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The conductivity of thin superconducting films in a 
strong high-frequency field was investigated by Rose 
and Sherril, [11J who found that the dependences of dis­
sipative conductivity on the amplitude is a curve with a 
maximum. The films investigated by them, however, 
do not satisfy apparently the condition v« wo, so that 
the theoretical experimental result may not be in agree­
ment in [Uj. 

The author thanks A, P. Protogenov for a number of 
valuable remarks, 

OWe disregard here the possible multiphoton absorption con­
nected with multiple collisions with the walls, which is pro-

portional to higher powers of d (see below)' 
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A phase transition to the state of an excitonic ferromagnet [B. A. Volkov and Yu. V. Kopaev, Pis'ma Zh. 
Eksp. Teor. Fiz. 19, 168 (1974) [JETP Lett. 19, 104 (1974)]; Volkov, Kopaev, and A. I. Rusinov, Zh. 
Eksp. Teor. Fiz. 68, 1899 (1975) [SOY. Phys. JETP 41, 952 (1975)] is considered within the framework of 
the electron spectrum model previously proposed for semiconductors of the IV-VI group [Volkov and 
Kopaev, Zh. Eksp. Teor. Fiz. 64, 2184 (1973) [SOY. Phys. JETP 37, 1103 (l973)]l. It is shown that the 
transition may be one of either first or second order, depending on the degree of doping and the relation 
between interelectron interaction constants. Allowance for hybridization does not violate the symmetry 
between the singlet and triplet pairing, and the phase transition occurs only at finite coupling constants. 
The model can by used to explain the magnetic properties of some doped narrow-band semiconductors. 

PACS numbers: 75.30.Jy 

1. INTRODUCTION 

It is known[lJ that a system with a single-electron 
spectrum conSisting of two inverted overlapping bands 
whose extrema lie at one point of the Brillouin zone is 
unstable to electron-hole pairing that leads to the ap­
pearance of a gap in the electron spectrum and to a tran­
sition to the state of an excitonic dielectric (ED). De­
pending on the ratio of the values of the electron-phonon 
and nucleon interactions, the electron-hole pairing can 
be realized either in a singlet or in a triplet state. If 
the constant of the effective interaction that is respon­
sible for the pairing in the singlet state exceeds the cor­
responding value for the triplet pairing, then the in­
stability leads to the appearance of ED in the singlet 
state, this being accompanied by the appearance of a 
charge-density wave and consequently by a structural 
transformation. [2J In the opposite case, the system goes 
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over into an ED in the triplet state; this produces a 
spin-density wave and the new phase is antiferromag­
netic. 

As shown by.Volkov and Kopaev, [4J for a doped ED, 
at definite ratios of the interelectron interaction con­
stants, the triplet and singlet pairings can coexist. This 
lifts the spin degeneracy and leads to the appearance of 
a spontaneous magnetic moment, inasmuch as at non­
zero doping the number of electrons is not equal to the 
number of holes. This phenomenon is called excitonic 
ferromagnetism (EF) and has been investigated in detail 
by Volkov, Kopaev, and Rusinov. [5J 

The EF model was proposed to explain the magnetic 
properties of certain narrow-band semiconductors, as 
well as metals of the iron group. The phase transition 
into the ED in IV-VI semiconductors (compounds of the 
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elements of the fourth and sixth groups of the periodic 
table) was investigated by Volkov and Kopaev. [6] Using 
the data on the structure and electronic spectrum of the 
IV-VI compounds. Volkov and Kopaev[6] have con­
structed a model Hamiltonian in which account was taken 
of the interband transitions that exist already in the 
single-particle part of the Hamiltonian (hybridization 
of the overlapping bands). It has turned out that in this 
model the phase transition to the ED is possible only at 
a sufficiently large coupling constant (compared with the 
hybridization matrix element). Since the presence of 
hybridization leads to an energy gap and the electron­
hole pairing takes place already in this restructured 
spectrum, this result is analogous to that obtained by 
Kozlov and Maksimov, [7] who have shown that excitonic 
instability can develop in semiconductors in which the 
binding energy of the exciton is larger than the width of 
the forbidden band. 

The presence of hybridization exerts a significant in­
fluence also on the electronic properties of transition 
metals, leading to a modification of the effective inter­
electron interactions and of the spectrum of the collec­
tive excitations. [8] It is therefore of interest to con­
sider the EF model with allowance for interband tran­
sitions. 

In this paper, within the framework of the model that 
was proposed inc 8] for semiconductors of the IV-VI 
group and includes hybridization, we investigate the 
phase transition into the state of an excitonic ferromag­
net. 

