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Susceptibility of inhomogeneous quasi-one-dimensional Fermi 
systems with repulsion 
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Quasi-one-dimensional Fermi systems with repulsion are considered. The effect of impurities is studied in 
those cases in which these structures are one-dimensional antiferromagnets. It is found that the impurities 
lead to a logarithmic or fractional-power increase in the susceptibility at low temperatures. The power in 
the temperature dependence of the susceptibility does not depend on the impurities and is determined by 
the interaction between the electrons. It is shown that phase transitions that do not alter the one­
dimensional character of the spin interactions or impede this increase in the susceptibility are possible. 

PACS numbers: 75.30.Hx, 75.30.Cr 

1. INTRODUCTION 

At the present time there is no doubt that many of the 
highly conducting quasi-one-dimensional complexes of 
TCNQ are metals at high temperatures. The question 
of the state of these substances at low temperatures is, 
however, more complicated. One of the possible states 
is the antiferromagnetic state which can arise if the 
conduction electrons form a Fermi system with repul­
sion. Such systems have been studied previously in a 
particular case in the Hubbard model. [1-31 At low tem­
peratures the magnetic susceptibility remains finite and 
the specific heat depends linearly on the temperature. 
In this work it is shown that the defects that can be 
present in the system strongly affect the magnetic prop­
erties and make possible a logarithmic or power in­
crease of the susceptibility as the temperature is low­
ered. The temperature dependence of the specific heat 
remains linear. 

The interaction of electrons from different strands 
does not alter the behavior of the susceptibility at low 
temperatures, even though it can lead to a phase transi­
tion at finite temperatures. Hopping from strand to 
strand can have a substantial influence. 

2. INFLUENCE OF INHOMOGENEITIES ON fHE 
SPIN CORRELATION FUNCTIONS 

We shall consider a system of parallel condUcting 
strands. We assume that the probability of electron 
hops from strand to strand is small. We also assume 
that the interaction of electrons from different strands 
is small. There are reasons to believe that even strong 
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interaction of electrons from different strands, which 
can lead to a phase transition, has little effect on the 
spin correlation functions. However, we shall speak of 
this later. In this section we assume the strands to be 
isolated. We write the Hamiltonian of one strand in the 
form 

(1) 
where a;a(a/a) are the creation (annihilation) operators 
for electrons with spin a at site i, Tft' are the overlap 
integrals, J.l. is the chemical potential, and 

s = .E oa.~aa. + aa, 
e.~ 

(2) 

where a is the vector whose components are the Pauli 
matrices. 

The impurities lead to the result that the quantities 
T/ j and Vlj do not depend only on the difference i-j, 
and also to the fact that the transition amplitude Tft' is 
a matrix. 

We shall assume that the parameters of the Hamilto­
nian (1) are such that in the absence of impurities the 
system is a one-dimensional antiferrotnagnet. Such a 
case occurs in, e. g., the Hubbard model with a half­
filled band. [1] The model considered by Ovchinnikov, [4] 

with a quarter-filled band and sufficiently strong non­
local repulsion, also describes a one-dimensional anti­
ferromagnet. In the absence of impurities the suscep­
tibility of such systems remains finite. Below we shall 
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be interested in the magnetic susceptibility of systems 
with impurities. 

By means of the usual relation, the susceptibility X 
is expressed in terms of the spin correlation function 
K(X,T): 

011 tIT 

x= S S K(x,1:)dxd1:, (3) 
_~ 0 

K(x, 1:) =<T.S(O, O)S(x, 1:», 

where TT is the time-ordering operator. The bar de­
notes averaging over the impurities. 

In the general case, taking the impurities into account 
is very complicated. Therefore, we shall consider a 
certain particular case in which the influence of the im­
purities can be studied to completion. Such a case is 
the Hubbard model with a half-filled band and strong 
repulsion, with impurities that flip the spins. 

