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We find exact power-law stationary solutions of Boltzmann's kinetic equation which describe particle 
distributions with a flux from a source to a sink. We consider both direct and screened particle interactions 
and also a relativistic kinetic equation. The exponents in the distributions obtained are determined by the 
nature of the interaction and by the particle dispersion law. We study the locality of the obtained spectra. 
We show that in the case of Coulomb interactions a distribution with a constant flux is local. We analyze 
the dispersive properties of media with Coulomb interactions for the case of power-law distributions. 

PACS numbers: OS.20.Dd 

1. INTRODUCTION 

It is commonly assumed that interparticle collisions 
lead to equilibrium distributions. This conclusion is 
based upon the fact that the collision integral in the 
Boltzmann kinetic equation vanishes for equilibrium 
particle distributions and is a consequence of the de­
tailed balancing principle (equality of the probabilities 
for direct and reverse transitions) and the conservation 
laws. 

We have shown in brief communications[l) that colli­
sions can also lead to non-equilibrium power-law par­
ticle distributions with a flux from a source to a sink 
region. In fact, the exact power-law solutions which 
we found make the Boltzmann collision integral vanish. 
It is necessary for the existence of such solutions that 
the dispersion law and the transition probability be 
homogeneous. These solutions are in a well defined 
sense analogous to the Kolmogorov spectrum in the in­
ertial range[2] or, more precisely, to the weak-turbu­
lence distributions in a system of waves[3-5] or of 
waves and particles. [6] However, that is a formal, 
methodological generality. The solutions found do not 
assume the existence of wave turbulence. They are 
established as the result of a direct interaction (colli­
sions) of particles. 

EarlierCll we mainly paid attention to the applications 
of the power-law distributions to different physical 
problems, namely: the possibility to establish cosmic­
ray spectra due to the direct interaction between par­
ticles (in contrast to the usually invoked mechanism of 
the interaction of the particles with waves in a turbulent 
plasmac7, 8]), changes in such processes as Landau 
damping and the escape of particles, or the possibility 
of lowering the Lawson criterion. It is well known that 
one quite often encounters power-law and quasi-power­
law distributions and that they may also be important 
in other cases (see in that connectionC9- 12 ]). 

We must note that stationary solutions of the kinetic 
equation for particles that differ strongly from the Max­
well distribution have also been studied in the past (in 
that connection see, e. g., U3,14] and the literature cited). 
The basic difference between those works andUJ and the 
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present paper is that in those papers we studied the re­
laxation of a small fraction of the particles on the back­
ground of an equilibrium distribution which corre­
sponded to a different physical situation and allowed the 
linearization of the collision integral. 

In the present paper we shall not touch upon applica­
tions but we obtain power-law distributions which have 
been used earlierCl ] from the Boltzmann equation, and 
we discuss some general properties of such solutions. 
These exact solutions of the non-linear Boltzmann in­
tegral equation can be found relatively easily thanks to 
its symmetry properties which are used in an essential 
way. The first to suggest symmetry transformations of 
the collision integral, its inversion in particle space, 
was Zakharov (see[3]). We shall use more general vec­
tor transformations in p-space which are applied in 
weak turbulence theory (see[4] and the review by Ka­
domtsev and one of the authors[5]) as these transforma­
tions enable us to deal directly with matrix elements 
which are not averaged over angles which is very con­
venient, and also to obtain non-isotropic drift deviations 
from isotropic distributions. On the basis of such an 
approach we analyze in the present paper power-law 
solutions of the Boltzmann, Landau, Lenard-Balescu, 
Belyaev-Budker, and Klimontovich-Silin kinetic equa­
tions. 

We have already noted above that the power-law solu­
tions have a "Kolmogorov character" and their proper­
ties are determined solely by the internal symmetry of 
the non-linear collision integral while the particle (or 
energy) flux in velOCity space is conserved. We find 
the distribution function for any interparticle interac­
tion law, which possesses a well defined degree of ho­
mogeneity (the exponent of the power-law distribution 
depends on the degree of homogeneity of the interaction 
law). The above mentioned problems are dealt with in 
Secs. 2 to 4 of the present paper. We study in Sec. 5 
locality problems, i. e., convergence problems of the 
collision integral for power-law distributions. We 
elucidate in Sec. 6 some characteristic peculiarities of 
the dispersive properties of a medium with particle 
power-law distributions for the case of Coulomb inter­
actions between them. 
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2. POWER·lAW SOLUTIONS OF THE SOL TZMANN 
EQUATION 

We write ~e Boltz~ann El<luation in the form 

1i.=I{n} = J dTW(pp.lp,p,)f(pp.lp,p,), (2.1) 

where 1Zp is the particle distribution function (for the 
sake of simplicity we consider for the present one kind 
of particles), dn, ~ dI>adI>s, 

w.=U(PP.lp,p,)6(p+p.-p,-p,)II(E+E.-E2-E,) (2.2) 

is the scattering process probability, 

(2.3) 

/, is a quantity which is quadratic in the distribution 
functions and whose structure takes into account par­
ticle conservation during scattering, while momentum 
and energy conservation is taken into accouilt by the 6-
functions in the transition probability. 