2. MODEL HAMILTONIAN. EOUATIONS FOR THE 
ORDER PARAMETERS 

1. We write down the complete Hamiltonian in the 
form 

(1 ) 

where H~ is the Hamiltonian of the noninteracting elec­
trons in the periodic field of the lattice, Hgh is the Ham­
iltonian of the free phonons, and Hint describes the Cou­
lomb and electron-phonon interactions. Since the ex­
trema of the conduction band and the valence band of 
IV - VI semiconductors are located at L points of the 
Brillouin zone, we are interested only in electronic 
states lying near these points, and for H~ we can use the 
ordinary Hamiltonian of the k . p method, where the basis 
is made up of the functions 1/Inq = 1/Inl:oelQr (1/Into = Untoelkor is 
the exact solution of the Schrodinger equation in a given 
periodic potential). The index n denotes the number of 
the band, and the vector q is measured from the point 
ko corresponding to the point L of the Brillouin zone. [6] 

If a~ .. (q) is the operator for the production of an elec­
tron in a state 1/In9. with spin a/2 = ± i, then we have for 
H~!6] 

q. 

+ (Vg(q)a •• + (q)a,.(q) + c.c.)]' 

where e(q) = 1£2q2/2m - Eb m is the effective mass, Ep 
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is a measure of the band overlap; J.L is the chemical 
potential, V,.(q) = 1iPq/mo is the hybridization matrix 
element, rno is the mass of the free electron, and the 
vector P is defined by the relation 

The wave functions 1/Inl:o are chosen to be pure real, so 
that the vector P is pure imaginary. 

Inasmuch as at the points L the transitions with par­
ticipation of acoustic phonons are symmetry-forbidden, [8] 

we take into account in Hint only the interaction with the 
optical phonons and electron Coulomb interaction of the 
density-density type. Retaining in the interaction only 
terms that lead to instability with respect to electron­
hole pairing, we have 

H'n' = L V(q)a,. + (p,-q)a,.+(p,+q)a •• (p,)a,.(p,) 
PIP2Q •• 

+ L [g(p, q)a,. +(p)a,.(p+q) (b.+b_. +) + c.c.] , 
pqe 

where V(q) and g(p, q) are the matrix elements of the 
Coulomb and electron-phonon interactions (they are real 
quantities at our choice of the phases of the wave func­
tions). Finally, the phonon Hamiltonian is 

HOPh= Lllco(q)b.+bq , 

q 

where w(q) is the bare frequency of the optical phonons. 

2. We assume that the magnetic moment produced in 
the system is directed along the z axis, and introduce 
in the usual manner the Green's function of the elec­
tron[9.5]: 

G,;""(q, t)=-i(Ta .. (q, t)a;.+(q, 0». 

The graphic equation for the Green's functions in the 
Hartree-Fock approximations are analogous to the equa­
tions inC5l , but differ in the presence of diagrams cor­
responding to the hybridization (Fig. 1). The corre­
sponding analytic expressions are 

v 
~-, 

~=~+ ~ o:;,/a. «)ex cc+a. 
1 1 1 1 1 11 2 2 1 1 

g Vg 
"'(X ~+~ 
lZ1~ 

__ V 
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Here G1~~22(P, w)=l/(w'F£(P)+Il) are the Green's func­
tions of the free electrons in the "non-hybridized" 
zones, ~,,= ~s± ~t, ~.(t) are the singlet (triplet) order 
parameters, [4.51 and the upper sign in the symbol ~" in 
(2) corresponds to upward spin (a = + 1), while the lower 
sign corresponds to downward spin (a = -1). The order 
parameters ~" have the meaning of the spectrum energy 
gap due to interelectron interaction for upward and 
downward spin, respectively. 

From Fig. 1 we get 

S d'q •• 
Ll±(p)=i -(?' V(p-q)G" (q.O-) 

~:t) 

4g(p) ~ d'q •• -----;,;:-"7 S (2:t),g(q)ImG" (q,O-), (3) 

where g(p)=g(p, 0) and wo=w(O). Solving the system (2) 
we obtain 

G;~(p w)= cl,,(p)+Vg'(p) [ 1 _ 1 ] 
-, 2e± (p) W+J.L-e± (p) W+J.L+e± (p) , 

G" ( )_ '/,(He(p)Ie±(p)) 1/,(1-e(p)/e±(p» 
II p.w - + , 

W+J.L-E± (p) w+who (p) 
(4) 

G,~~(p.W)= t/,(1-e(p)Ie±(p»+ t/,(He(p)h±(p», 

(~+J.L-e±(p) W+J.L+e±(p) 

where E,,(p) ={E 2(p) + I~,,(p) + Vi(p) 12}1/2 is the restruc­
tured energy spectrum. 