Thus, we let 

(4) 

Assuming that V» Tr a ' and expanding in the parameter 
Tra'/V, we transform the Hamiltonian (1) to the form 

(5) 

Strong repulsion leads to suppression of the density 
fluctuations. In this case the density operator La a;aala 
can be regarded as a number. Only the spin interac­
tions are important. By expressing the one-electron 
operators in (5) in terms of the spin operators by for­
mula (2), we can reduce the Hamiltonian (5) to a Heisen­
berg Hamiltonian with impurities: 

(6) 

In formula (6), UI +1 is an operator that acts on the spins 
and depends on the label i. In the general case the 
operator UI +1 is arbitrary and terms linear in SI can be 
present in the Hamiltonian (6) even in the absence of a 
field. 

Below we shall consider the case of spin-orbit scat­
tering: 

IT,++I=IT,--I=T.'O', T,"-=T,-+=T,''', 

T,++T;(I'+T."'T;-- =0, (T,'o')'+IT,I'=J'VI2, 
(7) 

where J does not depend on the coordinates. We can 
convince ourselves that fulfillment of the conditions (7) 
leads to the result that we are considering impurities 
whose action reduces merely to rotation of the spin 
vector at each point through its own angle. Here the 
operators UI +1 in (6) are orthogonal. In the following 
we shall not need the explicit expression for UI +1 in 
terms of the amplitudes Tr a ', 

To calculate the correlator (3) in zero magnetic field 
we shall change to new operators CI , by the formulas 
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, 
C,= II U.S,. (8) 

.It __ oo 

Using the orthogonality of the operators Uk' we can 
verify that the operators C i satisfy the usual spin com­
mutation relations. Substituting the expression (8) into 
formulas (2) and (7), we obtain 

K(x, T)= < T,C(O, 0) [Ii u,-,], C(x, 1:) ), .-. 
(9 ) 

(10) 

In the expression (9), 

(11) 

The angle brackets in (9) denote averaging with the Ham­
iltonian (10). The formulas (9), (10) and (11) show that, 
in the model under consideration, the averaging over 
the impurities and the thermodynamic averaging are 
separable in the calculation of the correlator K(;, T). 

If the impurities at different points are also indepen­
dent, the average of the product of operators Ui,1 is 
equal to the product of the averages: 

-0-- 0 

n u,/ = n Ukl. (12) 
k=% k=x 

We write the action of the rotation operator Ui,1 on an 
arbitrary vector X in the form 

U. -IX=X cos <pu+nu J X J sin <pu, (13) 

where CPu is the rotation angle and Bu is a unit vector 
lying in the plane perpendicular to the vector X. 

Let the probability W(CPu) of a rotation through the 
angle cp u have the Gaussian form 

W (<pu) =exp (-<p'l) In I. (14) 

We consider the case l» 1. Performing the averaging 
in (13) with the distribution (14) with l» 1, we obtain 

U. -I = 1-111""e-I /'. (14a) 

Substituting (14a) into (12) and (9), we express the cor­
relation function K(x, T) of the Heisenberg model with 
impurities in terms of the correlation function Ko(x, t) 
of the Heisenberg model without impurities: 

K(x, 1:)=exp(-JxJ/I)Ko(x, 1:), 

Ko(x, 1:)=<T,C(O,O), C(x, 1:». 

(15) 
(16) 

In the general case too, when the impurities are ar­
bitrary and the system is described by the Hamiltonian 
(1), we may assume that the spin correlation function 
K(x, T) of the inhomogeneous model with l» 1 is con­
nected with the correlation function Ko(x, T) of the homo­
geneous model by the relation (15). In this case the 
quantity l is related in some complicated way to the pa­
rameters of the Hamiltonian (1); Below we shall not be 
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interested in this dependence, but shall study the con­
sequence of a finite value of l. 

Thus, a knowledge of the spin correlation function of 
the homogeneous system enables us to calculate the 
susceptibility of the inhomogeneous system by means 
of formulas (2) and (15). 

