 
field on the smooth part of the drag force. Of course, 
the estimate given above for the angles is a rough one, 
and we shall show below that at a certain chosen neutral 
orientation of the dislocation axis, the dislocation veloc­
ity, and the vector H there are curious nonmonotonic 
variations of the drag force with changing disorientation 
angle if> and velocity V. But these phenomena take 
place, all the same, only in the region of very small 
values of the angles if>, so that they can apparently be 
observed only under special conditions. 

4. Oscillatory effects in the drag force can be di­
vided into two groups-classical and quantum. The 
former are connected with the fact that the electron in 
a magnetic field can be regarded as a classical oscil­
lator with frequency O. IT the frequency of the disloca­
tion phonon qm V is equal to or a multiple of the frequen­
cy of the oscillator 0, then one can expect the appear­
ance of resonances in the drag force under the condition 
qm V= sO (s = 1, 2, ... ). Actually, in the case of disloca­
tions this effect is more that of a threshold than of reso­
nance. Thus, when a definite value of the velocity V is 
reached, resonance sets in first with the highest-fre­
quency phonons, followed by phonons with smaller val­
ues of q, until the next threshold is reached, etc. The 
described phenomenon was investigated in detail by 
Natsik and Potemina. [4] 

It should be noted, however, that there will be no dis­
tinct threshold at q =qm, owing to the absence of an 
abrupt edge in the spectrum of the dislocation phonons, 
but it will occur at q = 2fJp I", as a result of the Kohn 
anomaly of the electron-phonon interaction. [1.7] In ad­
dition, the resonant action of the sound on the electron 
will be effective only when the plane of the orbit is per­
pendicular to the wave front of all the phonons. and con­
sequently the classical oscillatory effects vanish even at 
small inclination angles if>. Indeed, if the component of 
the average electron velocity along the normal to the 
wave front differs from zero, then the resonance condi­
tion includes a Doppler frequency shift of the order of 
qmvpif>. Writing down the condition for the smallness of 
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this shift relative to the uncertainty of the. acoustic cy­
clotron resonance 11= T-1, we obtain the limitation 
if>« (qml)-l on the angles. When this inequality is satis­
fied it is possible, in prinCiple, to observe classical 
oscillations of the drag force. In the opposite case, 
averaging over the electron velocities causes these sin­
gularities to vanish. 

The quantum-oscillation effects in our problem are 
connected with the fact that the number of electrons on 
the Fermi surface is an OSCillating function of the mag­
netic field (oscillations of the density of states). Inas­
much as the electron part of the drag force is propor­
tional to the number of electrons, it will also oscillate 
with changing magnetic field. To be sure, these changes 
are small in comparison with the smooth part of the ab­
sorption, but on the other hand they are insensitive to 
the orientation of the field and to the uncertainty of the 
quantity qm (which, incidentally, is of the order of qm 
itself). The existence of quantum oscillations is deter­
mined mainly only by the relation between the tempera­
ture and the value of the magnetic quantum "0. 

2. DISLOCATION DRAG FORCE IN THE ABSENCE 
OF A MAGNETIC FIELD 

There are two methods of calculating the absorption 
of the power of the external perturbation of the conduc­
tivity of a metal by electrons. The first is the classical 
method and is connected with the use of the traditional 
kinetic equation for the electron distribution function. 
The second, which we shall call quantum, consists in calcu­
lating the energy losses in te rms of the quantum transitions 
of the electrons under the influence of an external perturba­
tion. In this section we use both methods to find the 
dislocation drag force F in the case when the magnetic 
field is equal to zero, and discuss the difference be­
tween the results of these calculations. 

1. The initial formula for the dissipation function is 
of the form 

Q= J dr dfx> . (1) 

Here Q is the rate of change of the energy of the moving 
dislocation per unit time; U = Alk ul/. is the potential of 
the interaction of the electron with the elastic deforma­
tions generated by the dislocation; the dot denotes par­
tial differentiation with respect to time and X is the de­
viation of the electron distribution function from the 
equilibrium Fermi functionjo; the bar denotes averaging 
over the time and the angle brackets denote integration 
over the generalized momentum electrons. The func­
tion X satisfies the well known linearized kinetic equa­
tion[S] 

( {} ~) • Of, 
-+vV+v x=-u­
{}t ae . (2) 

the right-hand side of which is the non-adiabatic part of 
the deformation interaction. The induction interaction 
of the electrons with the moving deformations can be 
disregarded, since qmR » 1 [6] • 

The deformation-potential model, of course, cannot 
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claim a rigorous quantitative description of the interac­
tions of the electron with the dislocation core. The de­
formations Uik near the nucleus become of the order of 
unity and the potential U can no longer be regarded as 
a perturbation. Nonetheless, we shall use the deforma­
tion potential also at large q, bearing in mind the fact 
that the results obtained within the framework of this 
model give correct dependences on all the parameters 
(dislocation velocity, dislocation orientation, magnetic 
field, etc.) with accuracy to numerical factors on the 
order of unity. 

We emphasize that we confine ourselves to dislocation 
velocities V that are small in comparison with the speed 
of sound. Therefore the deformation field is of the form 
uik(r, t) =u~k(r- vt), where u~k(r) is the solution of the 
corresponding static problem of elastic theory. If the 
dislocation velocity is comparable with the speed of 
sound, then it becomes necessary to investigate the 
complete dynamic system of equations, [2] the solution 
of which is determined both by the dislocation density 
and by the dislocation flux density. 

