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A new mechanism for superconductivity. based on the pairing of spatially separated electrons and holes 
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orbit mteractlon, etc. are analyzed. The critical current is calculated. Possible experiments are discussed. 
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INTRODUCTION 

The mechanisms for superconductivity proposed up to 
now are based on the pairing of like-charged quasi-par
ticles and differ only in the forces responsible for this 
pairing. The phonon mechanism of superconductivity, [1] 

which gives a good description of the superconductors 
known at present, the exciton mechanism, [2-4] and 

-others, [5] are such mechanisms. 

In the present paper we proposel ) a fundamentally dif
ferent mechanism-superconductivity on pairing between 
spatially separated electrons and holeff) as a result of 
their Coulomb attraction. As will be shown, the motion 
of exciton-like structures3 ) (in the case of small con
centrations of quasi-particles) or Cooper pairs (for 
large concentrations) of spatially separated electrons 
and holes is super-fluid. Nonattenuating electric cur
rents flowing in opposite directions in different regions 
of the system (see Fig. 1a) correspond to this motion. 
Thus, the system proposed is a nondissipative "two
wire electric-transmission line" (Fig. 1b). An estimate 
of the temperature of the transmission to this supercon
ducting state gives an encouraging result (values of T . c 
~ 100 K are possible), since the Coulomb interaction, 
which is strong compared with phonon eXChange, is re
sponsible for the pairing. 

We note that, in the case of a homogeneous semimetal 
or a semiconductor with a narrow gap, pairing of elec
trons and holes leads only to a rearrangement of the 
band scheme, namely, to a transition to an "excitonic 
insulator. 'J[9-15] In fact, superconductivity is impossible 
in an excitonic insulator (by virtue of the local electri
cal neutrality of the system), and the presence of tran
sitions of the pairing quasi-particles between bands 
lifts the degeneracy of the state of the system with re
spect to the phase of the order parameter and, by de
stroying the coherence, makes superfluidity impossible 
too. [14] In the systems considered in the present article, 
however, the pairing arises between spatially separated 
electrons and holes, so that transitions of pairing quasi
particles between bands are tunneling processes and can 
be made negligibly weak. At the same time, the pairing 
interaction (the Coulomb attraction of the electrons and 
holes), which is not connected with the tunneling, re
mains considerable and leads to a rearrangement of the 
system to a coherent (superconducting) state. 

In Sec. 1 we describe systems in which a tranSition to 
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this state is possible and find the corresponding order 
parameters a, equal to the gap in the spectrum of sin
gle-particle excitations. In Sec. 2 we discuss the in
fluence on the transition under consideration of the elec
tron-phonon interaction, the scattering of quaSi-particles 
by impurities, interband transitions, spin-orbit inter
action, and also the presence of boundaries. In Sec. 3 
the critical current is calculated. In Sec. 4 methods of 
experimental detection of the proposed superconductivity 
mechanism are discussed. 

1. REARRANGEMENT TO THE SUPERCONDUCTING 
STATE 

We shall indicate several systems in which the pro
posed superconductivity mechanism can be realized. 

I. We shall consider two" semiconducting films of 
thickness d, separated by a dielectric layer of thick
ness D and permittivity e • Suppose that in one of the 
films (13) there are excess electrons, and in the other 
(A)-holes. For example, because of the difference in 
the work functions of the materials of the films, such a 
separation of charges is produced when the films are 
connected by a conductor. In particular, for intrinsic 
semiconductors the surface density of the charge that 
arises on the films is 

where li.p is the difference in the levels at the bottom of 
the conduction band of one film and at the top of the va
lence band of the other. We emphasize that in this case 
the strong electric field between the films does not lead 
to breakdown and to "discharge of the capacitor, " since 
here (as in a p-n junction) the separation of the charges 
is energetically favorable. As shown in Sec. 2, con
necting the films by a conductor does not destroy the 
superconducting state in the system of films. We note 
that the excess charges in A and B can also be produced 
by doping, by overflow of charges from media adjoining 
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the outer sides of the films, etc. 