3. CALCULATION OF THE SUSCEPTIBILITY 

The simplest model with repulsion in which antiferro­
magnetic ordering is possible is the Hubbard model with 
repulsion and a half-filled band. The spin correlation 
function Ko(x, r) of this model is calculated in the Ap­
pendix «A. 7a)). For small fields H« T, using formulas 
(3), (15), (A.7a) and (A. 8) we write the susceptibility 
in the form of the integral 

1.= ~Tr r:os;rx exp(-lxlll)sh-'I'[rrT(xlv.+iT) ]sh-'!.[rrT(xh'.-i"r) ]dxdr, 
• 0 0 

. (17) 

where v. is the velocity of the gapless excitations (see 
the Appendix). At sufficiently high temperatures 
T»v./l, values of X,V.T-O are important in the inte­
gral. In this region the susceptibility depends weakly 
on the temperature and is close to the susceptibility of 
the homogeneous system. 

More interesting is the case of low temperatures 
T« v ./1. Calculating the integral in (17) for this re­
lationship between the parameters, we obtain 

(18) 

Formula (18) shows that the susceptibility grows log~­
rithmically with decrease of temperature in the Hub­
bard model with defects. 

In the Hubbard model with repulsion and a half-filled 
band the ground state is nonconducting, and antiferro­
magnetic ordering of the spins exists over short dis­
tances. The form of the spin correlation function (A.7a) 
is due to the fact that spin waves play the principal role 
in the formation of the singularities. If the repulsion is 
not local, the system can be a dielectric even when 
there is an odd number of electrons per site, [41 and the 
spins form an antiferromagnetic structure. In the gen­
eral case it is not just a doubling of the period that can 
occur. An increase of the period by an integer factor 
is possible. 

The effect of long-wavelength excitations on the pair 
correlation function and density-density function was 
investigated in[51. It was found that the principal role 
in the formation of the singularities of the correlation 
functions is played by just such excitations. The other 
excitations lead only to changes of factors. In this 
case, the calculation of, e. g., the pair correlation 
function II(x, T) reduced to calculation of the average 

II(x, .)~(exp{iq>(x, ')-iq>(O, OJ}> (19) 

with the free-energy functional F( ({! 1: 

(20) 
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where Y. is the compressibility. After calculations in 
(19), the following expression for the quantity II (x, T) 
was obtained: 

(21) 
where 

In the same spirit we can calculate the spin correla­
tion function Ko(x, T) of an arbitrary one-dimensional 
antiferromagnet without impurities, if long-wavelength 
spin excitations exist in it. We represent the function 
Ko(x, T) in the form 

Ko(x, .)='/,(T,S-(O, O)S+(x, .», 
S+=S.+iS.. S-=S.-iSy. 

(22) 

As previously, [51 we assume that the calculation in (22) 
reduces to calculation of the average (19) with the free­
energy functional (20). In this case cp (x, T) represents 
the phase of the vector S., and in place of the compres­
sibility we have the magnetic susceptibility. If this is 
so, the expression for the correlation function Ko(x, T) 
has the form 

Ko (x,.) =A cos pox (.!.-) "sh-"" [nT (~+ iT)] sh-O/' [ rrT ( ~ - iT) ] , 
v, Us v, 

(23) 
(23a) 

In the Hubbard model, Po = 1[, and the susceptibility Xo is 
connected with the velocity v s of the excitations by the 
relation[S1 

Xo= (2nv.) -'. (24) 

Substituting (24) into (23a) and (23), we convince our­
selves that the expression (23) for Ko(x, T) coincides 
with the expressions (A.7a), (A. 8). Thus, we may ex­
pect that in an arbitrary one-dimensional antiferromag­
net without impurities the correlation function has the 
form (23). Here the index a is not necessarily equal to 
unity. 

Substituting the expression (23) for the correlator 
Ko(x, T) into formulas (3), (15) and calculating the inte­
gral in (3), we obtain the following formula for the 
susceptibility X of the system with impurities, for 
T«v.ll, H«T, a<l: 

( i-a: i-a: ) ( T ) 0-' / 
I.=AB ~'~ 2L". 2;rlv,po', (25) 

where B(x,y) is Euler's beta-function. If T»vsIl or 
a> 1, the susceptibility depends weakly on the tempera­
ture. 