Without loss of generality, but to simplify the form 
of some of the coefficients, we consider the dragging 
of a screw dislocation in a metal with a spherical Fermi 
surface. The components of the tensor of the elastic 
deformations around a screw dislocation with an axis 
along y (Fig. 1) are[Zl 

b z 
u.,,= 411 x'+z' ' 

It is convenient to write down the potential of the de­
formation interaction in the form of a Fourier plane­
wave expansion 

U(r-Vt)= r, U(q)exp[iq(r-Vt)], 

• 

r,"" f {~:)Z . - - . 

ib 
U (q) = 2" (A •• q.-A..q.) , 

q 

(3) 

This means that the moving deformations can be repre­
sented as an assembly of "dislocation phonons." Their 
frequency is equal to w. =q' V, and their "number" is 
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determined by the amplitude of the Fourier transform 
U(q). 

If we solve the kinetic equation (2) in the approxima­
tion of the relaxation time T = 1/11 and substitute this so­
lution in (1), then, taking the definition Q=F. V Ly into 
account (Ly is the dislocation length) we obtain for the 
drag force F per unit dislocation length the relation 

FV= Bh fdq.dq·(qV)' (~ •• q.-~ •• q.)' fda v (4) 
4m (211)' q' v'+(qv-qV)' ' 

where 

B=3N,b'me./211h, 

bik =A1k/eF, the quantities Alk are assumed to be inde­
pendent of the electron momentum, m is the effective 
mass, N. is the electron density, and the last integral 
in (4) is taken with respect to the solid angle in electron­
momentum space. 

Recognizing that the relation 1 = VF/II» q;'t, is always 
satisfied, then the expreSSion under the sign of the in­
tegral with respect to the solid angle can be replaced by 
the function 1TO(q . v - q. V). After explicit integrations 
in (4) we obtain 

F(O) sBV 1Ihqm (~ • .'+~.,'+2(~"" cos Ij)-~., sin Ij))'], 
32p, 

Om 

(5) 

where 1j; is the angle between the vector V and the z axis 
(see Fig. 1). In the integration with respect q it was 
assumed that the modulus of the wave vector of the dis­
location phonons has an upper bound qm - b-1 • More 
realistically, however, is a model in which there is no 
abrupt edge in the phonon spectrum. Let the smooth 
function G(q/qm) describe the profile of the distribution 
of the number of dislocation phonons as a function of the 
magnitude of their wave vector q, and let qm determine 
the position of the diffuse edge. This assumption alters 
the result (5) as follows: 

-
Fcl(O)=F(O) f G(x)dx. (6) 

2. Let us examine the results of the quantum method 
of calculation. In the Born approximation the general 
quantum-mechanical formula for the electron component 
of the dislocation drag force in the absence of electron 
scattering takes the form 

FquVW=211 £ qVI U(q) 1'I<ble i"la>I'(f.-j,)Il(E,-E.-hqV). (7) .. ~. 
Here a and b are the complete sets of the quantum num­
bers of the electron in the initial and final states (with­
out the spin); Ea is the energy of an electron with wave 
function la); fa = fo(Ea) is the Fermi distribution function; 
the summation is over all values of a and b and over the 
components of the two-dimensional vector q; W is the 
volume of the crystal, and the factor 2 is due to the 
summation over the spins. We note that the numerical 
coefficient in formula (7) is due to the dependence of the 
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interaction potential on the coordinates and on the time 
in the form U(r - Vt). 

The summation over the final states is carried out in 
elementary fashion with the aid of Ii symbols in the ma­
trix elements. The difference !D(E.) - !D(E. + 1iq • V) be­
tween the Fermi functions can be expanded in terms of 
the small shift of the arguments, after which the result 
takes the form 

F v=Bnlisdq,dq,( V),(~,·q,-~·,q,), Sdo6( - v_liq'). (8) 
qu 4m (2n)' q q' qv q 2m 

This relation is the limiting value of expression (4) as 
v- O. In comparison with (4), the argument of the 1) 

function acquired a new term 1fq2/2m which is the "recoil 
frequency." Since 1fq - 1fqm - PF, the magnitude of this 
term is of the same order as the Doppler frequency qVF, 
i. e., it is large. Consequently, the final result for F, 
generally speaking, does not agree with formula (6). 
Indeed, elementary integration with respect to the angles 
yields 

.. flo/f", 

Fqu(O)=F(O) S dzG(z)9 (:~ -z) =F(O) S dzG(z). qo ... 2p,lli. (9) 
o D 

Comparing (9) and (6) we conclude that the results of the 
classical and quantum calculations differ by an amount 

-
Fcl-Fqu=F(O) fdzG(z). 

flO/q,," 

This fact is due to Kohn threshold of the electron-phonon 
interaction. [71 The point is that the absorption of pho­
nons having momenta 1fq > 2PF is forbidden by the energy 
and momentum conservation laws. Thus, in the absence 
of a magnetic field, the use of the classical kinetic ap­
proach leads to an incorrect result for the dislocation 
drag force, since the main contribution to the force F 
is made by dislocation phonons the "tail" of the distri­
bution G(qlqmL The abrupt termination of the spectrum 
of the dislocation phonons at q =- 2PF In is due to the Kohn 
singularity of the electron-phonon interaction. 

3. DRAG FORCE IN A MAGNETIC FIELD NOT 
PARALLEL TO THE DISLOCATION AXIS 

1. We proceed to calculate the drag force in a con­
stant inhomogeneous magnetic field H oriented at an 
angle 4> to the dislocation axis (Fig. 1). In this geome­
try, the complete set of quantum numbers includes two 
continuous quantum numhers-the momenta Px and PH 
(the electron momentum along H), and also the magnetic 
quantum number n =-0, 1, 2, ... The matrix elements 

I < b I e"'1 a) I ' 

=6 (p,,, P .. +liq,) 6(p"" PH" +liq.,)M n;n. (liq.l'/2mQ), 

M"m (t) =t(n-m)/'L;:-m (t) e-'/' 

(10) 

contain products of Ii symbols, which eliminate the sum­
mation over the final momenta; qH =- qz sinq, is the pro­
jection of the vector q on the direction of H; qJ. 
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=--/ fix +q~ cos2 <J> is the modulus of the projection of the 
vector q in a plane perpendicular to H; L~ (t) is a gener­
alized Laguerre polynomial normalized to unity. 