Since V,.(p) is a pure imaginary quantity, with V,.(-p) 
= - Vl'(p), the symmetry property of the spectrum 
E,,(-p)=e,,(p), which follows from the invariance of the 
Schrodinger equation with respect to the time inver­
sion, is preserved only under the condition that ~,,(p) 
be real, and consequently 

E±(p)={e'(p)+ILl±(p) 1'+1 V.(p) I'r". (5) 

Substituting G~l from (4) in (3), we obtain a self-con-
. sistent system of equations for the order parameters ~" 

(and incidentally we make the usual simplifying assump­
tion, replacing V(p) and g(p) by the constants X and g, 
respectively): 

where f,,(q) = 1 - 9(IJ. - e,,(q)) and 9(x) is equal to unity or 
zero respectively if x> 0 and x< O. Where necessary, 
the integrals in (6) are cut off at momenta q"'qF corre­
sponding to e(qF) = O. This is equivalent to the assump­
tion that for large momentum transfers q > qF the inter­
action constants vanish. As usual, however, the results 
of the integration depend little (logarithmically) on e F' 

We introduce the notation g. = X + 8g 2 / Wo and gt = X, and 
then, as can be easily shown from (6), g.(t) are the con­
stants of the interaction responsible for the pairing in 
the singlet (triplet) state, A pure singlet (triplet) state 
of an undoped ED corresponds to 
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where N(O) = mqF/2rli2 is the density of states on the 
Fermi surface. If we introduce the notation 

fi=(Ll,o/LlIQ)"', 1=(Ll •• Ll.,)'I. and 

Y(Ll )- 1 S d'q j",(q) (7) 
±, J.L - N(O) 2(2:t)' e±(q) , 

then the system (6) can be represented in the form 

Ll+ In (1/28p)+Ll_In 6=-Ll+Y(Ll+, J.L), (8) 
Ll_In (1/28,) +Ll+ In 1l=-Ll-Y(,L, 11). 

The form of the function Y(~", /J.) depends on the ratio 
of the chemical potential to the minimal or maximal 
values of the gap (at q 1 P the gap is minimal and equal 
to I~"I, and at qllP and Iql =qF the gap is maximal and 
equal to [1~,,12+ I VI'(qF) 12]1/2). We write down the hy­
bridization matrix element in the form Vl'(q) = Vl'x 
(where V .. = iii PI q F/mO' and x is the cosine of the angle 
between the vectors P and q), assuming that Vl'(q) is a 
slowly-varying function of I q I in the vicinity of I q I - q F, 

which makes the main contribution to the integral (7). 

We emphasize that the system (8) is fully symmetri­
cal with respect to the singlet and triplet pairings, i. e., 
it does not change under the substitution ~so +=t ~tO' and 
~_ - - ~_, although hybridization induces only a singlet 
gap and this should seemingly violate this symmetry. 
However, owing to the dependence of Vl'(q) on the angle 
between q and P, the corresponding increment to ~s 
vanishes upon integration with respect to q; a fact taken 
into account in the derivation of Eqs. (6) and (8). 

The integration of (7) was first carried out with re­
spect to energy, and then with respect to angle, using 
the assumption Vl'/e F« 1, which is not fundamental but 
makes it possible to simplify the calculations, and has 
led to the following expressions: 

Y '+ V ' ') 2ep + 1 J.L V. 
(Ll • <J.L = In J.L+ (J.L'-Ll'-V.')'I. - V, arctg (J.L'-Ll'- V.')'h 

Ll H. (9) 
+ - arctg --.:----:-::-:--;-;;--c:-;--:-;-:;,-;;-

V. J.L'-Ll'+J.L (J.L'-Ll'-Vi) ", 
2ep n J.L Ll Ll 

Y(Ll'<J.L'<Ll'+V.') = In (tl.'+V ')'/' + 1-Ty + y arctg y-, 
• ••• (10) 

28p n Ll Ll Ll 
Y(J.L'<tl.') = In +1---+-arctg-. (11) 

(Ll'+ Vi),j, 2 V, V. V. 

It is seen that expressions (9)-(11) go over continuously 
into one another with changing IJ.. 