The formulas (18) and (25) show that impurities can 
lead to a logarithmic or fractional-power increase of 
the susceptibility. 
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4. THE SPECIFIC HEAT 

We shall consider the specific heat of a homogeneous 
antiferromagnet at low temperatures. Suppose that 
impurities are absent. In this case the specific heat is 
known in the Heisenberg model and in the XY -model. 
In these models it depends linearly on the temperature. 
Apparently, the existence of gapless long-wavelength 
spin excitations leads to a dependence of the same form. 
To check this statement we shall calculate the specific 
heat using the long-wavelength excitations. Assuming 
such excitations to be bosons, we obtain 

aE a J~ v.lkl dk 

C=ar=ar_ oo exp(v.lkI/T)-l 2n . (26) 

Calculating the integral in (26) and differentiating with 
respect to T, we find the specific heat 

C=2~ (2) Tin v., (27) 

where t(x) is the Riemann zeta-function. 

In the XY -model the specific heat can also be calcu­
lated directly by going over to spinless fermions. The 
specific heat of such fermions is equal to 

C=?~ J~ volkl dk 
- aT _00 exp(volkl/T)+l 2:t ' 

(28) 

where Vo is the velocity at the Fermi surface. 

USing the equality of Vo and v., we convince ourselves 
that the specific heats calculated from formulas (26) 
and (28) have the same value (27). In the Heisenberg 
model there exist numerical calculations [2,3] showing 
that the specific heat C and susceptibility Xo are con­
nected by the relation 

(29) 

By expressing Vs in terms of Xo in formula (27) by 
means of the relation (24), we obtain the formula (29). 
The effect of impurities is easily taken into account in 
the Heisenberg model (6), (7) with spin-flipping impuri­
ties. In this case the Hamiltonian with impurities is 
reduced by the operator replacement to the Heisenberg 
Hamiltonian (10) without impurities, and the specifiC 
heat has the form (27), as before. 

We may suppose that the specific heat at low tem­
peratures is also determined by formula (27) in more 
complicated antiferromagnetic systems, provided that 
l» 1. In this case, only the coefficient in the linear 
temperature dependence of the specific heat depends on 
the form of the interaction and on the impurities. 

5. PHASE TRANSITIONS IN QUASI·ONE· 
DIMENSIONAL SYSTEMS WITH REPULSION 

Above, we have studied purely one-dimensional sys­
tems, in which phase transitions cannot occur. The in­
teraction of electrons from different strands and elec­
tron hops from strand to strand can lead to the appear­
ance of phase transitions at finite temperatures. Never-
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theless, below the transition point too, it is possible 
that the spin interactions have a one-dimensional char­
acter and that, consequently, all the results obtained 
above are applicable. 

For definiteness we shall consider a one-dimensional 
system of electrons with infinite repulsion at one center 
and finite repulsion at neighboring centers. Let the 
band be quarter-filled, so that there is one electron to 
two sites. It was shown by Ovchinnokov[4] that for suf­
fiCiently strong repulsion at neighboring sites the ground 
state of such a system becomes dielectriC, and alterna­
tion of the electron density occurs, with period equal to 
twice the distance between sites. The spin structure in 
this case is antiferromagnetic. 

If the temperature is finite, fluctuational displace­
ment of a small piece through a distance equal to the 
distance between sites is possible. Such fluctuations 
lead to disappearance of the long-range order in the 
arrangement of the electrons. The density-density cor­
relator P(x) of such a system has the form[7] 

P(X)=cos llxexp(-ixi/r,). (30) 

In formula (30) the correlation length r e is equal to 

r,='h exp (Uo/T), 

where Uo is the energy of the boundary between the 
small pieces. 

(31) 

The interaction of electrons from different strands 
can be taken into account in the self-consistent field 
approximation, as was done in[s,a]. Then for the tran­
sition temperature we obtain the equation 

l=Vr,(T,)/T, (32) 

where V = min V(k~); V(k~) is the Fourier component of 
the interaction between different strands. Solving Eq. 
(32) for V« Uo, we obtain 

Uo 
T = . 