Mter elementary integrations with respect to Ab, 
PHb, and Px. (with allowance for the degeneracy of the 
electron spectrum with respect to Px), formula (7) takes 
the form 

FV= Bn'li S d'q V (~,.q,-~ •• q,)' ~ .~ M' (hqJ.') 
2mp, (2:rt) , q q' ~ ~ "+'," 2mQ 

8=_00 n=O 

~6 (s+ p"q" + hq,,' _ qV). 
mQ 2mQ Q 

(11) 

In the derivation of this formula we have changed from 
summation over nb to summation over the "classical" 
number s =-nb - n.. It determines the energy distances 
between the Landau levels in units of nn. 

We note one important feature of formula (11). In con­
trast to relation (8), the recoil energy in (11) is con­
tained not only in the argument of the 1) function, but 
also in the matrix elements. Thus, the "longitudinal" 
part of the recoil energy (nqH)2/2m renormalizes the 
frequency of the dislocation phonon in the energy con­
servation law, and the "transverse" part (nqJ.)2/2m de­
termines the argument of the functions M. For the dis­
location phonons (nq)2/2m can be of the order of E F' 
This circumstance makes the limiting transition H - 0 
from expression (11) to formula (8) nontrivial. The so­
lution of this equation reduces to derivation of a cor­
rect asymptotic expression for the squared matrix ele­
ments ~"". n, when n > s > 1fq2 Imn» 1. Following 
Szegi:i[S1 we can show that the asymptotic form of M 
coincides with the asymptotic expression for Bessel 
functions: 

MHo n(t) ""J.[Yt(4n+2s+2-t) J. (12) 

We shall show below how to use this relation to obtain 
the result (8) independent of the magnetic field. 

2. The initial formula (11) describes both smooth 
variations of the drag force as a function of H, and 
quantum oscillations of the force F due to oscillations 
of the density of the electron states on the Fermi sur­
face. The analysis of the quantum oscillations is the 
subject of Sec. 5 of the present paper. Here we dis­
cuss the influence of the magnetic field on the smooth 
part of the dislocation drag force. 

To investigate the smooth function F(H), formula (11) 
should be simplified in the following manner. The dif­
ference between the Fermi "steps" is replaced by the 
expression 

/iqv6[ (n+'I,)lirHpll'/2m-8p]. 

This Ii function will be used to calculate the sum over 
n, which will in turn be replaced by an integral. Chang­
ing from integration with respect to PH to integration 
with respect to the polar angle 8(cos8 =- PHlpF), we ob­
tain 

A. M. Grishin et al. 756 



FV= Bn'li S d'q (qV)' (~ •• q.-~ •• q.)' ~ S- ae sin e 
2mQ (2n)' q' "--, __ 00 g 

• [,/ s+1 fiQ ( q.l.) '] Xl. q.l.R V sin'8+--- -
2 e. q, 

X 1 v/Q 
It (v/Q)'+(s+qHR cos 8 + liqH'/2mQ-qV/Q)' . 

(13) 

We have used here the asymptotic form (12) for the ma­
trix elements, and we have "smeared out" the 1) func­
tion with the energy conservation law with a relative 
collision frequency 1'/0,. 

Even a cursory glance at formula (13) leads to the 
first statement of our paper, namely, that the drag 
force is independent of the magnetic field for practically 
all angles <P. It suffices to assume that qHR - qR sin<p 
»1, in order for the sum over s to contain contributions 
from many terms. This corresponds to calculation of 
the asymptotic form of expression (11) as H - O. Re­
placing the sum over s by an integral, and the Bessel 
function by an asymptotic form of the type 

I.' (t) "'9 (t'-8') In (t'-s') "'. (14) 

we see that the integral with respect to q diverges at the 
upper limit. This means that the main contribution to 
this integral is made by large q - qo, so that in all the 
estimates containing q it is necessary to substitute qo. 
After employing this procedure, all the integrals in (13) 
are calculated in terms of elementary functions and the 
answer is 

F=Fqu(O) , (15) 

where Fqu(O) is given by formula (9). Thus, for prac­
tically all angles between the vector H and the y axis, 
satisfying the inequality 

sin 1b>11q,R, (16) 

the drag force coincides with its value at H = O. Since 
the parameter 1/qoR is quite small, we arrive at the 
conclusion that a dependence of the force F on the mag­
netic field can be observed only at very small angles <P. 

In concluding this section, we will recall that the re­
sult (15) is valid also at <P = 0 if the velocity of the dis­
location is high enough. This conclusion was derived 
by Natsik and Potemina, [4l and is due to the following 
circumstance. At <P =0 the relative Doppler frequency 
shift qHR cosO and the longitudinal component of the re­
coil energy liq~/2mn vanish identically. If at the same 
time V» n/qo, then many terms contribute to the sum 
over s (13), meaning that all the arguments used in the 
derivation of (15) are valid. 