The equations for the chemical potential are also dif­
ferent for different intervals of IJ., If n is the density of 
the excess electrons and N is the density of the elec­
trons of the completely occupied band: 

. ~ S dwd'qG •• ( ) '.0' N n=-[' ~ (2n)4 ii q,(() e -, 

then, using (4), we get 

(12) 

It is convenient to introduce the notation n=n/4N(O) 
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and n,. = n,.i4N(O); then integration in (12) yields 

_ " 1 " fl'-~±' V, 
1l~(~±'+l';<fl')=4(fl'-~/-V,-) I. +"~arctg (fl'-~±'-V,')'I. ' 

(13) 
n±(~±'<fl2<~±'+ vn =:1 ([,'-.'."') /8 V,. (14) 

For an e..'Cciton dielectric we have A~ = A~ = A2 and at j.J.2 
.. A2 + V: we obtain 

ff="(fl'-~')/4V,. (15) 

If we put 4ii V,/rr = j.J.~, then we get for the ED j.J.2 = j.J.~ 
+A2, where j.J.o has the meaning of the chemical poten­
tial at A = 0, i. e., the chemical potential that would 
exist in the initial state of the system. We shall hence­
forth use the dimensionless quantity L = j.J.o/V, as a mea­
sure of the doping. We confine ourselves mainly to suf­
ficiently "small" doping, i. e., we assume that 0< L < 1. 
In practice, interest attaches apparently to just this 
case, inasmuch, for example, £F- 0.1 eV and V,/e F 

- 0.1 the value L = 1 corresponds to an excess-electron 
concentration n-1OZo, which corresponds to very strong 
doping. 

In view of the indicated symmetry of (8), we can con­
fine ourselves to the case As() < Ato • For the considered 
Hamiltonian (1) this is always the case; it is obvious, 
however, that the results can be directly generalized 
also to the case As() < Ato• 

3. GROUND-STATE ENERGY 

Let us find the change of the energy of the ground state 
of the system on going from the initial semimetallic 
phase to the ED phase. To this end we average the Ham­
iltonian (1), taking into account the presence of anoma­
lous mean values (a;" (q)a2",(q) and (bo>. [5.6) 

1. On going over to the exciton dielectric we obtain 
(at 0< L< 1) 

,V(O) [ ( fl) (:'1') 8E=--3- :'1' 1+" V, - T",'In 1 + I",' 

2~3 ~ ] 
-Tlarctgv-8il(~'-~'o) . 

, , g 
(16) 

If we expand this expression in powers of A, then it 
turns out that the coefficient of A2 vanishes and we ob­
tain 

8E=- N(O)~' ("::'~-1) 
2V; 2 L ' 

(17) 

i. e., the energy gain is proportional to the fourth power 
of the order parameter. Consequently, in the presence 
of hybridization, within the framework of the considered 
Hamiltonian (1), the phase transition to the ED remains 
a second-order transition. (10) (Provided, of course, 
that the solution A does not appear jumpwise. It will 
be proved later on, however, that on going to the ED 
the order parameter appears in continuous fashion with 
increasing coupling constant. ) 

2. The transition to the EF phase is accompanied by 
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change in the energy of the ground state: 

where in analogy with (9)-(11) the form of the expres­
sions for (jE,. depends on the pOSition of the chemical 
potential. 

At j.J.< A. we have 

N(O) [ , , ( Ll+') 2~+'· V, ] 8E+=--- ~+ -V, In 1+-, +--arctg- . 
6 V, V, Ll+ 

. In the case A!< j.J.2< A! + V: we have 

2~+' Ll+ 2~_ 3 Ll_ } 
---arctg----arctg--16ff(fl-Il') . 

V, V, V, V, 

4. PARAMAGNETIC SUSCEPTIBI LlTY OF 
EXCITONIC INSULATOR 

(18) 

(19) 

The calculation of the spin susceptibility is analogous 
to that given in[5J. In an external magnetic field :16", the 
chemical potentials for the electrons with upward and 
downward spins move apart and are equal to j.J.,. = j.J. 
± j.J.Bde,. (iJB is the Bohr magneton). The magnetic mo­
ment is 

~ II -I-I») M,=-iflB kl [G,; (k,O-)-G,,' (k,O-
',t 

In analogy with Sec. 2, we obtain the self-consistency 
equations (the case A~< j.J.2< A! + V~) for an ED in an ex­
ternal magnetic field (A,. = A ± At) 

Solving these equations (jointly with the electroneutrality 
condition (12)) accurate to terms linear in J'8. (i. e., in 
At), we obtain the magnetic susceptibility 

2nfl.'N(O) [ nLl' / ( ~ Ll )] X= Il+- 2In8--;-arctg- . 
Vg 2V, j,g v, 

The first term in this formula corresponds to the sus­
ceptibility of the free electrons, while the second is 
proportional to the triplet gap induced by the external 
field, and becomes infinite if the condition 

~iO=:'1;o exp (-:'1IV,arc tg (MV,» 

is satisfied. Consequently, for constants AtO larger 
than this critical value, the ED in the singlet state be­
comes unstable with respect to triplet pairing, and we 
find ourselves in the region of coexistence of the singlet 
and triplet pairings, corresponding to the solution of the 
system (8) A. * ± A. and to the presence of a spontaneous 
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FIG. 2. 

magnetic moment. This is the region of the parameters 
~~ and ~tO in which excitonic ferromagnetism sets in. 