The transition probability wp and the function/, 
possess the obvious symmetry properties: 

w(PP. Ip,p,) =w(p.plp,p,) =w(p,p,lpp.), 

f(pp. I p,p,) =f(p.plp,p,) =-j(p,p.lpp.)· 
(2:4) 

We shall assume the particle energy E(P) and also the 
matrix element Up and, thus the transition probability 
w, to be homogeneous functions: 

E(t.p) =t.'E(p) , U(t.p}.p.lt.p,t.p,)=t."'U(pp.!p,p,), (2.5) 

and the system to be isotropic, as a result of which E 
and ware invariant under any rotation i: 

(2.6) 

We shall show below that the kinetic Eq. (2.1) in that 
case has not only the equilibrium but also two other 
stationary solutions of the form 

.' {8.=-(m+3d)/2~ np""'p ~'""'E', s = 1 • 

80=8.+ /, (2.7) 

Here d is the dimensionality of momentum space. 

The physical meaning of the power-law distributions 
consists in the fact that they describe distributions with 
a source (sink) at the origin, i. e., that they are solu­
tions of the inhomogeneous equation l{n} = - rpl(p)6(P), 
where Sl corresponds to a constant energy flux along 
the spectrum rpl =J1E-l(p), and So to a constant particle 
flux rpo(P) = Jo= const. (Here Jo and J l are the particle or 
energy power density of the source.) By using the 
structure of the collision integral and assuming that the 
distributions are locall ) and isotropic we can easily 
verify this, if we write the particle and energy conser­
vation laws down: 

01. 01. 
-;;-=-41lp'I{n}, -=-41lp'E(p)I{n}. 
vp' op 

(2.8) 

Hence, taking into account that l{n}cx: n2 we can see that 

(2.9) 

The fluxes J1 and Jo are equal to the source power. 
Comparing the exponents in (2.7) and (2.9) we see that 
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FIG. 1. Similarity transformation 
connected with the conservation laws for 
the scattering of identical particles_ ,'" , I CJp \ 

i \ 
L \ ezp ------...> 

The transformations GI transfer the 
vectors PI into the fixed vector p. 

Sl corresponds to a constant energy flux and So to a 
constant particle flux. 

We change now to actually solving the integral equa­
tion (2.1) in the stationary case. To do this we con­
sider a symmetry transformation. To be precise, we 
transfer in the quadrangle constructed on the vectors 
p, Pt, P2, and P3 the vector Pt to P by means of a rota­
tion i1 and a dilatation by a factor Al = Plp1' The opera­
tion Gl = Ali1 changes a quadrangle into a similar one 
for a fixed side p corresponding to the external momen­
tum. As Pt, P2, and P3 are integration variables, we 
can consider this operation as a change of variables de­
termined by the relations (see Fig. 1; the original vari­
ables are indicated by primes) 

p.'=G.'p,. p,'=G,P.,. p/=G,p, (G,p,=p), (2.10) 

The Jacobian of the transition is then equal t02 ) Af'l and 
the scattering probability transforms as WG1' = Al"·B-dWp • 

Indeed, both the matrix element and the 6-functions 
are invariant under the simultaneous rotation of all 
four momenta which is carried out under the transfor­
mation Gl> whereas the dilatation, because of the homo­
geneity properties, gives a factor Al" from the matrix 
element, AiB from the energy conservation law, and A~ 
from the momentum conservation law. 

As a result of the change in variables the integral 
l{n} transforms thus to 

l{n}= SdTwp/c",f.,', 

/G,,,=j(pG,'P. I G.P,G,p,), r=m+3d-~. (2.11) 

We similarly introduce the transformations G2 and G3 

which transfer P2 into P and P3 into p, respectively. 
The corresponding changes in variables are then given 
by the relations 

p,'=G,P'. p,'=G2'P,. p,'=G,p, (G,p,=p). 
(2.12) 

p.'=G,P,. p,'=G,P.. p,'=G,'p, (G,P.=p). 