4. REGION OF SMALL INCLINATION ANGLES 

1. Before we proceed to a more detailed investigation 
of the region of small angles <P, we return to the limit­
ing case <P =0. It was investigated earlier in(4,9]. We 
recall that the magnetic field is assumed to be classical­
ly strong (o,T» 1), inasmuch as the opposite limiting 
case is trivial: F = Fqu(O) for any orientation of the mag-
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netic field. Thus, if <P = 0, then at high dislocation ve­
locities V» o,/qo, as already noted above, the drag 
force is equal to its value at H = O. On the other hand, 
if V« 1'/ qo then, as seen from (13), the main contribu­
tion to the sum over s is made by the term with s = O. 
This contribution is calculated in elementary fashion 
and yields the result Fqu(O) o,r /11, i. e., an increase of 
the force by a factor o,T /11. Thus, at <P = 0 the range of 
the dislocation velocities breaks up naturally into three 
sections: low velocities (V« 1'/ qo), large velocities 
(v»n/qo) and intermediate velocities (v/qo« v«n/qo). 
Collision dominated and noncollision absorption of the 
dislocation phonons predominate at low and high veloc­
ities, respectively. 

The intermediate case was investigated by Natsik and 
Potemina, (4] so that there is no need to dwell on it in 
detail. We note only that in no velocity region does the 
drag force increase logarithmically with velocity in the 
form given by Kravchenko. (9J The apparent reason is 
that in formula (1) of(S] the value of if was determined 
by a sum of two terms, one of which is indirectly the 
dislocation flux density. Yet the dislocation flux density 
begins to influence the deformation significantly only at 
large velocities V, on the order of the speed of sound. 
In addition, to the extent that the flux density enters the 
right-hand side of one of the equations of the complete 
system, its effect on the deformation rate manifests it­
self not directly, but via the solution of this system. It 
is therefore not clear whether the force will increase 
logarithmically with the velocity if we solve exactly the 
complete dynamic system of equations for the disloca­
tion deformations. 

Formula (13) contains also some oscillatory effects. 
One of them, albeit extremely weak (its relative mag­
nitude can be at the most l/qoR), is connected with the 
oscillations of the Bessel function. This effect leads 
to the appearance of a very small ripple on the investi­
gated plots, and we shall disregard it. 

Another effect is connected with the difference be­
tween the sum in (13) and the integral. If <P =0 and the 
condition qV / 0, = s is satisfied, the corresponding term 
can make a resonant contribution to the sum. This is 
the usual classical (cyclotron) resonance, when th~J!:~­
quencyof the external action Wq =q . Vis a multiple of the 
natural frequency n of the oscillations of the absorbing sys­
tern. To be sure, since this condition is satisfied by rela­
tively few wave vectors q, for a given value of s it fol­
lows that this resonance becomes greatly smeared out 
in the integration with respect to q. If the integral were 
abruptly cut off at a certain value of qm, then the thresh­
old effect described in(4] would take place. Actually, 
however, the integration with respect to q is cut off by 
the function G(q/qm) on the side of large q, not abruptly, 
but smoothly, over a width on the order of qm itself. 
This circumstance leads to a very small amplitude of 
this effect. Nonetheless, the threshold values in the 
F(V) dependence, as well as the formulas of Natsik and 
Potemina which describe them, (4J should exist when the 
dislocations reach velocity values v=so,/qo. This is 
due to the Kohn anomaly at q = qo = 2jJp- /Ii, which we have 
already discussed in Sec. 2. The conduction electrons 
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FIG. 2. Dependence of the drag force on the velocity at 4> = O. 

absorb the energy of only dislocation phonons with q 
~ qo. 2) The last statement, in the case H * 0, is clearly 
demonstrated by formula (13). If <J> =0, then the argu­
ment of the 0 function does not depend on the angle (), 
and s turns out to be of the order of qv/o,. Therefore 
the quantity s1m/eF can be neglected in the argument of 
the Bessel functions. If the asymptotic form (14) is 
used, the integral with respect to () can be calculated 
explicitly and leads to the expression (qRt1e(qo - q). 
It limits the integration with respect to q to the value 
qo. The inclination of the magnetic field to the disloca­
tion axis, even through a very small angle, makes ob­
servation of this resonance effect impossible. Indeed, 
at <J> * 0, when the Doppler frequency shift q.VF sin<J> ex­
ceeds the frequency II, i e., <J>~ l/qol, the averaging 
over the angle () smears out the singularity completely. 
The dependence of the drag force F on the velocity V at 
<J> =0[4] is shown in Fig. 2. . 

2. We proceed now to investigate the smooth part of 
the drag force in the region of small angles <J>. As seen 
from (13), in this case the contribution of the term with 
s =0 is separated in natural fashion. The summary con­
tribution of all other terms yields as before a quantity 
Fqu(O) that does not depend on H. Inasmuch as the angle 
<J> is small, we put cos<J> = 1 and sin<J> = <J>. Then the term 
with s = 0 takes the form 

F,=BVe F f tdts' d"e(1-t'-,,') t d<pcos2(<p-1Jl)(~."cos<p-~"sin<p)', 
nn\' 1+nq,Rt l'1-t2-J.t' 1+t'(qoVlv)2D' 

o -I (17) 
v,/II v,/II' 

D(t, ", <p) = COs (<p-1Jl) -"TcOS <p-t---v- cos' <p. 

We have used in (17) the interpolation formula J~(x) 
:::: (1 + 1TX tl; cp is the azimuthal angle in the space of the 
wave vectors q; t = q / qo and J.I. = cose; the function 
G(q/q".) was replaced by unity for the sake of simplicity. 