For physical visualizability, we shall first describe 
qualitatively the case when the gas of quasi-particles is 
of low denSity. In this case each electron in the film B 
is coupled with a hole lying opposite (in the film A), 
forming, in the ground state of the system, a "quasi
two-dimensional" pair with characteristic size Po in the 
plane of the films (it is assumed that d ::'Po« l, where 1 
is the mean distance between like charges): po-a*- e/ 
lJ-e2 (here and below, 'Ii= 1) for D ::'a* (IJ- is the reduced 
mass of the electron and hole); po-a*1 /4D3 /4 for D ~a* 
(cf. [8]). The binding energy of the pair is equal to Eo 

=2IJ-e4/eZ for D«a* and E,., .. ez leD for D »a*. We note 
that these pairs repel each other at large (p ?'Po) dis
tances in accordance with the law 

v ( ) _ 2e' [ 1 1] 
P ---;- p- (p'+D')' 

(for simplicity the dielectric constants of the media 
within the films and on the outside of the films are as
sumed to be equal). The potential barrier created by 
the repulsive interaction (unlike in the isotropic three
dimensional case, in which at large distances there is 
only a weak van der Waals attraction) ensures (for D 
»a*) that the dilute gas of pairs is stable against co
alescence into "molecules, " "droplets, " etc. An esti
mate of the coeffiCient of penetration through this bar
rier gives (for Po« l) a quantity of the order of exp[ - X 
x(D/a*)1 /Z], (X -1), which is vanishingly small for D 
»a*. The latter also enables us to regard the pairs as 
hosons with good accuracy. In this Bose gas of pairs a 
transition to the superfluid state is possible5 ) (analogous 
to the Bose condensation of excitons in crystals at high 
pumping; cf., e. g., [16.17]); the transition temperature 
Tc -l/Ml z, where M is the mass of a pair. 6) Nonattenu
ating electric currents flowing in opposite directions in 
A and B (Fig. 1) correspond to the superfluid motion of 
the pairs; the electrodynamics of the systems under dis
cussion is considered in[1S]. 

As the concentration of quasi-particles is increased 
the ground state of the system can no longer be de
scribed as an aggregate of pairs conserving their in
dividuality. Leaving aside for the moment the case 1 
- Po, corresponding to strong interaction, we shall con
sider in detail the case of a large density of quasi-par
ticles (l« pJ (to simplify the calculations it is also as
sumed that d ~ l, so that the motion of the quasi-particles 
in the films is two-dimensional). When the Fermi sur
faces (more precisely, the "Fermi lines" of the electrons 
in the film B and of the holes in the film A) are suffi
Ciently similar in shape, the system is unstable with re
spect to pairing of electrons from B with holes from A. 
The pairing of oppositely charged quasi-particles leads 
to a rearrangement of the ground state of the system and 
is accompanied by the appearance of an order parameter 
d proportional to the magnitude of the gap in the single
particle excitation spectrum of the system. 

From the total Hamiltonian H=Ho+H' of the system 
we shall separate out the part Ho which describes the 
Coulomb interaction of electrons from B and holes from 
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A and conserves the number of quasi-particles of each 
type. The effect of the remaining part H', correspond
ing to interband transitions, spin-orbit interaction, in
teraction with the phonons, etc., will be considered in 
Sec. 2. 