We note, just as in other cases, [4,5J the undoped ED 
turns out to be stable in the entire region of external 
parameters ~~ and ~tO' inasmuch as in a weak mag­
netic field IlBlffill < I ~* I its self-consistency equations do 
not depend on d€ z at all. In addition, it is easy to show 
that, in analogy with the results of[4J, in the absence of 
doping the system (8) has no physically reasonable solu­
tions corresponding to the coexistence of the triplet and 
singlet pairings. 

Let us find the form of the ED instability lines on the 
(~~, ~to) plane. The equation for the dimensionless 
order parameter x = ~/V, is obtained from the equations 
of the system (8) by putting in the latter ~. =~. =~. 
From (8) and (10) we obtain 

In ~.oe/Vg = ~ In (1 +x') + ~(L'+x') 'I,_X arctg x; 
2 2 (20) 

together with the relation that determines the pole X: 

In (~.ol ~,,) =X arc tg x, (21) 

this equation determines parametrically the instability 
curve of the ED. In Fig. 2, the solid lines correspond 
to the curves of the instability of the ED in the singlet 
state at different values of the doping, plotted from (20) 
and (21). 

5. INVESTIGATION OF THE SELF-CONSISTENCY 
EQUATIONS FOR DIFFERENT DEGREES OF DOPING 

1. Before we proceed to finding the magnetic solu­
tions, we consider the case of a doped ED. At L < 1 we 
have for the order parameter Eq. (20), which is easily 
solved near the limit of the generation of the dielectric 
phase, i. e., assuming that x« 1: 

(22) 

It is seen from this expression that the ED exists at a 
coupling constant 

~.o> V, exp (rrLl2-1) 

and ~ decreases with increasing doping. 
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The solution for the ED at L > 1 can also be easily 
obtained, and it is easy to verify that in the case of very 
strong doping (L» L) it goes over into the corresponding 
expression for the doped ED without hybridization. [11J 

It is obvious that in this limit the region of the energy 
spectrum which is noticeably distorted by the hybridiza­
tion remains deep below the Fermi surface, and Eqs. 
(8) go over into the corresponding equations. [5J 

2. For the case of nonzero doping, no analytic solu­
tion of the system (8) is possible. We start therefore 
with the simplest particular case ~~ = ~tO = ~o, i. e., we 
seek the solution of (8) for the dimensionless order 
parameters x. = ~.Iv, on a diagonal in the (~1lO> ~to) 
plane. The following magnetic solutions are then possi­
ble: 

1) x"<ftIV,, x+*O, x_=O; 
2) X-<I1/F,<x+. x~*o. x_=O or x 7 *O, 

x_*O. 

The-solution of the first type satisfies the equation 

(23) 

where the chemical potential Il is determined at x~/2 
< L2< 1- x~/2 by the relation 

(24a) 

At 1- x~/2< L2 we obtain from (13) and (14) 

2 x+, ft'. 1 [( 11' ) 'f> L +-=-+- --1 
2 Vi" v,' 

ft' (ft' ) 'f'] - V7arctg V/ - 1 . (24b) 

For the solution of the second type we obtain from (8), 
(10), and (11) the equations 

In (~oelV8) ='1, In (1 +x+,) +'/,rrx+ -x+ arc tg x+, 

In (~oe/Vg) =1/21n (l+x_') +1;'" (2L'+x_') '''-x_arctg x •. 

(24c) 
(24d) 

These equations (i. e., expressions (10) and (11)) are 
valid at L2< x~/2 and L2< t, respectively. 

It is seen from (23) and (24) that the solution x."* 0 
appears at larger coupling constants than the solution 
x."* 0, x. < IlIV" or x. > IlIV,. Therefore in the region 
of values of ~o where a phase transition into the EF 
takes place we can confine ourselves to the solutions 
x."* 0 and x. = O. (The solution x. = 0 corresponds to 
equality of the singlet and triplet gaps. A similar solu­
tion on the diagonal is obtained also in the model of the 
EF without hybridization. [5J) 

It follows from (23), (24a), and (24b) that at L2< t the 
order parameter x. satisfies Eqs. (23) and (24a) for 
values of ~o such that x.,;;; IlIV, or x.,;;; L -12. At larger 
coupling constants we have x. > IlIV, and Eq. (24c) is 
satisfied. At L2 >t we use Eqs. (23) and (24a) for x~ 
';;;2-2L2 and Eq. (23), while for 1l2/V~>x~~2-2L2 
we use Eqs. (23) and (24b), the latter being replaced by 
(24c) at x. ~ IlIV,. 

