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Nonlinear interaction between Alfven and sound waves in a plasma layer with random concentration 
inhomogeneities is considered. Equations are derived for the interacting-wave intensities averaged over the 
inhomogeneity ensemble. Solutions of the equations are presented in an approximation with a given Alfven 
wave field. Results of a numerical calculation of the plasma-layer parameters are reported. 
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The propagation of nonlinear signals in media with 
random inhomogeneities has been recently discussed 
in the literature (seeCI-101). The problems considered 
dealt with the interaction of averaged (over the ensemble 
of inhomogeneities) fields of quasimonochromatic wave 
packetsCl - 31 as well as with the propagation of nonlinear 
waves (solitons, . shock waves) in systems with weak[4-6J 
and strong dispersion. C7J It is shown in these papers 
that random inhomogeneities lead to the average-field 
damping that can be of either high frequency (such as 
viscosity) or low frequency (friction) in media having 
resonant properties. Bogatyrev and one of us, [91 using 
a transmission line with random parameters as an ex
ample, have confirmed the main results predicted theo
retically in[21. 

It should be noted that the cited papers left open the 
question of the behavior of the fluctuating component of 
the field into which a fraction of the average-field en
ergy is transformed as a result of scattering. This is 
the most complicated problem and pertains to the still 
unanswered question of the dynamics of the develop
ment of self-consistent turbulence. To a certain de
gree, an answer to this question might be obtained from 
a solution of the problem of the behavior of the total 
field in a randomly inhomogeneous nonlinear medium, 
since it constitutes the sum of the average field and its 
fluctuating component. In this paper, using the inter
action of Alfv~n and acoustic waves as an example, we 
obtain reduced equations for the complex amplitudes of 
the total fields of these waves in a plasma with one-di
mensional stationary inhomogeneities of the density. 
We derive kinetic equations for the average field inten
sities in the randomized-phase approximation. We 
analyze some general properties of the solutions. We 
report also the results of a numerical calculation of the 
distribution of the average wave intensities in a plasma 
layer for different system parameters. The results 
are, in essence, of general theoretical interest, since 
the calculation procedure proposed in this paper can be 
used to describe a rather extensive class of nonlinear 
interactions in media with random parameters. 

1. The initial system of one-dimensional (no II Ox, 
Ho is the external magnetic field) magnetohydrodynamic 
equations describing the propagation of Alfv~n and 
acoustic waves in a plasma with random density in
homogeneities along the Ox axis is of the formll 
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av. c,'ap (Co' ap 1 aH,) Co' (j 
-~-+--=-=I.I -p--:----H.-- +~'-. -(pbp(x», 
dt p, ax po' ax 4np, iJx p,. ax 

ap liv. a a 
-+p,-.-= - 1.1- (pv.)-v-;- (bpv.) , 
at (JX ax iJx (1) 

avo CA ' aH, (iJV, cA ' OH,) CA ' aH. -----=-1.1 v.-+--p-- -v--bp--
at H, ax iJx H,p. ax H.p. ax' 

aH. au, a' 
{ft-H,ax=-I.I ax (v.H.), 

where v,,, v y, and By are the projections of the velocity 
and magnetiC-field perturbations on the axes x and y; 
op(x) is the specified fluctuation deviation of the plasma 
density from its unperturbed value Po (it is assumed that 
the plasma inhomogeneity is maintained by a corre
sponding external random force field), p(x, t) is the 
wave perturbation; the parameters !J.« 1 and 11« 1 have 
been introduced to designate the weak nonlinearity and 
inhomogeneity of the plasma (the right-hand sides of the 
system (1»; Cs is the speed of sound and CA =Bo/(41T{Jo)1I2 
is the Alfv8n velocity. 

We consider the interaction of opposing Alfv8n and 
acoustic waves in a plasma layer. The frequencies and 
the wave vectors should satisfy the synchronism con
ditions 

(2) 

where W I ,2, n, and k1,2' q pertain respectively to the 
Alfv8n and sound waves. Under real conditions the fol
lowing inequality is frequently satisfied: 

CA>C.. (3) 

Relations (2) are then satisfied if n« WI ,2' It is easy 
to see that in this case we have WI'" W2 = W, kI '" k2 = k 

and q"'2k. 

Inasmuch as scattering by the plasma inhomogenei
ties gives rise to waves propagating oppositely to the 
incident waves, the solution of the system (1) at !J.« 1 
and v« 1 must be sought in the form2) 

p(x,t)"" j b(x,t,Q)exp{t[Qt-q(Q)xl}dQ+ j D(X,t,Q) 

xexp{i[Qt+q (Q) x]}dQ, 

H.(x, t) "" J a(x, t, w)exp{i[wt-k('w)xl}dw+ j a(x, t, w) 

xexp {t[ wt+k (w) x]} dw, 
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(4) 
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where a(x, I, w) and b(x, I, il) are slowly varying (aa/ax, 
ab/ax, aa/at, ab/al- /J., v« 1) complex amplitudes of 
the waves propagating from left to right in the plasma 
layer (towards positive values of x), and the superior 
bar denotes waves traveling in the opposite direction. 