With the assumption that the Coulomb interaction of 
the charges within each film has been taken into account 
in the calculation of the band energies, the operator H 0 

has the form (p is a two-dimensional wave vector) 

Ho=,E [eh(p)ap+ap+e,(p)bp+b p]+ Lr V(q)ap"';qapb';_qb... (1) 
q,p,p' 

where a is an operator annihilating a hole in A, b is an 
operator annihilating an electron in B, V(q) is a (two
dimensional) Fourier component of the screened Coulomb 
interaction of the electrons and holes, and ee.h(P) are the 
electron and hole energies, reckoned from the Fermi 
levels of the corresponding films. (We do not take the 
spin-dependent interaction into account here, and so we 
omit the spin indices; cf. also Sec. 2). Although the 
physical properties of our system differ fundamentally 
from the properties of an excitonic insulator, the meth
od of describing the system taking only the part Ho (1) of 
the total Hamiltonian H into account coincides formally 
with that used in the theory of the excitonic insulator7) 
(cf. [9-13,20] for the three-dimensional and[Z1] for the 
two-dimensional excitonic insulator). With the intention 
of analyzing later (see Sec. 2) the presence in the sys
tem of degeneracy with respect to the phase of the order 
parameter, following[ZO] we briefly give here a deriva
tion of Eq. (6) for the gap (see also the derivation of (6) 
from the Gor'kov equations in[ZZ]), 

We introduce the effective Hamiltonian Heft: 

which takes into account the appearance of a "conden
sate" of electron-hole pairs with zero momentum. The 
Hamiltonian Herr is diagonalized by means of a Bogolyu
bov transformation: 

(3) 

where 

u' =~(1+.l) v '=~(1-.l) 
• 2 E." 2 E" 

6,='/2 [e, (p) +eh (p) ], Tj.='/ 2[ e, (p) -eh (p) ], 

E.=1'6.'+6,'. (4) 

The energy of the ground state corresponding to the 
Hamiltonian Ho can be determined approximately as the 
minimum value of the functional (Ho) (the averaging is 
performed over the ground state of Heft) on variation of 
the function d(P). ThUS, the function d(p) satisfies the 
equation 

6(Ho)/M(p) =0. (5) 

Having performed the transformation (3) in Ho, after 
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the variation (5) we obtain the equation for a(p)[ZO] (cf. 
alsO[ZZl): 

~ , l\(p') 
Mp)= k.J V(p-p) 2Ep' [l-n(E+Tj)-n(E-Tj)]p'. 

p' 

(6) 

where n(e) is the Fermi function (if T= 0, n(e) = 0 for E 

>0 and n(£) = 1 for £<0). 

For simplicity the dispersion law for both types of 
quasi-particles is assumed in the following to be iso
tropic: 

8,. h (p) = (p'-Po') 12m,. h 

(for equal concentrations of electrons e and holes h, 
their Fermi momenta Po coincide). 8) In this case the 
expression in brackets in the right-hand side of Eq. (6) 
is identically equal to unity. 

In the Thomas- Fermi approximation the two-dimen
sional Fourier component of the potential of the screened 
interaction of the electrons and holes in our system has 
the form (cf. the Appendix) 

yep) 
2n (e'/e) exp(-pD) 

p+2(a, -'+ah-') +4[ t-exp (-2pD) ]Ia,ahp , 

where ae,h = e/me,he2, 

_ Putting a = const for lee,h I ~ W and ~ = 0 for Il'e,h I >w 
(w is the energy cutoff of the interaction, equal in order 
of magnitude to the characteristic plasma frequencies; 
cf. the Appendix), we find from (6) the value of ~: 

e' m.+mh [ 
d = -1-(--)-'" exp e mcmh 

npO(a,+ah) ] 
2ln (poa,ahl (a,+ah» • 

D<t;:.Z<t;:.a,.h, 

(8) 