In(UoIV) 
(33) 

Below Te the system is dielectric. Formula (33) was 
obtained under the assumption that Uo for T- Te de­
pends weakly on the temperature. If In(Uo/V) is not 
very large, this is not so. In the case when the energy 
functional F(..1] of one chain can be written in the form 
of a Ginzburg-Landau energy with a real order param­
eter..1, instead of (33) we have[9] 

(34) 

where Teo is the Ginzburg-Landau transition tempera­
ture. The phase transition described occurs because of 
the density-density interaction of different strands, 
which cannot alter the one-dimensional character of the 
spin interactions. Therefore, such a transition does 
not affect the results obtained for purely one-dimen­
sional spin systems. 

The situation changes if electron hops from strand to 
strand are present. We write the total Hamiltonian of 
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the system in the form 

ii ~ .E H + .E W,j S s, (x)S,(,,) ,I.r. (35) 
'i f,; 

Here Hi is the Hamiltonian of one strand and W ij is the 
amplitude of the interaction of a spin on strand i with a 
spin on strand j and is proportional to the square of the 
one-electron hopping amplitude. The interaction of 
spins from different strands leads to the result that the 
system becomes a three-dimensional antiferromagnet 
at low temperatures. Determining the transition tem­
perature Tc by means of the self-consistent field meth­
od, we obtain 

T,zW'II'-',', IV ~ .E W'j' (36) 
, 

In this case the results obtained in the preceding sec­
tions for a one-dimensional spin system cease to be ap­
plicable below the transition point determined by for­
mula (36). 

6. CONCLUSION 

Quasi-one-dimensional Fermi systems with repulsion 
have been considered above. It was assumed that this 
repulsion leads to dielectric ordering at low tempera­
tures. There exist numerous experimental indications 
that the highly conducting complexes of TCNQ with 
asymmetric cations (NMP-TCNQ, Qn-(TCNQ)z, etc.) 
are such systems. [10,11] These substances are charac­
terized by the complete equivalence of the TCNQ mole­
cules in the chain, and this, apparently, is the reason 
for the fact that these compounds display metallic prop­
erties at high temperatures. At the same time, the 
asymmetry of the cations in these complexes introduces 
basic disorder into the crystal lattice. Therefore, in 
such substances we can expect an increase of the sus­
ceptibility in accordance with formulas (18), (25). 

The growth of the susceptibility has been observed 
experimentally in NMP-TCNQ, Qn-(TCNQ)z and 
Ad-(TCNQ)2 Yll The measurements showed that in a 
broad temperature range 0.1-10 K the susceptibility is 
described by formula (25), in which each substance has 
its own index Q!. Bulaevskii et al. [11] also assumed that 
the increase of the susceptibility is caused by disorder 
of the lattice. In their opinion, however, the law of this 
increase is determined by the probability that the ex­
change integral at any particular point vanishes. In this 
case the law of the increase would depend strongly on 
the form and degree of the disorder. Such a depen­
dence has not been detected experimentally. [11] Clearly, 
this is evidence in favor of the model proposed in the 
present work. 

The situation with the specific heat is more compli­
cated. According to the measurements of10• 12, 13] at low 
temperatures (2 < T < 5 K), the specific heat depends lin­
early on the temperature, in agreement with the conclu­
sion reached in Sec. 4. At the same time the authors 
of[141 assert that the specific heat is proportional to a 
fractional power of the temperature. Further experi­
ments at lower temperatures could clarify the situation. 
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Specific-heat measurements at higher temperaturestl51 

have made it possible to detect a phase transition at 
7.2 K in NMP-TCNQ and at 14 K in Qn-(TCNQ)z. The 
susceptibility varies weakly at the phase-transition 
point, indicating that this transition is nonmagnetic. 
The increase of the susceptibility below the transition 
point is possible only for a one-dimensional spin inter­
action. All this is evidence that a transition to a dielec­
tric, with the one-dimensional antiferromagnetic order­
ing described in the preceding section, pccurs. 

The author is deeply grateful to A. I. Larkin for a 
discussion about this work. 