In a homogeneous medium, three-wave interaction of 
two opposing Alfven waves (all az) and a sound wave 
(b(x, t, Sl) is described by a system of three equations 
for the complex amplitudes all liz, and b. In an inhomo
geneous plasma, backscattered waves are produced, and 
this should obviously lead to the appearance of an addi
tional system of three equations for all az, and b. 

Substituting (4) in (1) and averaging over spatial (Lo) 
and temporal (To) scales greatly exceeding 21T/il and 
21T/q, respectively, we obtain the equations for the spec
tra of the interacting waves. Since we shall consider 
henceforth the stationary problem for a plasma layer, 
we assume below that all the quantities are independent 
of time (a/at =0). Since the system of six equations for 
the complex amplitudes is rather cumbersome, we write 
down by way of example the equation for the spectrum al 

of the high-frequency Alfven wave: 

da. = iO.S bii,{i(oo,-oo,-Q)e'"""doo,dQ 
dx 

where 0"1 = w1/2PoC A; ~ = (Wi + wa)1 C A - ill Cs. 

In the general case it is impossible to obtain from 

(5) 

the system (5) a closed system of equations for the wave 
intensities. We consider therefore a particular case, 
but one of practical interest, when the randomized
phase approximations can be used. t1Z1 To this end it is 
obviously necessary that the spatial scale Leoh of the 
randomization of the phases of the complex amplitudes 
of the interacting fields be small in comparison with the 
characteristic scale Lnl of the nonlinear interaction. 
This condition will henceforth be assumed satisfied. 
The system (5), by using a procedure described in suf
ficient detail by Tsytovich[lZ1 for averaging over a scale 
Leoh « Lav « L nl , yields then equations for the wave in
tensities. To be sure, in our case, in contrast to 
Tsytovich's book, [121 it is necessary to carry out an ad
ditional averaging over the ensemble of the density in
homogeneities (jp(x), although this averaging does not 
differ in prinCiple from that indicated above. As a re
sult we obtain for the average dimensionless wave in
tensities the following system of equations3): 

a:. =-r.(~-N)- 118 ~1ll(N,P,M), dP =-r.(p-p)- 118 ~1ll(N,P,M), 
..... dx. ) 

(6 

malized correlation function of the density fluctuations 
(jp(x); 

N-( la.I'>oo.H.-'; P=< la.I'>oo,H,-'; M=< I bl'>Qp.-' 

are dimensionless quantities proportional to the inten
sities of the Alfven and sound waves; (:J= cAlcs » 1; 4> 
=2{:JNP+(N -P)M; the symbol ( ••• ) denotes statistical 
averaging; the quantities (I al IZ), (I aa 1 a) etc. are de
fined by the relation 

<a.(x, oo)a.·(x, CJ)'»=<j a.' I >0(00-00'). (7) 

It is easily seen that from (6) we obtain equations for 
three-wave interaction of Alfven and sound waves, if we 
put r 1 = ra =0 (there is no scattering) and.N =P =M =0. 
In the presence of scattering we have a system of six 
coupled nonlinear' equations for the wave intensities. 

2. An investigation of the system (6) in general form 
is difficult, since the analysis must be carried out in 
six-dimensional phase space. Nonetheless, we can find 
two independent integrals 

N+P-N-p=C .. N-N +i.. (M-M)=C" 
2~ 

(8) 

that express the conservation laws for the energy fluxes 
of the Alfven and sound waves. To be sure, their pres
ence unfortunately does not facilitate the investigation 
of (6). We therefore consider here the simpler prob
lem of the distribution of the fields generated by the 
waves in a given field of two opposing Alfven waves (N 
=No = const, P =Po = const). We assume that the intensi
ties of the sound M and M and of the scattered Alfven 
waves N and P are small enough everywhere inside the 
plasma layer, so that we can neglect the terms - Np 
and (.N - P)M in equations (6). As a result we obtain a 
system of linear equations for M, M, N, and P. 

The solutions of this system for the specified bound
ary conditions M(O) =P(O) =0 and M(Le) =N(Le) =0 are 

M=C.exp (-I..x.) +C, exp (-I.,x,)-G/o:, 

- r.-o:-I.t f.-o:-I., G 
M=C. exp(-AtX,)+C, exp(-A.x,)--, (9) 

f. f, 0: 
N=N,{1-exp [-rt(L,-x,)l), P=P,[1-exp (-rtz,)]; 

At .• - - TO:[ 1± (1-4f,/0:) 'I.], 0: =+1I~'(N,-P'), 

c, =£ r,-(r,-o:-I.,)exp(-I.,L.) (10) 
0: (f,-o:-A.) exp (-I.,L,) - (r ,-0:-1.,) exp (-I.,L,) , 

G r,-(f,-O:-A,)exp(-A,L,) 11 
C G = -2 ~'N,P,. ,= 0: (r,-o:-I.,)exp(-A,L,)-(r,-o:-I.,)exp (-I.,L,) ' 