Using all four transformations (the identical one and 
Gl> G2, G3 ) we can thus write the collision integral in 
the symmetrical form: 

(2.13) 

We shall look for isotropiC solutions in the form n =Es. 
For such functions /GP = ± A2BS/ p where the minus sign oc­
curs for G2 and G3 which change the incoming to out­
going particles. For instance, after the transforma­
tion G2 the function /, becomes 
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f ",p'" f (pG,p,1 G,'p,G,p d ~ f (G,p,G,p,1 G,pG,p,) 
(2.14) 

~J.:" f (p,p,1 pp,) ~- (pip,) ,.,/ (pp, I p,p,) ==--,.:" fl"~ 

Proceeding similarly for G1 and Gs we reduce the col­
lision integral to the form 

(2.15) 

While the equilibrium solution corresponds to .the 
vanishing of 1M the vanishing of the square bracket in 
(2.15) leads to new solutions. To be precise, when v(s) 
=0 (s =so) the bracket vanishes because of the particle 
number conservation law and when v(s) = -1 (s =S1) be­
cause of the energy conservation law. Just as the 
equilibrium solutions are parametrized by the average 
energy, the new solutions are parametrized by the en­
ergy (or particle number) fluxes. We find below (Sec. 
4) solutions in which small fluxes of several conserved 
quantities, such as the momentum when there is a small 
drift present, are present. 

The solutions are very similar to those which occur 
in the weak turbulence theory for waves. [3-6] But, how­
ever deep the analogy is, in the case of the Boltzmann 
equation we are dealing with a physical effect of a prin­
Cipally different nature which orcurs in a system of par­
ticles. In fact, the solutions discussed occur when 
there is no particle-wave interaction. 

3. EXAMPLES OF POWER-LAW DISTRIBUTIONS 

The simplest example of a system in which the solu­
tion found above can be realized is provided by a sys­
tem of particles with a power-law interaction law, de­
scribed by a potential V(r) = Vor-"'. The scattering 
cross section da/ dn for a power-law potential is (in the 
three~dimensional case) a homogeneous function of p of 
degree - 2f3/ 01. (Indeed, the characteristic distances r 
defined by the condition V(r) - E leads to the cross sec­
tion[1S] da/dnrxr2rx (Vo/E)2/",.) Hence it follows for 
the transition probability that 

Fp-up-'E(p)- - - ~ do E' (V ) 2/" 

dQ p' E . 

The exponent of the degree of homogeneity of the square 
of the matrix element is thus equal to 

m=-·4+2~ (i-a-'). (3.1 ) 

The most important particular cases are the van der 
Waals interaction (01 = 6, n1 = - t) which leads to dis­
tributions with exponents sOCZw = -19/12, srt W = - 25/12, 
and the Coulomb interaction (a=l, m =-4) thanks to 
which there appear distributions with sfoul = - ~ and 
S~OUI =_%. The latter distributions can also be obtained 
directly from the Landau equation (see Sec. 6). 

It is convenient to use in the Coulomb case the Born 
approximation. The matrix element depends then only 
on the modulus of the transferred momentum lik =P!, 
-Pa (and must be symmetrized according to (24. »: 

2,,; J' U(PP,lp2P')~hlV(k)I', V(k)= drV(r)e''', (3.2) 

whence it is clear that Up is a homogeneous function of 
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degree m = 2( a- d) = - 4. The Coulomb interaction 
makes it necessary to take into account the polarization 
of the medium which leads to screening. 

The Lenard-Balescu equation which takes dynamical 
screening into account has the form (2.1) where the ef­
fective matrix element V(k, w) in contrast to (3.2) de­
pends both on the momentum transferred and on the en­
ergy transferred. In the non-relativistic case we have 

(3.3) 

where £ij is the permittivity tensor of the medium, tak­
ing into account the temporal and spatial dispersion. 

. The longitudinal permittivity 

4,,;e' f k fJnlfJp 
e'(w,k)=l+-- dp---. 

k' w-kv 
(3.4) 

is thus important. In that case we have in the region of 
static screening (krD«l, k2V2»W2)E~(krD)"2, where 
rD is the effective Debye radius and v2 the mean squared 
velocity. The matrix element Vab rx eaebr~, which leads 
tom=O andsg=-i, sf=-~. 

We now consider the relativistic case restricting our­
selves only to scattering processes in which particles 
are conserved and neglecting pair creation and annihila­
tion. The kinetic equation has in that case again the 
form (2.1) with a matrix element V which can be ex­
pressed in terms of the Fourier component of the Green 
function Y of the Maxwell equations[16]: 

(3.5) 

Here v is the three-dimensional particle velOCity, c the 
velocity of light, and w, k are as before connected with 
the transfer of energy and momentum in the collision .. 
In the isotropiC case 'fj can be expressed in terms of 
the longitudinal £1 and the transverse etr parts of the 
permittivity Eli: 

:9 ~ 6'j-k,k;lk' + k,k; c' 
'J (w/c)'e"(w,k)-k' k' ~;'e'(w,k) 

If we neglect retardation e l = e tr =1, whence follows 
(in three-dimensional notation) the Belyaev-Budker 
equation. [16] The derivation proposed in the preceding 
section refers thus completely also to the relativistic 
case in the region where the dispersion law and the 
transition probabilities are homog~neous. The latter 
means a restriction to the ultra-relativistic condition 
f3=1 (E=cp). The homogeneity exponent m for the case 
of a Coulomb interaction and when the Debye screening 
dominates remains the same as in the non-relativistic 
limit. We are thus led to the distributions 

(3.6) 

These distributions turn out, however, to be non-local 
(see Sec. 5). 