APPENDIX 

We shall calculate the spin correlation functions in 
the Hubbard model with repulsion and a half-filled bane!. 
The Hamiltonian of this model has the form 

(A.l) 

To calculate the correlation functions K. and K, equal to 

K.(x, T) ~<S.(O, O)s.(x, T) >, 
K(x, T)~<S+(O, O)S-(x, 't»; 

S(i, T) ~ .E a.,a'a + ('r)a,,(T), 
(A.2) 
(A.3) 

we go over to operators creating (C;a(T» and annihilat­
ing (Cia) new fermions: 

(A.4) 

In the new operators the Hamiltonian (A. 1) goes over 
into a Hubbard Hamiltonian with attractionC161: 

(A.5) 
Then, 

K,(x, T)~.E <c:"(O)c,,,(O)C'~'(T)C<ll(T». 
a.' (A.6) 

We see that, in the c-operators, the spin correlation 
functions go over into the pair correlation function and 
the density-density function. Such functions were cal­
culated earlier with the aid of a hypothesis about the 
role of the sound excitations. [51 On the basis of the re­
sults of this paper we obtain 

K, (.r. T) ~A (Th.)" cos crx sh- I'" lJ[T(x/l.·, 

TiT) J sh- I ,. [crT(x;'·,-iT) J. 
K Cr. T) ~B (Til',)' cos J[X sh-'." [crT ("/r, 

TiT) J sh--' '[crT(xh,-iT) J. 

(A.7a) 

(A.7b) 

where A, B and Q! are quantities that depend on the inter­
action, and Vs is the velocity of the gapless excitations. 
It is assumed that the temperature is much smaller than 
the magnitude of the gap. 
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Using the isotropy in spin space, we find the values 

a~l, B/A~2, (A.8) 

We note that for To« V the Hubbard model with re­
pulsion and a half-filled band is equivalent to the Heisen­
berg model for an antiferromagnet. 
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Processes that can be induced by laser radiation on a surface with adsorbed atoms or molecules are 
considered, The radiation can alter the desorption, increase the surface diffusion, and influence the 
heterogeneous catalysis in a selective manner (i.e, act on certain types of atoms). Desorption of atoms due 
to laser irradiation can be used, among other things, to determine the sites of various atomic groups on the 
surface of the adsorbent. In order to photograph the surface with sufficiently high resolution, a method for 
obtaining holograms of the adsorbent is proposed, using collimated atomic beams instead of coherent light, 

PACS numbers: 79.20.Ds, 68.90.+g 

INTRODUCTION 

Many recent papers have reported the use of laser 
radiation for selective excitation of vibrational and 
electronic levels in atoms and molecules, [1-5] Selective 
excitation uncovers new possibilities of acting on chemi­
cal reactions, makes possible mass separation of 
atoms, [3-5] etc. In the overwhelming number of the 
considered cases, the laser radiation acts on a homo­
geneous medium, and for a number of reasons this me­
dium is chosen to be a gas, 

In this article we consider the action of laser radia­
tion on heterogeneous systems. We are interested in 
the new possibilities and effects that may be provided by 
the presence of the phase-separation surfaces in this 
case. These include: selective action on the processes 
of desorption of atoms and molecules adsorbed on a sur­
face with ensuing change of the concentration, mass 
separation of the atoms via selective desorption (laser 
chromatography), the effect on the surface diffusion, 
the change of the catalytic properties of the adsorbents, 
information on the composition and location of the active 
groups present on the adsorbent surface (in principle 
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one can hope even to decode the" mosaic" of the molec­
ular groups on the surface of biological objects such as 
cells, etc,), 

Some of these questions have already been considered 
earlier, [6,7] namely resonant buildup in an adsorption 
potential with the aid of a set of frequencies, as well as 
detachment of atoms from a surface. In particular, the 
possibility was considered of generating hypersound by 
matched oscillations of the adsorbed atoms in the po­
tential of the wall. [6,7] The possibility of selective 
heterogeneous separation of vibrationally-excited mole­
cules was considered in [8], but in this variant the selec­
tive excitation of the vibrational levels by the laser 
beam was produced not on the surface but in the volume, 

1. ACTION OF LASER ON ADSORBATE. 
ESTIMATES OF THE PROBABILITIES OF 
EXCITATION AND DESORPTION UNDER THE 
INFLUENCE OF LASER RADIATION 

Depending on the frequency, the mechanisms whereby 
laser radiation acts on adsorbed particles can be quite 
different-infrared radiation is capable of inducing par-
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