Equations (23), (24a) can be solved by assuming that 
x.« 1: 
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(25) 

We see therefore directly that L = 17 14 is a singular point 
and that the solution of the first type can appear smooth­
ly with increasing ~o only at L< 1714. The evolution of 
the solution ~+ = ~+(~o) with increasing L is shown in 
Fig. 3. (The results of the numerical solution of Eqs. 
(23) and (24).) It is seen from Fig. 3a that at L < O. 72 
the solution ~+ increases monotonically with increasing 
~o. The value of the coupling constant at which a mag­
netic solution first appeared, as is easily seen from 
(25) and (22), coincides with the value of ~o at which the 
ED appears. On going to the ferromagnetic phase, the 
gain in energy is given by formula (19): 

The ratio of this quantity to fiE for the transition to the 
ED (17) is equal to 

IbEFI ,,-2L 
IbEI = n-4L > 1 (0<L<0.72). 

Consequently, the EF is an energywise more favored 
phase than ED. We note that since fiE l' is proportional 
to the fourth power of the equilibrium order parameter, 
the phase transition to the EF state is a second-order 
transition, [to] in contrast to[5], where there was always 
a first-order transition on the diagonal. 

In the case of a doping O. 72 < L < O. 76 the solution is 
shown in Fig. 3b. It is seen from the figure that as ~o 
increases we have first a second-order phase transition 
to an EF, but with further increase of ~o the gap in­
creases jumpwise. Finally, at L > 0.76, the solution 
~+ immediately appears jumpwise-the transition to the 
EF becomes of first order (Fig. 3c). With further in­
crease of doping at L '" O. 836, the jump of ~+ begins to 
exceed the chemical potential, and we immediately ar­
rive at a solution of the second type (~+ > Il, ~_ = 0). 
(The solution ~_ '" 0 appears on all the figures in Fig. 3 
at larger coupling constants ~o. ) 

3. In Sec. 4 we have obtained, by calculating the mag­
netic susceptibility, the stability line of the ED in the 
singlet state relative to the appearance of a small triplet 
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order parameter. The EF state produced on going 
through this line is described by the system of equa­
tions 

1e [ 1 n !l ] x+ln-+x_lnb=x+ -In(1+x+,)+---x+arctgx+ , 
V, 2 2 V, 

1e [ 1 n " ] x_In-+x+ln b=x_ -In(1+x_')+--- x_ arctgx_ ; 
V, 2 2 V, (26) 

"IV,= (L'+ (x+'+x_') 12) 'I,. 

The region of applicability of this system (i. e., of the 
employed expressions for Y(~., Il), (10» is bounded by 
the inequality 

(x+ '-x_ ') 12<L'< 1- (x+ '-x_ ') 12. 

Since the triplet gap produced near the phase-transition 
line is small (r= ~tIV,.« x+), this inequality reduces to 
the limitation 0< L < 1, and consequently the system (26) 
describes the EF phase near the boundary of the genera­
tion in the entire considered doping region, (Of course, 
that in this range of variation of the coupling constants 
~~ and ~to in which no jumplike solution takes place.) 
To assess the question of the type of phase transition on 
the line (20) and (21) we can find a solution of Eqs. (26) 
accurate to terms of second order in r and to calculate 
by means of formula (19) the energy gain on going to the 
EF. It turns. out here that the coefficient of r2 in the 
expansion of fiEF in powers of r vanishes identically, 
i. e., the energy gain is proportional to the fourth power 
of the equilibrium order parameter r in accordance 
with the Landau theory of second-order phase transi­
tions. [10] Consequently, the phase transitions into the 
EF on the line (20), (21) is of second order. However, 
as seen from an examination of the solutions on the 
diagonal and from the subsequent analysis of the system 
(8), at certain values of L and of the coupling constants 
the line (20), (21) can be "preceded" by a curve on which 
the solution takes place jumpwise, and consequently the 
phase transition to the EF will be of first order. 

4. Let us find on the (~~, ~to) plane the line, pas­
sage through which causes the chemical potential to go 
out of one of the spin subbands, i. e., where a transi­
tion from a solution of the type ~. < Il to a solution of the 
type ~_ < Il < ~+ takes place. This curve was called the 
strong-ferromagnetism line in[5]. The system of equa­
tions for the order parameters x. = ~.IV,. takes in this 
case the form 

x+ In (1eIV,) +x_In b=x+ ['I, In (1 +x/) +'I,,,xT -xT arctg x+l, 

x_In (FIV,) +x+ In b=x_ ['I, In (1 +x_') +'/,n (2L'+x_')'/'-x_ arctg x-l; 

here IlIV,. = (2L2 + x~)11 2. 