Above we considered collisions between only one kind 
of particles, e. g., between ions on a compensating 
electron baCkground, assuming that the ion subsystem 
relaxes quasi-independently of the electron subsystem. 
Such a situation exists practically always for ions in a 
system with comparable ion and electron temperatures 
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(Iii» lie). For electrons, on the other hand, a" relaxa­
tion which is independent of the ions is possible, as 
follows from an analysis of the relaxation times, [17] if 
Te «meT ;1m;. In the case of quasi-independence of the 
subsystems the second component is important in the 
sense that it plays the role of a background guarantee­
ing the quasi-neutrality of the medium and affecting its 
dispersive properties, the screening, and thereby the 
homogeneity exponent of the scattering probability. 

In concluding the present section we estimate the 
characteristic times for establishing stationary dis­
tributions with a flux. We find T;1 as the functional 
derivative liI{n}/6n whence, assuming locality and using 
(2.7), we get 

_I {I/II'I'U.'I'E-I(P)P'I, 
Tp - I/,I':'U."'E-'I,(p)p'/' (3.7) 

respectively, for the solution with an energy and a par­
ticle number flux. In particular, it follows from this 
for a local Coulomb distribution (with an energy flux) 
(U;Ou! = 21T(4 1Te2/p2)2 

(3.8) 

where m is the particle mass. If the electrons are 
relativistic we have 

(3.9) 

With power-law particle distributions there is con­
nected the possibility, mentioned earlier, (ll to explain 
the power-law spectra of cosmic rays(18] and corre­
spondingly of the cosmic radio-emission of discrete 
sources without invoking for this ideas about "turbulent 
reactors. ,,(7,8] The index y of the differential flux den­
sity I(E) =vnpg(E) 0: E-Y (v = aE/ap, g(E) =d 3p/dE) is then 
connected with the exponent of the distribution accord­
ing to ynonre! = _ (1 +s), yre! = - (2 +s). 

The condition that over the characteristic dimen­
sions of the system L Coulomb relaxation can take 
place 1 =VTp« L leads according to (3.8) to the condi­
tion IJ1 IL2»m 3e-4v 7. Estimating the flux along the 
spectrum J 1 using the total power W of the source 
through J1 - W/L3 we are led to the inequality 

~ »( :e )' ( 7-)' 10"[CGSE], 

which can be satisfied in powerful and compact cosmic 
objects. 

4. MULTIPLE·FLUX DRIFT·TYPE DISTRIBUTIONS 

The solutions describing the occurrence of s"mall 
fluxes close to an equilibrium or a stationary distribu­
tion are, apparently, realized more often than the pure­
ly single-flux power-law solutions. Since the equilib­
rium Maxwell distribution is not self-similar, we re­
strict ourselves below to determining drift deviations 
from the above found single flux solutions, and also 
from a plateau which clearly possesses self-similarity 
properties. It is most important that these deviations 
can in the general case not be obtained by a Galileo 
change E - E - p. tiu - ti J1. because the initial distribu­
tions are non-equilibrium ones. This fact has already 
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been discussed earlier[4] for the weak turbulence case 
for waves. 

We look for the solution of the Boltzmann equation 
(2.1) in the form 

(4.1) 

and we shall restrict ourselves to terms linear in tiJ1. 
and tiu. It is convenient to write the linearized colli­
sion integral and the functionfp in the form 

(4.2) 

where 10 andfo have been considered earlier (see (2.15» 
while the quantities ft and fp are equal to 

i?=nE,nE,(E,'+Ei) -llEllE.(E'+Ei) , 

f p =nE ,nE.(E,'P2+E,'p,) -llE llE ,(E'p+E,'p,). 
(4.3) 

We use the symmetry transformations introduced 
above. The integrals IIJ. and lu then factor. For the 
factoring of Iu the vector nature of the transformations 
used is essential. Finally, completely as in the case 
of waves, [4] we get 

£"1 
I = - SaT lC .J" "[E-"+E-"-E-"-E-"j .. 

)1 4 J I' I!! 3 

(4.4) 

v,=\'(s)+t, \·,=\'(s)+a+2!~. 

We used essentially in the factoring the power-law 
character of the isotropic unperturbed solution. It is 
clear from the expression for 10 that such solutions are 
flux (s =So, s =SI) and plateau (s =0) solutions. Linear 
deviations from these solutions describe the appear­
ance of other small fluxes of conserved quantities. We 
consider them separately. 