The integration with respect to t is carried out ex­
plicitly if account is taken of the following circum­
stance. For the angles <J>« 1 of interest to us, the last 
term (proportional to <J>2) in the function D is much 
smaller than the second (Doppler) term and can be ne­
glected. 3) This means that we can disregard the depen­
dence of the function D on t. After making the change 
of variable y = t(1 - t2 - jJ.2t1/2, the integral with respect 
to y can be evaluated in terms of elementary functions; 

BhOo A\ I d" 
Fo= ~1' d<pcos'(<p-1Jl) (~"coS<P-~ .. sin<p)'} ID(J.t, <p) I 

x n l'i-,,2+(vlqoVD}-'+(2VIDI/1Iv!l)ln(VlDl/nvR l'~) 
1-J.t'+ (VDlnvR) 2+ (vI go VD)' 
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(18) 

We did not write out small increments to Fo, the rela­
tive values of which do not exceed l/qoR: 

In the analysis of (18) we must distinguish between 
three regions of variation of the dislocation velocity; 
the section of low velocities (V« II / qo), intermediate 
velocities (lI/qO« V«vR) and high velocities (V»IIR). 

a) V « II / qo. For inclination angles <J>« 1 / qol we can 
neglect in the interval with respect to jJ. the terms pro­
portional to VID 11TIIR« 1, and also the quantity 1- J.l.2 
in comparison with the parameter v/% VID I» 1. The 
integral with respect to J.I. is then equal to 21Tqo V7, and 
the final result becomes 

(19) 

Under these conditions, the drag force is o,7/1T times 
larger than the value at H = O. At larger inclination 
angles <J>>> l/qol we can eliminate from the function D 
the first term cos(q;. -I/J). Further asymptotic calcula­
tion of the integrals of (18) makes it possible to repre­
sent the angular dependence Fo(<J» by the following inter­
polation formula; 

BVIiOo [ ~,.'+5~.,' 
Fo= --",- ~, .. -~.,'+ cos 21Jl 

811e.... 3 

X In q,l/ll , 
1+ (Oo-r/Il/n) 

L(/II)=ln( l/Il)[1+ Oo-r/Il/n ]. 
q, 1+ (Oo-r/Il/n) 

(20) 

For all its complexity, this expreSSion is valid only in 
the logarithmic approximation. We see that the term 
Fo in the drag force decreases rapidly when H deviates 
from the dislocation axis. When <J> reaches the value 
<J>::::I/qoR, the value of Fa becomes comparable with F(O), 
i. e., it becomes of the order of the total contribution of 
the remaining terms. At inclination angles larger than 
l/qoR, the total force is equal to Fqu(O), just as in the 
absence of a magnetic field. A schematic plot of Fo 
against <J> is shown in Fig. 3a. 

b) Region of intermediate velocities JlR» V» II /qo' 
If <J>=O, thenD=cos(cp-I/J), and in the integrals of (18) 
we can neglect the parameters 11/ qo V ID I, V ID I /1TIIR « 1 
and obtain 

(21) 

This case of relatively slow motion of the dislocations 

~ a b 
., v«v/q, v»v/q. 

... " -!it 

I 
co ., 

"';, ~ 

g- O"' 

.... C 

~ ... 
~ f ~ --.r-

FIG. 3. Dependence of the principal term of the drag force on 
the angle 4>: a) qoV«v, b) qoV»v. 
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corresponds to the plateau region of Fig. 2, when the 
drag force does not depend on the velocity V. We note 
that relation (21) is valid also for small angles q,« V / VF, 
when the second term in the D function in (17) does not 
exceed unity. 

We shall discuss the behavior of the Fo(q,) curves at 
angles q, ~ V/VF first for the special geometry l/I=O and 
l/I = 1T, when the dislocation moves in the plane containing 
the dislocation axis and the magnetic field. In this situ­
ation, it is reasonable to single out in the integrals with 
respect to j.L and cp in (18) the contribution of the region 
adjacent to the curve, which is determined from the con­
dition that the function D(j.L, cp) vanish. The values of 
the integrand at the points on the "singular" curve are 
proportional to qo VT, L e., they are large. The char­
acteristic width of the band within which this function 
assumes values of the order of the value at the maximum 
is determined from a comparison of the quantities 1 _ j.L2 
and (II/qo VD)2, and turns out to be of the order of l/qolq,. 
At the same time, the remaining part of the rectangle 
0.;; q;.;; 21T, -1';; j.L .;; 1 makes a contribution approximate­
ly equal to (V/vF<P)ln(qolq,) to the integrals of (18). 
Thus, the deceleration force is equal to Fo - (BVlfn/ 
EFq,) In(qolq,), and the contribution of the Singular point 
is not exclusively separated in the integral. Exceptions 
are those values of q, for which VFq, "" V. In this case 
the Singular line is localized near the value j.L = 1, and 
its width becomes much larger, of the order of 
(qo VT)-2/3, so that the relative contribution of the singu­
lar region to the integrals increases, and the force in­
creases to a value Fo - (Bn/qo)(qo VT)1/3. 

This is the qualitative picture of the function Fo(q,). 
To illustrate it by means of formulas, we note that at 
angles q,» V/VF the formula (20) and the reasoning pre­
sented in subsection a will remain Valid. Formula (20) 
describes the right-hand side of the Fo(q,) line. Let us 
investigate the behavior of Fo(q,) in the immediate vicin­
ity of the maximum. If <1>« l/nT (and all the more, if 
q, "" V/VF), the parameter V ID I1TIIR in the integral with 
respect to j.L in (18) can be neglected throughout. This 
simplifies noticeably the form of the integrand, and the 
integral with respect to j.L becomes elliptic: 

• • d I (<l» = S dft ... = n S ft . 
l' (vlq, V)'+D' (1-ft') 

-1 -1 

(22) 

It is easily seen that at q, = V/VF, the main contribution 
to I( q,) is made by the vicinity of the pOint j.L = 1 with 
characteristic width 1 - j.L $ (II /qo V coscp )2/3 and 

~ 

I (VIVF) n(qoV't)'/' S~=n(qOVT)'1o 2F(n/2,sin75°)-F«jlo, sin 75°) 
2'/1 cost/3 <P 0 l' 1 +t3 2"'3'/4 cost/, cp 

where F(cp, k) is an incomplete elliptic integral of the 
first kind 

"1'3-1 
(jlo= arc cos Y3+1 . 