The maximum value of the gap a, equal in order of mag
nitude to the binding energy Eo = m *e4 / £z of an isolated 
pair, is attained when me - mh ...:, m * and D ~a * -l (the 
strong-interaction regime, in which (8) has only the 
character of an estimate; a* = elm *e2). If, e. g., m * 
= O. 03mo (mo is the electron mass) and e= 3, then a* 
.. 50 A and for D -l- 50 A we have ~ - 300 K. The analy
sis has been carried out for T = O. Estimating the tran
sition temperature Te, we note that in a finite two-di
mensional system the magnitude of the thermal fluctua
tions of the phase of a is finite and increases extremely 
slowly (logarithmically) with increase in the size of the 
system, so that for a system of reasonable dimensions 
an estimate of Te in the mean-field approximation is 
justified: Te -~. (In an infinite two-dimensional sys
tem, however, although the mean-field approximation is 
inapplicable because of the divergence of the fluctua-

e h 

rx-_-_i:}, 
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FIG. 3. 

tions, [23] the phase transition to the superfluid state oc
curs nevertheless, and is associated with a change in 
the dependence of the correlation functions on the coor
dinates. [24,25]) 

Thus, we have found the value of the order parameter 
a describing the rearrangement in our system. II) Ac
cording to Sec. 2, joint superfiuid motion of electrons 
and holes over the films is possible in this system. 
Antiparallel nonattenuating electric currents J (Fig. 1) 
flowing through the films correspond to just such a 
movement of charges. 

II. We shall consider two semimetallic films (or fila
ments) A and B (Fig. la), separately stable against a 
transition to an excitonic insulator. This can be en
sured by a sufficiently large difference between the 
Fermi surfaces of the electrons and holes in each 
film, [20,22,26] induced by anisotropy (for films; Fig. 2) 
or by inequality of the electron and hole concentrations 
(Fig. 3). With neglect of the interaction of electrons. 
and holes from one and the same semimetal and the in
teraction of like quasi-particles from different films, 
which do not lead to instability, we can investigate the 
subsystem "electrons of A-holes of B" independently 
of the subsystem "holes of A-electrons of B, " associat
ing the Hamiltonian Ho (1) with each of them. If the 
Fermi surfaces are similar in either of these subsys
tems, the attractive interaction of the quasi-particles 
leads to a rearrangement of this subsystem, described 
in exactly the same way as in the system considered in 
part I. Depending on the geometry of the Fermi sur
faces, one of the following variants is realized: 1) pair
ing is absent in each of the subsystems; 2) pairing oc
curs in only one subsystem- in the system there exist 
(in the ground state) a "superfiuid" and a "normal" com
ponent; 3) there is pairing in both subsystems-in the 
approximation of Sec. 1 the system consists of two in
terpenetrating superfiuid liquids with order parameters 
~1 and a 2; however, as shown in Sec. 2, the terms in 
the Hamiltonian H' that describe the interaction of these 
subsystems lift the degeneracy of the system with re
spect to the sum of the phases of the corresponding 
parameters ~1 and ~2' so that in the case 3 there are 
absolutely no current states in the system. But in the 
case 2 the superfluid flow of charges is accompanied by 
non attenuating electric currents, flowing in opposite di
rections through A and B. 

2. INVESTIGATION OF THE COHERENCE 
PROPERTIES OF THE SYSTEM 

In Sec. 1 we considered only that part Ho of the total 
Hamiltonian H =Ho+H' which takes into account just the 
pairing interaction of the electrons and holes. Here we 
shall analyze the effect of the electron-phonon interac-
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tion, interband transitions, etc., described by the Ham
iltonian H', on the coherence properties of the rear
ranged state. 

In the diagonalization of the effective Hamiltonian (2), 
the parameter a with respect to which the variation (5) 
was subsequently taken was assumed to be a real func
tion. strictly speaking, however, we must seek the 
minimum of the functional (Ho) (or, when H' is taken 
into account, of the functional (If) on the wider class of 
the complex functions a(p) = I a(p) I eilPp. In this case, 
having made in (2) the replacement 

(9) 

we return to the effective Hamiltonian (2), which depends 
only on la(p) I and is diagonalized as before by the trans
formation (3). The replacement (9) in the Hamiltonian 
H has the result that (H) depends also on the function qJp, 

and it is necessary also to perform a variation with re
spect to this function. As a result, we obtain a system 
of equations for I a(p) I and qJp: 

O=~ 
61t.(p)I 

= [It.(p) 1- .E V(p-p') It. (p') I (l-nE+,-nE-,),' COS ('1'.-'1' •. ) ]. 