The deviation from the distribution with a constant 
energy flux has the form3 ) 

(4.5) 

Here ti J1. has the meaning of a small particle number 
flux and I5u that of a momentum flux along the spectrum. 
We check this somewhat later by using dimensionality 
considerations. In particular, for non-relativistic par­
ticles (,8 = 2) 

(4.6) 

and in the ultra-relativistic case 

(4.7) 

(we remind ourselves that we have here dropped con­
stants with dimensions). The impossibility of the sub­
stitution is clear: (E - tiJ1. -p. tiU)SI does not make the 
collision integral vanish. 

The deviation from the solution with a constant par­
ticle flux nE = ESo has the form 

(4.8) 

where ti J1. has here the meaning of an energy flux. In 
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TABLE 1. 

Distribution n ; E'. 
Deviations from 

Deviations from 

1 
the power-law 

E~p~ 

~'~"' 
Particle flux in distribution the plateau 
.pace I(E);E-1. (4.1) (4.11') 

Interactions 
-

'=8, 8~" '='1 B=S. 

~ I Y, I Y', t I I 
t, t, & 

" .. 3 t a 

Non-relativistic systems 

van der Waals -'I' _25/12 _19/12 0 -1 -1 
interaction 

Coulomb -4 -'I. 1/. _'I. -'I. 1 0 -1 -1 -'I, _3/, -'I. 
interaction 

I)ebye (I -'I. 5/4 _7/4 'I. 1 0 -1 -1 -'I, -'I, -'/0 
screening 

Relativistic systems 

Coulomb -4 -'I. 'I, -2 0 1 -1 -1 -2 -5 -4 -6 
interaction 

Debye () -'I, 'I, -4 2 1 -1 -1 -2 -9 -8 -10 
screening 

*Non-local distributions. 

the non-relativistic limit we get 

(4.9) 

which in this case indeed corresponds to the first term 
of the expansion of (E - 15 JJ. - p. ou)So in terms of the ad­
ditional drift term. This is connected with the singu­
larity of the quadratic dispersion law and the solution 
with a constant particle flux. In the ultra-relativistic 
case 

(4.10) 

The deviation from the three-dimensional plateau 
np = 1 (the solution corresponding to a zero flux) has the 
form 

(4.11) 

The first three terms in (4.11) make jp vanish in the ap­
proximation which is linear in the drift parameter. The 
solution n.. = 1 + EO i1 + p' oii. is not connected with the 
presence of self-similarity. The last terms in (4.11) 
make the factorizing factors in (4.4) vanish where 0 JJ.o 
is proportional to the particle flux and 0 JJ.l to the en­
ergy flux. 

We give in Table I the values of the exponents for the 
distributions (4.1) and for the deviations from the 
plateau, taken in the form 

(4.11') 

To elucidate the physical meaning of the additional 
terms we can use considerations similar to those given 
earlier. C4l We use then the differential form of the 
conservation laws (2.8). We restrict ourselves here 
to the simplest consideration, using the local nature 
and dimensionality arguments. Indeed, we can write 
the multiple-flux particle distribution in terms of a di­
mensionless function of the ratio of the fluxes F: 

II I" F (EM, EP6X) I 1'/ ( 611 p6x ) 
np= 1 ·JE~l 11.\1.' hT ' np= 10 ~EsoFo, JoE 'lop" , 

. (4.12) 
np=n,F(6/1/x, E6I,/x, Ep6x/p'x) , 
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Divergence of leoti for a power..taw distribution 

IcoU{E'} - S dp.l. •.• 

8=81 .= .. 
.,.. I .,., I .,. . I .,." .l.' I 4, I 4. I 4" 

'/' 1/, -'I, -'I. 'I. 'I, 1/2 ... _3/. 

_3/2* '/. -'/0 _1/2 -'/.' 'I. -'I. '/ .. 
'I, _1/2 '" 1/2 *_ai2 0 l' -I 

_3/2* 'I. -'I. lit '" -1· 2 -I I' 

where 011 is the momentum flux, and x the magnitude 
of the dimensionality of the energy flux, expressed in 
terms of the "equilibrium" distribution no =n/p~ (n the 
number of particles per unit volume, PT = (21Tm T)l/Z, T 
the "temperature") and the transition probability x 
=p3d Upn~. 

In the approximation which is linear in the small 
fluxes we get from (4.12) 

n,,=I/,I'B"[1+ EM, + Ep6~]=I/II'''E''[1+E6!t.+ EP~U]. 
. II lip- P 

np=I/,I'''E'' [1+~+ p6x ] =I/,I'''E'' [ 1+E-16!tt +p6u J. (4.13) 
I.E lop' P' 

np=n,[ 1 +6l./x+E6I,/x+Ep6x/p'x). 

Hence we can easily establish the coefficients which 
have dimensions in the exact solutions of the integral 
equations obtained above. 