Calculating the integral with respect to the angle cp, we 
obtain ultimately 
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BhQ '4( F,m .. =a--(q,VT) 3~ .. ·+7~ .. ·); 
PF 

(23) 

S"· r(T/.) . 0 . ° 
a= 160.2'41t'4 r('/,) [2F(1t/2, sm 75 ) -F«jl" sm 75 )] "'0.016. 

Thus, at the point q, = V/VF, the Fo(q,) curve has a maxi­
mum which is approximately (qo VT)1/3 times larger than 
at q, =0. A simple analysis shows that this maximum is 
quite narrow, and its width is determined by the inequal­
ity 11-vFq,/VI $ (qoVTr2/3 • If this inequality is vio­
lated, then Fo decreases rapidly, to the value of Fo 
from (21) at small angles q" and in accordance with re­
lation (20) at <I> > V / VF • 

The appearance of this maximum can be explained in 
the following manner. As indicated earlier, the shift of 
the electron in the direction perpendicular to the wave 
fronts (along q.) during one revolution is v,q,/n. Inas­
much as the dislocation moves with velocity V, the 
planes of the front are displaced during this time by a 
distance v/n. If both shifts cancel each other, Le., 
V = VF <1>, then the electron lands many times in the re­
gion of equal phase of the sound field and effectively 
absorbs the dislocation phonons. If the angle q, is in­
creased or decreased, the condition for synchronous 
interaction is violated and the drag force decreases. 
The nonmonotonic dependence of Fo on the angle q, is 
shown in Fig. 3b. This is a manifestation of the known 
"inclination effect"UOl in the absorption of frequency 
sound. 

In the derivation of the formulas in subsection (b), a 
number of assumptions were made. Thus, we have as­
sumed that the function D(t, j.L, cp) in (17) does not depend 
on the variable t. Actually, so long as all the values of 
j.L contribute to the integral with respect to j.L, the third 
(proportional to t) term in the D function is much 
smaller than the second term and can be neglected. At 
q, = V/VF, the main contribution to the integral is made 
by j.L = 1, and the difference between the first two terms 
of D is of the order of coscp(l - j.L) - cosq;(qo VTr2/3 and 
can be small. In the integration with respect to t in 
(17), an essential role is played by the values 

Therefore a comparison of the third term in the D func­
tion with the difference of the first two leads to the pa­
rameter (1- j.L)2qol-(VF/V)(qoVT)"1/3. If it is larger 
than unity, Le., 

(24) 

then the third term is negligibly small in comparison 
with the difference between the first two terms and it 
can be disregarded. In other words, the criterion (24) 
limits the applicability of formula (23). From this it is 
seen, for example, that at the maximum at q, = V/VF the 
drag force does not exceed Fo - Blm/m V. 

If the inequality (24) is reversed, then the resonance 
condition D = 0 depends already also on the integration 
variable t. The physical meaning of this circumstance 
is that when short-wave quanta are absorbed the energy 
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conservation law covers also the recoil energy. The 
integration with respect to t (the modulus of q) will 
smear out the resonant maximum almost completely. 

The same considerations lead to the conclusion that 
the resonant peak of the function Fo(<I» vanishes if the 
dislocation velocity V does not lie in the plane contain­
ing the magnetic field and the y axis (i. e., l/J'* 0 and 1T). 
Indeed, earlier in the integrals of (17) we had on the 
Singular curve D = 0 (for a fixed <I> ~ V / VF) at a definite 
value of jJ. and at arbitrary angles cp. Now it can be 
equal to zero only in a strictly defined vicinity of the 
variables jJ. and cp. In other words, the curve on Fig. 
3b should be also averaged over the position of the maxi­
mum that depends on cp. This additional integration 
eliminates the singularity of the deceleration force at 
<I> = V/VF' A more detailed investigation shows that the 
maximum is preserved under the condition of small de­
viations 6l/J« (qoVTr2/3 of the vector V from the yz 
plane. For arbitrary l/J, the monotonic dependence of 
Fo(<I» is described by formulas (20) and (21). 

c) The region of large velocities V» vR. At <I> =0 in 
the integrals (18), the principal term is the logarithmic 
term and the result for it (in the logarithmic approxi­
mation) 

(25) 

describes the decrease of Fo with increasing velocity 
V. For large angles <I>>> V / VF, formula (20) is valid, 
in which the parameter OT<I>/1T must be regarded as 
larger than unity. At the resonance point, when <I> = V / 
VF, the values of the integrals (18) is determined main­
ly by the vicinity of the singular line D = O. In the gen­
eral case the width of this region is 

/) l ~ (qoV-r)-'''(vRIV)'I, 
~ (qoVT)-'I'+(yRIV)':' 

(26) 

and the value of the integrand on the Singular curve is 
1Tqo VT. Therefore the value of the force Fo at the maxi­
mum can be estimated as 

(27) 

At V« vR it goes over into formula (23). We note that 
the relation (23) determines exactly the value of the 
maximum also in the case (qoVT)1/3» V/vR»1. Finally, 
if the condition V /vR» (qVT)l 13 is satisfied, it follows 
from the order-of-magnitude formula (27) that 

This means that the height of the maximum decreases 
in comparison with (23) by a factor (qo VTtl/3 V/vR. 