Assuming x+ = IlIV,. and x_ = x, and subtracting and 
adding Eqs. (27), we obtain 

(27) 

I'!,o"e 1 [ 1 , " In-- = ,-(2L'+x-)' In(H2L'+x')±'I,xln(Hx') 
V, (2L'+x') '±x 2 • 

+'I,n (2L'+x'±x (2L'+x') ''') +' (2L'+x') arctg x ], (28) 

where the upper or lower sign in the right-hand side 
corresponds to ~~ or ~tO' respectively. Equations (28) 
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specify parametrically the strong-ferromagnetism curve 
on the (~.o, ~to) plane. 

The system (27), however, is valid when )J.2< V: +~~ 
or L2< t. At larger values of the doping it should be re­
placed by the following system of equations (the case 
~~ + V:< )J.2< ~~): 

x+ In (1e/V.) +x_In &=X+P/2 In( i+x+,) +1/2:tx+-x+ arctg X+], (29) 

x-In(1e/V.) +x+ In &=x- {In[ (L,'+X_')''"+ (L ,'-1)"'1 

+ (L,'+x-')," arctg(L/-l) -'!'-x_ arctg [L ,,+[ (L,'+X~~) (2L ,'-1) l"']} , 

where the chemical potential is determined by the rela­
tion 1l2/V:=L~+x~, while the quantity L1 is connected 
with the doping (which we measure as before in units of 
L) by the equation 

U='/,L,'+:C ' [ (L ,'-1),"-L ,' arctg (L,'-1)'''I. 

In analogy with (28), we easily obtain from (29) the 
specified equations for the strong-ferromagnetism 
curves at L2 > t. The strong-ferromagnetism lines for 
different values of the doping are shown dashed in Fig. 2. 

We note first that for sufficiently small doping (L 
< O. 76) the strong and weak ferromagnetism curves come 
closer together with increasing distance from the diag­
onal. This means that even though the order parameter 
increases continuously with increasing coupling con­
stant, as the distance from the diagonal increases it 
reaches the value Il all the more rapidly. If the doping 
is larger (L > O. 76), the strong and weak ferromagnetism 
lines diverge with increasing distance from the diagonal 
(just as in[S]) and this situation no longer takes place. 

The dash-dot line in Fig. 2 shows the line on which 
the order parameter experiences a jump (Figs. 3b and 
3c). It is clear that this line should pass in analogy 
with the strong-ferromagnetism curve, but to determine 
it exactly it is necessary to have detailed numerical cal­
culations. It is seen from Fig. 2 that in the case L 
> O. 76 a part of the ED-EF phase-transition line adja­
cent to the diagonal corresponds to a first order transi­
tion (I) and the remainder to a second order transition 
(II). At L > 0.836 in the region near the diagonal, the 
strong-ferromagnetism curve already "overtakes" the 
weak-ferromagnetism curve. 

6. DISCUSSION . 

In the EF mode that does not take hybridization into 
account[4.5] the transition to the ferromagnetic state is 
possible at arbitrarily weak interelectron interaction 
and is a second-order phase transition in the entire 
range of variation of the singlet ~.o and triplet ~tO 
coupling constants. An exception is only the case ~.o 
= ~to, when the transition to the EF is of first order. 

Allowance for the hybridization makes the phase tran­
sition to the EF possible only at coupling constants com­
parable with the hybridization matrix element V,., in ana­
logy with the well known results. [6,7] In addition, it 
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turns out that the order of the transition is determined 
by the value of the doping and by the ratio of the singlet 
and triplet coupling constants. In the case of sufficiently 
small doping (L < O. 76), the transition to the EF is of 
second order in the entire range of variation of ~.o and 
~tO' including also on the diagonal (~.o = ~to). In the 
doping interval 0.72 < L < 0.76 in the region of ~.o and ~tO 
adjacent to the diagonal, there are jumps of the order 
parameter in the EF phase with increasing coupling con­
stant. At larger doping (L > O. 76) there is produced near 
the diagonal an entire region of ~.o and ~to in which the 
phase transition to the EF is of first order. 