5. STUDY OF THE CONVERGENCE OF THE 
COLLISION INTEGRAL 

We study the convergence of the collision integral 
for the power-law distributions (4.1) which we have 
found, restricting ourselves to the case, which is im­
portant for applications, where the matrix element of 
the scattering probability depends on the transferred 
momentum and energy. The conservation laws in (2.2) 
allow one or simultaneously two of the momentum vari­
ables (e. g., Pi and P3) to vanish and correspondingly 
three (Ph Pz, P3) or two (Ph P3) from them to become 
infinite. Because of the symmetry of the integrand it 
is sufficient to study the convergence in the regiOns 

1) P, .... O. II) Ph p, .... O, III) PI, p, .... oo, IV) Ph P,. p ...... oo. 

We need then the asymptotic behavior of the transition 
probability Up in the indicated regions while their sym­
metry properties which, when taken into account, lead 
to an improvement of the convergence (cf. [41), are im­
portant. 

In the case of interest to us the matrix element V(k,w) 
in (3.2) depends solely on the momentum (and energy) 
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transfer. This enables us to find the general form of 
the asymptotic behavior without turning to the explicit 
expression for V(k, w). Let PI «p,pz,Ps. We can then 
drop Pt both in the conservation laws and in the momen­
tum transfer and, hence, 

U(pp,lp,p,)= 2: f[lV(p,) I'+IV(-p.) 1'+2 .. 3] [HO (~,)], 

( p E.) 
V(p)=V ft'lt 

(5.1) 

The asymptotic behavior of Up in the region of two small 
(large) momenta depends on the sign of the degree of 
homogeneity m of that function as we can for m > 0 drop 
in Up terms with a small momentum transfer, while 
for m <0 we can drop those with a large transfer. Us­
ing this we easily obtain the asymptotic behavior of Up 
which we write in a form which is convenient for what 
follows 

U(PP,lp2.P') = (I p,lIp, I) m,/,( I pllp,l )m';'u(p+p,1 P,. p,). 

m,=(m-lm/)/2. m,=(m+lm!}/2. P,.P,¢:.p.P'. 
(5.2) 

The function u(p I Pi> Ps) is of order unity and possesses 
the following symmetry properties: 

u(plp,. p,)=l«plp,. p,)=u(pl-p" -p,). 

Its explicit form can be established by comparing (5.2), 
e.g., for m>O: 

We consider the convergence of the collision integral 
in region I. If ~ - 00 as P - 0, the dangerous term in 
l{n} is proportional to nnl' (As ~ - 0 the collision in­
tegral certainly converges in region I.) Taking initially 
only the main term of the asymptotic Eq. (5.1) into ac­
count we find that the collision integral converges as 
PI - 0 simultaneously with integrals such as 

J dp,n." p,¢:.p. 

Hence we get the condition for the convergence for iso­
tropic power-law distributions np = ES : 

(5.3) 

We get by the substitution s -s +t from (5.3) the. condi­
tion for the convergence to zero for a small isotropic 
addition to the distribution, proportional to an addi­
tional flux 0 fJ.: 

~'+~t>O. 

For distributions with small momentum fluxes cc I5u 

np=E' (1 +E'pt'iu) 

the main term of the asymptotic behavior of wp does 
not contribute to the integral of the anisotropic part of 
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~. Taking the next term of the expansion of wp into 
account we are led to the condition for the integral of 
the anisotropic addition to converge to zero: 

~'+~6+2>O. (5.4) 

Using the same asymptotic behavior (5.1) with the sub­
stitution Pt - P and dropping P in the conservation laws 
we get similarly to the preceding the conditions for the 
convergence of the collision integral in the region IV 
(Pll Pz, Ps» p): 

The three inequalities (5.5) correspond, respectively, 
to the convergence of each of the three terms of the 
distribution (4.1). 

The study of the convergence of the collision integral 
in the region II is somewhat more complicated. This 
is caused by the mutual cancelling of the contributions 
from two dangerous terms in/p' As before assuming 
that np - 00 as P - 0 we expand Ip in terms of the small 
momentum transfer q =Pt -Ps, pz =p +q: 

iJn 
/p=n,n,-nn,=n(n,-n,) +q ap n,+O(n,q'). (5.6) 

Restricting ourselves to the main term in the asymp­
totic expression for wp and integrating over~, using 
momentum conservation, we are led to an integral of 
the form 

. iJE J dp, dp,(p,p,)·"""pm'n(PIP,. p,)o (E,-E,-I{ up) . I[=P,-p,· 

P'.3<f""P 

(5.7) 

By virtue of the symmetry of u(p I Pt, Ps) under the 
substitution 1 = 3 the first term of the expansion of II> 
in (5.6) does not contribute to the integral which we 
have written down. The integral of the second term 
also vanishes as it is odd in q and the remaining part 
of the integrand does not change under the substitution 
PI- -Pt, Ps- -Ps(q - -q). It is thus necessary to re­
tain the next term in the transition probability, in par­
ticular, to expand the argument of the o-function of the 
energy conservation law up to terms which are quad­
ratic in q: 

DE 1 iJ'E 
E+E,-E,-E,""E,-E,-q-a --;;q.q;-,-.-. 