Thus, to observe a sharp peak on the angular depen­
dences F( <I» it is necessary that F 0 maz from (27) exceed 
the monotonic part of the drag force Fqu(O). In addition, 
just as in subsection b), we must be assured that the 
integration with respect to t and cp in (18) do not smear 
out the resonant singularity. This is ensured by satis­
faction of the inequalities 
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in which it is necessary to substitute 6J.L from (26). 

5. QUANTUM OSCILLATIONS OF THE DRAG FORCE 

1. We shall investigate the quantum effects in the drag 
force at low temperatures, when the thermal diffuseness 
of the Fermi level can be disregarded (the appropriate 
criteria will be given later on). 

Greatest interest attaches to dislocation motion in the 
plane x = const containing the vector H and y (V II z on 
Fig. O. In this case it is necessary to separate from 
the sums over nand s in (11) the large resonant term, 
which must correspond to the term with s =0. Indeed, 
if s '* 0, then integration of the asymptotic forms of the 
matrix element (12) with respect to qs yields a smooth 
function of the variable q~, which does not become in­
finite anywhere and is small everywhere. The differ­
ence between the Fermi steps in (11) is a function equal 
to unity inside a certain interval and to zero outside this 
interVal. The integral with respect to q~ is therefore, 
an integral of a small quantity between finite limits, and 
cannot result in any singularity. 

To the contrary, the term with s =0, corresponding 
in (11) to the square of the zero-order Bessel function, 
yields upon integration with respect to qs 

S""dq.,o'{[ nq.L' (4n+2- nq.L' )],j,} (~ .. q,-t •• q.)' 
_~ 2lt . 2mQ 2mQ q' 

1 n ' 
"" -I -I (t.:+t,.'), ~ (2n+1) «: 1. (29) 

4 q. mQ 

It is obvious that the integral (29) contains a singularity 
of the type l/q. as q~-O. Since this singularity is not 
integrable, it follows that if the interval of the integra­
tion with respect to q~ includes the point q~ = 0, then the 
corresponding term with s =0 can become large. We 
note that in formula (29) the integration was carried out 
between infinite limits, i. e., the fact that Iq" I .. qo was 
not taken into account. This is permissible, since the 
main contribution to the integral (29) is made by values 
Iq" 1 - Iq. I. We shall henceforth be interested in terms 

with n ""X'" eF/nri., and for these terms the inequality 
(29) takes the form Iq" 1- Iq~ 1 «l/R« qo. 

Let us examine in greater detail the singular term Fr. 
We introduce the symbols J\" and A for the integer and 
fractional parts of the quantity (eF/nO) -1/2, so that 
EF/nrl.=X+A+1/2; the expression 

(30) 

stands for the quantized values of the modulus of the 
projection (on the direction of the magnetic field H) 
of the velocity of electrons having the Fermi energy. 

An analysis of formula (11) shows that at V II z the (j 

function and the difference between the Fermi functions 
in the curly brackets do not depend on q". This enables 
us to carry out independent integration with respect to 
q" in (29) and with respect to PH with the aid of a 6 func­
tion. We can separate in the integral with respect to 
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PH the "resonant" values of the longitudinal (along H) 
electron momentum: 

mV (1 liq,sin' ell ) PH=-- - . 
sin ell 2mV 

(31) 

In the remaining integral with respect to q. for the 
terms with 0 ~n ~ K, the difference between the Fermi 
steps is equal to + 1 in the interval 

. liq,sin' ell 
IV-v. sm ell I ..: ..: V+v. sin III 

2m 
(32) 

andto-1if 

liq, sin' ell . 
-V-v.sinell": ..: -/V-v.smell/. 

2m 

Outside these intervals, and also for the terms with 
n > .II', the integrand vanishes identically. Using (11), 
(29), and (32), we obtain for the singular term F. 

F . BnliQ (C '+t ')1 V+v.sinell .= 8pF sinell .. •• n I V-v. sin ell I . 
(33) 

Thus, the choice of the singular term in the sum over 
n in (11) signifies separation of a term with a number n 
such that the quantized values of the projection of the 
electron velocity on the dislocation motion direction 
vn sin<I> is equal to or close to the dislocation velocity V. 
The condition V = Vn sin<I> denotes precisely that the 
"dangerous" point q. = 0 falls on the boundary of the in­
tegrals (32). 

2. We formulate now the necessary conditions under 
which the result (33) is valid. It is quite obvious that 
for the existence of a logarithmically large term F n it 
is necessary to satisfy the inequality 

(34) 

In addition, it is necessary that the "separation" IlqV 
of the arguments of the Fermi functions in (11) be larger 
than their temperature broadening T. From the in­
equality (32) it is seen that the characteristic quantity 
is llq-mV/sin2<I>. Thus, the temperature should be 
quite low: 

T«m V'/sin' ell. (35) 

In the opposite case, the difference between the Fermi 
functions in (11) is proportional to the quantity nq. V, 
which vanishes at q. = 0 and cancels out the Singularity 
of the integral (29). 