B /.,.,tl 5 

dM r (M -) 11 - as - 11 - p -) -d =-. -M +-4 ~'Ill(N,P,M), -=-r.(N-N)+-8 ~1ll(N, ,M. 
~ ~ 5 

dPa = -r.(p-p) + 118 ~1ll(N.P.M), dM = .-r.(M-M)-~~'Ill(N,P,Jl), 
~ ~ 4 

where xe =qx is the dimensionless coordinate, r 1 =q/ 
161T0"~fp(q); r z =q/1T0"~fp(2q) are scattering coeffiCients, 
O"~ = «( (jpl Pof); fp is the Fourier spectrum of the nor-
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FIG. 2. z 

It is seen from (9) and (10) that the acoustic and scat
tered Alfven waves increase in amplitude along the 
propagation direction, and the sound amplification has 
an aperiodic character at a>4ra (strong pumping). 'In 
the opposite case (a<4ra) the sound intensity increases 
in oscillatory fashion. 

At arbitrary values of the pump intensities, we have 
integrated the system (6) numerically with allowance 
for the following boundary conditions: N(O) =No = 3 x 10-5, 

P(L6 =100) =1.6xlO-5, M(O) =0, N(L6 =100)=2. 2x10-7, 

P(O)=O, M(L 6 =100) =5x10-6, 13=10, r 1 =10-a, and ra 
'" 0.16 (the equality ra = 16r1 is possible, as can be 
easily seen, only in the case of small-scale inhomo
geneities q 1 « 1). The results of the calculation are 
shown in Figs. 1 and 2. The reliability of this calcula
tion is evidenced by the satisfaction of the conservation 
law (8) at an arbitrary cross section Xo of the plasma 
layer (0 -'S X6 -'S 100). We note that the numerical data ob
tained here are rather general in character, inasmuch 
as Similarity conditions are satisfied for the system 
(6)-this system is invariant to the substitutions: 

N, N, P, 1', M, JJ -,,(N, "(N, ,,(P, ,,(1', "(M, "(M; 

rt,2-''Yrt,2; X~-"'''i-1X61 

where y is the similarity coefficient. 

Thus, the results of the analytic investigation (for
mulas (9) and (10» and of the numerical calculations 
show that in a number of cases the presence of random 
plasma inhomogeneities is an essential factor in non
linear three-wave interaction. This manifests itself in 
additional generation of corresponding opposing waves, 
which in the case of a sufficiently thick plasma layer 
also take part in the nonlinear interaction. This effect, 
in particular, may turn out to be useful 'for the diagnos
tics of a weakly turbulent plasma. For example, in a 
given field of two opposing Alfven waves, the solutions 
for the remaining waves as functions of the ratio of the 
nonlinearity parameter a and the scattering coefficient 
ra have either an aperiodic or an OSCillatory character. 
Thus, at a <4ra it is possible to estimate ra from the 
period of the field oscillations. By determining the 
relative fluctl.!~~ons of the electron density by another 
independent method, we can determine the scale 1 of the 
plasma inhomogeneities. Moreover, inasmuch as ra 
- jp(2q), by performing similar measurements at differ-
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ent frequencies of the incident waves we can investigate 
the low-frequency spectrumjp(2q) of the plasma turbu
lence as a function of the wave number q. 

The authors are grateful to A. V. Gaponov, E. N. 
Pelinovskil, Yu. V. Trakhtengerts, and V. N. Tsyto
vich for a discussion of the work. 

IlFor simplicity we consider here the case of one-dimensional 
inhomogeneities, when both the incident and scattered waves 
can propagate only in the x direction. The calculation of the 
problem for the case of three-dimensional inhomogeneities is 
much more complicated, butforthe equations obtained for the 
average intensities integrated over the transverse coordinates 
y and z should agree qualitatively with those obtained below. 
We note also that the stationary-inhomogeneity approximation 
employed here is valid when the characteristic time of alterna
tion of the realizations of the random field is largE1 iii compari
son with the other times of the problem 2'IT/0, Lies, etc. (L 
is the plasma-layer thickness). This situation can be realized, 
for example, for a plasma whose turbulence in the region of low 
frequency is determined by the drift instability, [111 where CT / 

Cs ~ rH/L« 1 (rH is the ion gyromagnetic radius, L is the scale 
of the concentration gradient, and C T is the pulsation velocity). 

2)Since we are investigating a boundary-value wave-interaction 
problem, we .assume '" and (l in the solution (4) to be the run
ning frequencies, and the vectors k and q to be functions of '" 
and 0; the representation of the solution in the form (4) is pos
sible for suffiCiently quasi -monochromatic waves (~"'« "', 
~(l «0). 

3)Strictly speaking, the quantities N, N, P, P, M and M intro
duced here for convenience are not dimensionless wave inten
sities. They can be obtained by multiplying these quantities by 
by ~"'/'" and ~O/O for Alfven and sound waves, respectively. 
In addition, as shown by estimates, . Eqs. (5) and (6) are satis
fied if the inequality a;t »qf,(2q) »(qLott holds. Physically 
they mean that the most effective contribution to the backscat
tering is made by the resonant lattice with period ~ (2qtt. 
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