Although an interaction of the type (/i/mo)p • qa~ .. (q)a2 .. (q), 
corresponding to hybridization, induces anomalous mean 
values of only the singlet type (a~ .. lla .. ), yet owing to the 
angular dependence of the matrix elements it does not 
violate the symmetry of the singlet and triplet pairings 
and it does not lead to their coexistence in a system 
without doping. Thus, all the lines of Fig. 2 can be 
continued symmetrically relative to the diagonal. Ana­
logously, [4.5] the ferromagnetic state appears only in 
a system with doping and, just as in[Ml, the order 
parameter (magnetization) decreases with further in­
crease of doping and vanishes at a certain value of L. 
Now, however, the contribution of the doping to the sup­
pression of the excitonic instability is proportional not 
to Ilo/ ~o (Ilo is the chemical potential in the initial semi­
metallic phase and ~o is the coupling constant), but to 
Ilo/V,.. 

An interpretation of the experiments witn narrow­
band semiconductors, [12] in which a similar behavior 
of the magnetization was observed, and also of other 
investigations of magnetic properties of semiconduc­
tors, [13] was presented in[M]. It is obvious that the 
arguments advanced there remain valid also for the 
considered model of the EF with allowance for hybrid­
ization, which is in qualitative agreement with these 
experiments. For a quantitative comparison of the 
theory with the experimental results for semiconductors 
of the A4BS group, however, it is necessary to take into 
account the spin-orbit interaction, which is quite large 
in these semiconductors. 

The author thanks V. L. Ginzburg and the partici­
pants of the seminar under his direction for a discus­
sion of the results, to Yu. V. Kopaev and B. A. Volkov 
at whose initiative and with whose help this work was 
started, and also E. G. Maksimov for useful discus­
sions. 
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systems with repulsion 
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Quasi-one-dimensional Fermi systems with repulsion are considered. The effect of impurities is studied in 
those cases in which these structures are one-dimensional antiferromagnets. It is found that the impurities 
lead to a logarithmic or fractional-power increase in the susceptibility at low temperatures. The power in 
the temperature dependence of the susceptibility does not depend on the impurities and is determined by 
the interaction between the electrons. It is shown that phase transitions that do not alter the one­
dimensional character of the spin interactions or impede this increase in the susceptibility are possible. 

PACS numbers: 75.30.Hx, 75.30.Cr 

1. INTRODUCTION 

At the present time there is no doubt that many of the 
highly conducting quasi-one-dimensional complexes of 
TCNQ are metals at high temperatures. The question 
of the state of these substances at low temperatures is, 
however, more complicated. One of the possible states 
is the antiferromagnetic state which can arise if the 
conduction electrons form a Fermi system with repul­
sion. Such systems have been studied previously in a 
particular case in the Hubbard model. [1-31 At low tem­
peratures the magnetic susceptibility remains finite and 
the specific heat depends linearly on the temperature. 
In this work it is shown that the defects that can be 
present in the system strongly affect the magnetic prop­
erties and make possible a logarithmic or power in­
crease of the susceptibility as the temperature is low­
ered. The temperature dependence of the specific heat 
remains linear. 

The interaction of electrons from different strands 
does not alter the behavior of the susceptibility at low 
temperatures, even though it can lead to a phase transi­
tion at finite temperatures. Hopping from strand to 
strand can have a substantial influence. 

2. INFLUENCE OF INHOMOGENEITIES ON fHE 
SPIN CORRELATION FUNCTIONS 

We shall consider a system of parallel condUcting 
strands. We assume that the probability of electron 
hops from strand to strand is small. We also assume 
that the interaction of electrons from different strands 
is small. There are reasons to believe that even strong 
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interaction of electrons from different strands, which 
can lead to a phase transition, has little effect on the 
spin correlation functions. However, we shall speak of 
this later. In this section we assume the strands to be 
isolated. We write the Hamiltonian of one strand in the 
form 

(1) 
where a;a(a/a) are the creation (annihilation) operators 
for electrons with spin a at site i, Tft' are the overlap 
integrals, J.l. is the chemical potential, and 

s = .E oa.~aa. + aa, 
e.~ 

(2) 

where a is the vector whose components are the Pauli 
matrices. 

The impurities lead to the result that the quantities 
T/ j and Vlj do not depend only on the difference i-j, 
and also to the fact that the transition amplitude Tft' is 
a matrix. 

We shall assume that the parameters of the Hamilto­
nian (1) are such that in the absence of impurities the 
system is a one-dimensional antiferrotnagnet. Such a 
case occurs in, e. g., the Hubbard model with a half­
filled band. [1] The model considered by Ovchinnikov, [4] 

with a quarter-filled band and sufficiently strong non­
local repulsion, also describes a one-dimensional anti­
ferromagnet. In the absence of impurities the suscep­
tibility of such systems remains finite. Below we shall 
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