p - up.op; 

The first terms in/p then give a non-vanishing contribu­
tion to the collision integral and the corresponding in­
tegrals converge more slowly than the integral of 
O(n3QZ) in (5.6). The convergence conditions can be 
established by calculating the powers, and this leads to 
the following inequalities for distributions such as (4.1): 

~,>O, ~,+~t>O, ~,+~6+2-~>O. ~,==m,+2d+~-1+~8, 

m,=(m-lmi)/2. (5.8) 

In region III (PI'PS»P,Pz) there occurs no cancella­
tion in II> and the symmetry of wp under a change in sign 
of all arguments improves the convergence of the in­
tegral of the anisotropiC part of the distribution by one 
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power of p. The convergence conditions are given by 
the inequalities 

a,<O, a2+~t<O, a2+~Il<O, Ll2""m2+d+1-~+~8, m,=(nt+lmj)/2. 

(5.9) 
We note that we have not discussed the region of 

small momentum transfers in which the Coulomb matrix 
element is singular. The presence of this singularity 
is not connected with the form of the distribution func­
tion and can be removed, e. g., by changing to the 
Landau collision integral (6.1). 

We apply the convergence criteria which we have 
found to the stationary particle distributions obtained 
above. One usually calls a distribution local which is 
such that the convergence of the collision integral is 
guaranteed in all regions I to IV. The main contribu­
tion to the integral comes for a local distribution from 
integration over the regionpl,pz'P3-P' According to 
(5.3), (5.4), (5.5), (5.8), and (5.9) the distribution with 
a constant energy flux in a non-relativistic Coulomb 
plasma (m = - 4, s = -~) is local in that sense. tll The 
addition to it which is produced by a small momentum 
flux is also local, and thereby also the distribution np 
=E-s/4(1 +p' <5u). The distribution with a constant par­
ticle flux in the non-relativistic case for m = - 2 also 
has the property of being local (together with aniso­
tropic terms). The other distributions are non-lOCal, 
of course, within the framework of the Born approxi­
mation used here. The degrees of divergence are equal 
to the appropriate values of a (see the table). 

Non-local distributions, being formal solutions of the 
kinetic equation, nevertheless require an additional 
study because to discover them we must operate with 
divergent expressions and the- problem of their exis­
tence remains open. The difference between local and 
non-local solutions is very clear from the example of 
the Landau kinetic equation. 

6. LANDAU COLLISION INTEGRAL. DISPERSIVE 
PROPERTIES OF A SYSTEM OF PARTICLES WITH 
POWER-LAW ENERGY DISTRIBUTIONS 

Systems of charged particles with Coulomb interac­
tions possess singularities which are connected with the 
divergence of the scattering cross section for small 
momentum transfers. This leads to the fact that one 
can restrict oneself to the diffusion approximation and 
write the collision integral in the Landau formtl6l : 

I {n} =-div j, _ - "s ' ( Il.. u,u. ) ( un.' an. ) /i=Jte)~ dp ---"'--3 IIp -.-, -np '-, - , 
u u up, (}P. 

},=In..!. ( E)', (6.1) 
n e' 

where u = v - v', ;\ is the Coulomb logarithm, and j the 
particle flux density in momentum space. For a power­
law distribution function np =Apzs we find easily that 

l{n;=16~'e'm}'A'p" { (48+3) (48+5) 
(28+2) (28+3) (28+5) 

+~[~ (!!!.)"+3 + 28+1 (.!!!.)'H' ]}, 
3 2s+3 p 2s+2 p (6.2) 

where pz and Pl are the maximum and minimum mo-

99 SOy. Phys. JETP, Vol. 44, No.1, July 1976 

menta of the power-law ,distribution. It is clear from 
Eq,- (6.1) that for the case of Coulomb interactions the 
distribution function with s = - i is local (i. e., the col­
lision integral remains finite as Pl - 0, pz - 00) as was 
shown in Sec. 5. 

Solving Eq. (2.5) and using Eq. (6.2) for the collision 
integral we get the energy flux in momentum space J l : 

32:t'e'", --,-___ ~A2 1.8+5 

(28+2) (28+3) P , 

x{ ~::~ + ; [ 28 ( ~' ) 2,+, +(28+1) ( ~2 ) "+']}, (6.3) 

_ whence it is clear that the energy flux is in the direc­
tion of small momenta, while the constant A in the lo­
cal distribution (8 = -~) is given in terms of the flux as 
follows (as Pl - 0, pz - 00 ): 

[ 5 ]~ 1 on18 
ct l = -- -""--(831)3 e'",'I. e''};t· . 

(6.4) 

The normalization factor in (2.9) is correspondingly 
equal to al zOo 57/;\1IZ while the appearance of the Cou­
lomb logarithm in the estimate for al is connected with 
the Coulomb divergence. 