Electron scattering, like the temperature, also 
smears out the quantum effect. Indeed, the existence 
of a Singular quantum term is directly connected with 
the integration with respect to PH in (11) with the aid of 
a 0 function. If the dependence of PH in the argument of 
the 0 function vanishes for some reason, then the singu­
larityof the integral (29) at q. =0 is again eliminated by 
the vanishing of the product q . V. Therefore the neces­
sary condition for separating the individual quantum 
term (33) is the requirement that the relative Doppler 
frequency shift PHqH/mO exceed the characteristic 
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smearing of the 0 function 11/0,. It follows from (31) 
that PH - m V / sin<I>. This means that the condition of the 
rare collisions of the electrons with the scatterers takes 
the following form: 

fiv«mV'/sin'lll. (36) 

Finally, the inequalities (32) must be reconciled with 
the asymptotic criterion (29). For the Singular terms 
with n o::N, the self-consistency requirement takes the 
form 

(37) 

The conditions (35), (36), and (37) can be combined into 
a chain of inequalities 

(38) 

where Teft = T + nil is the effective temperature. The 
outer inequalities of (38) and relation (34) impose a 
limitation on the dislocation velOCity: 

(39) 

Thus, if the conditions (38) and (39) are satiSfied, and 
if the vector V lies in the plane of H and y, then it fol­
lows from (33) that the drag force can experience "giant" 
quantum oscillations when the magnetic field, the dis­
location velocity, and the inclination angle <I> are varied. 
Participating in the giant resonance are the electrons of 
the extremal section of the Fermi surface (nS .i\"), hav­
ing small drift velocities along V: v. sin<I> 0:: VF sin<I>(~/ 
.i\")112 = V. The oscillations of the force F. as functions 
of the reciprocal field are periodic with a period ~(1/H) 
=2ne/cp~. 

If the vector V goes out of the plane x = const, then the 
giant peaks become strongly smeared out. The reason 
is that at V,," 0 the arguments of the functions in (11) 
contain both components of the vectors V and q. Then 
the Fermi steps no longer define the limits of integra­
tion with respect to q., but the two-dimensional region 
of variation of the alternating vector q. In other words, 
the logarithmic Singularities (33) are subjected to an 
additional averaging with respect to q". This greatly 
decreases the magnitude of the periodic changes of F n' 

A simple analysis shows that for giant oscillations of 
the drag force (33) to exist it suffices to satisfy the in­
equality 

IiiI'm V'/sin' III «Tfiv/ (T+fiv). (40) 

It imposes a limitation on the angular deviation ol/! of 
the vector V from the z direction. 

3. The right-hand inequality in (39) is extremely 
stringent and difficult to satisfy in experiment. A more 
realistic situation is therefore the inverse of the condi­
tion (39). In this case the "singular" terms are those 
with n = .;t' and with arbitrary numbers s. For these 
terms the difference of the Fermi steps in (11) can be 
replaced by the function nq. V<J4/2m - ~nn), which can 
be used to calculate the integral with respect to PH' 
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Formula (11) for the singular term F:A can then be re­
written in the form 

F .... V= Bn S d'q(qV)' (~.,q,-~.,q.)' 
16mQY.N'd q' 

(41) 

Let us analyze first the contribution of the terms with 
s *0. Their sum can be replaced by an integral with 
respect to s, and the integral can be calculated with the 
aid of a 6 function. If we then use the asymptotic form 
(14), then the integrals with respect to q are calculated 
in elementary form and the answer is 

... -

(42) 

At the minimum, the singular term is equal to Fqu(O)/ 
2 jJf. To estimate its value at the maximum (~- 0) it 
must be recognized that at Toft *0 the parameter ~ has 
uncertainty on the order of T.u/liO« 1. Therefore the 
maximum attained value of F.,. is Fqu(O)/liO"; Toft fF' Nu­
merical estimates show that the amplitude of the oscil­
lations of the deceleration force can reach several per­
cent of the principal part, i. e., the changes of Fare 
perfectly observable. We note that the oscillations of 
F from (42) duplicate the known oscillations of the den­
sity of the electronic states. Therefore formula t42) is 
valid for an arbitrary geometry of the problem; it does 
not contain the "velocity resonance" like (33), meaning 
that experimental observation of this effect does not 
impose stringent conditions on the angles, velocities, 
etc. 

In conclusion, let us discuss the quantum singularities 
that are contained in the term with s = 0 of formula (11). 
Because of its complexity, we shall not analyze in detail 
the shape of the resonance line. This question will be 
the subject of a separate communication. We present 
here only two important results for the, quantum incre­
ment of Fo. The exact formula for the quantum incre­
ment 6Fo, due to the term with n = X, coincides with 
formula (17) if one adds to the integral with respect to 
IJ. the function (1/.1(' ) 6( IJ. 2 - ~/ J(' ). 

In the "low-frequency" region at small 4>, when 

q.V-r<1, q.lll> V ~ 4:"1, q.lll>'<1, (43) 

the resonant increment 

(44) 
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is 07/rr times larger than the contribution (42) from the 
terms with s*O. One more limiting caSe correspond­
ing to the inequalities 

(45) 

leads to the following result: 

(46) 

A characteristic feature of (46) is that it contains, 
besides singularities of the static density of states 
(~- 0), also a dynamic singularity of the type ~ 
- V/VF 4>t1, due to the Landau damping in the magnetic 
field (wq =qV =qHVS')' The maximum value of 6Fo from 
(46) can be 07(1 +..f(jJ4>t1 times larger than the static 
oscillations from (42). 

OWe do not consider the particular case when the Fermi sur­
face has flat sections that are perpeneicular to the disloca­
tion axis. The contribution of the electrons from these sec­
tions to the drag force is proportional to the mean free path 
l. (31 

2 )We emphasize that the existence of the Kohn threshold is due 
only to the conservation laws and to the Fermi statistics of 
the conduction electrons, i. e., it is essentially not connected 
with the concrete model of the electron-phonon interaction. 

3)In the "high-frequency" limit qoV» II, elimination of this 
term calls for an additional justification, which will be pre­
sented later on, 
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