Power-law particle distributions show up first of all 
in those properties of the medium which are sensitive 
to the presence of particles in the "tail." For instance, 
the dielectric properties of a system of charged par­
ticles depends strongly on the particle velocity distribu­
tion function. As an example we consider the longitu­
dinal permittivity (3.4) for the case of an isotropiC 
power-law particle distribution corresponding to a non­
vanishing flux in momentum space. We have studied 
earliertll the damping of Langmuir waves under such 
conditions when the number of particles in the region of 
the power-law distribution is small compared to the 
total number of particles but they determine the imagi­
nary part of the permittivity. The expression for the 
imaginary part of the frequency then has the following 
form(1]: 

, w ' 
1m w<wo, v,<u. = k < V2 • 

(6.5) 

The particle number density n and the frequency Wo are 
determined by the equilibrium part of the distribution. 
We note that for 8 > - t (which includes both Coulomb 
power-laws) the damping increases with increasing 
phase velocity (in contrast to the usual Landau damping 
in an equilibrium system). The problem of the effect 
of this fact on the stability and also on the collisionless 
non-linear relaxation of the Langmuir waves requires 
speCial attention. 

Here we wanted to draw attention to the possibility to 
evaluate the dielectric permittivity for particle power­
law distributions without making the assumption that the 
number of particles in the power-law region is small. 
This is caused by convergence of the appropriate inte­
grals (see (3.4» for the power-law functions~. Be­
cause of the absence of a characteristic velocity scale 
parameter in the power-law distribution the imaginary 
and real parts of the permittivity will be of the same 
order of magnitude in that frequency and wavelength re-
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gion where the dispersive properties of the medium and 
the damping of the oscillations are determined by the 
interaction with the particles which obey the power-law 
distribution. 

As the power-law distribution can be realized only in 
a limited velocity range V1 < v < V2 while the dielectric 
permittivity (3.4) contains an integration over the whole 
of p-space, it is for the evaluation of e(w,k) in general 
necessary to know the complete distribution, including 
also the source (v;:: va) and sink (v ~ V1) regions. How­
ever, if the integral in (3.4) converges for the power­
law distribution n, =Ap28 both as p - 0 and as p - 00 the 
contribution to e( w, k) can be found without a detailed 
knowledge of the complete distribution function. Below 
we restrict ourselves to considering just such a situa­
tion which, as one can easily verify, corresponds to 
- i < S < - t and, in particular, includes the case of the 
Coulomb distribution with an energy flux, s= - i. 

For an isotropic distribution n, we are after integrat­
ing over the transverse momentum led to the following 
form for oe:; e -1 (n(oo) =0) 

() '( k)- 16lt'e' Cd pvn(p) 
£ (i), - - ----,;;- J P u'!.-v2 t 

o (6.6) 

68"(W, k)=8n'e'm'k-'un(mn), n=w/k, 

whence we get, in particular the above given conver­
gence conditions for n ex pas. 

We consider the phase velocity region V1 «u« vz. To 
find the contribution from the power-law part of the dis­
tribution to OE we can in this case replace the integra­
tion over the region P1 <p <Pa by an integration over the 
semi-axis because the integral converges for -% <s 
< - t. In this case the real part of 0 E will be of the 
same order of magnitude as the imaginary part. In par­
ticular, for n =Ap28, s = - t, - ~ the principal value in­
tegral can easily be evaluated and we get for OE 

811'e' ( w )""'( 1 ) oe(w,k)=--A m- +-+i, 
mw' k 2 

(6.7) 

where the upper sign refers to a particle flux (s = - t) 
and the lower one to an energy flux (s = - i). For Cou­
lomb distributions the dispersion equation e(w, k) thus 
leads to 1m w - He wand there are no branches such as 
Langmuir waves. 

In conclusion we must note that as in nature, and re­
cently also in experiments, power-law distributions or 
at least power-law tails of distributions are very often 
encountered, one may think that they are formed by a 
unique and very common mechanism. In the present 
paper we have shown that when there is.a source pres­
ent such amechanism may be provided by the direct 
collisional interactions between particles taking their 
screening by a self-consistent field into account. The 
exact power-law solutions of the Boltzmann kinetic 
equation with a source may thus serve as a basis to ex­
plain power-law distributions in different systems from 
unique and rather general positions. 
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°Indeed (see Sec. 5), it turns out that only the distribution 
corresponding to an energy flux for the Coulomb interaction 
of non-relativistic particles, including also the case when 
there is a small momentum flux, superimposed upon the basic 
solution (see section 4), is local. Nonetheless all formal 
solutions correspond to the structure (2.9). 

2)We can establish that the Jacobian is independent of the angles 
by direct calculations. Indeed, this property becomes clear 
after going over to integration over the internal angles of the 
polygon which do not change under the Similarity transforma­
tions C/. 

3)In the corresponding formula of our earlier paper!1I there is 
an error. 
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