.' 2E.· 

X _6_[~ 1-n -1/ ]+ 6<W> 
2 61 t.(p)1 2E. ( E+" E-,), 6Iti(p)I' (lOa) 

6<H> .E . It.(p')i 0=--=-2 V(p-p )---(1-nE+.-n",-.). 
6'1'. 2E.· .' 

(lOb) 

When H' =0, as was assumed in Sec. 1, the system (10) 
is obviously invariant under the replacement qJp - CPp+ cP 
for arbitrary qJ= const. 10) Thus, in a system describ
able by the Hamiltonian Ho, degeneracy exists with re
spect to the constant phase qJ of the order parameter 
a(p) (it is easy to see that the Hamiltonian Ho itself is 
also invariant under the transformation (9) with a con
stant phase qJ). 

The essential point is that, for H' '" 0, Eq. (10) is, 
generally speaking, not invariant under the replacement 
qJp _ qJp+ qJ (qJ= const), i. e., degeneracy with respect to 
qJ is absent. 

Degeneracy with respect to the phase qJ of the (non
diagonal) order parameter is a necessary condition for 
the possibility of the existence of states with a nonzero 
particle flux in the rearranged system. 

In fact, in the coordinate representation the following 
dependence of a(r) on the coordinate r = (mere + m"r,,) / 
(me + mil) corresponding to the motion of a pair as a 
whole is associated with the presence in the system of a 
uniform nonattenuating flux of particles with respect to 
the films: a(r) - ae IQ.r. In the coordinate frame dis
placed relative to the initial frame by the vector a, the 
parameter a' (r) differs from a(r) by the constant fac
tor e'Qoa. Therefore, it follows from the arbitrariness 
of the choice of the coordinate origin that states of the 
system with Q'" 0 are necessarily degenerate with re
spect to the constant phase qJ of the parameter a. It 
follOWS from this that the presence in (H') of terms de-
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pending on the constant phase qJ would lead to the im
possibility of superfluid states (with Q'" 0) in the system. 
In the latter case, for sufficiently small H' a rearrange
ment of the energy spectrum will occur in the system 
(i. e., the system (10) can have solutions with la(p)1 '" 0 
and a fixed phase qJ), but this rearrangement is not ac
companied by the appearance of superfluidity (this is 
precisely the state of affairs in an "excitonic insula
tor"[14]). On the other hand, the absence in (H') of 
terms fixing the phase, if, in addition, the other terms 
of (H') are sufficiently small (do not nullify the rear
rangement; I a I '" 0), ensures the possibility of the exis
tence of nonattenuating current states in the system. In 
fact, we shall consider a state of the system in which 
the electrons and holes move as a whole with velocity U 
with respect to the film. The rearrangement of the sys
tem corresponds to the presence of a macroscopic num
ber of pairs of electrons from B and holes from A with 
pair momentum (me+m,,)U. In contrast to (2), the ex
pression corresponding to the effective Hamiltonian de
scribing the pairing of the quasi-particles is now 

The equation for the order parameter au(p) is derived 
analogously to Eq. (6) and has (for H' = 0) the form 

ti,.{p) = .E V(p-p') ~~~} [1-n(E"+11") -n(E"-TjU) l.·, (12) 

.' 
E.'-=Y(6.C ) '+ (t.u (p) )', 6.u=I/,[e.(p+m.U) +e.(p-mhU) l; 

Tj. U =1/2[e,(p+m,U) -eh (p-mhU) l. (13) 

Allowance for terms in (H ') that do not depend on the 
phase leads to the appearance in Eq. (12) of extra terms, 
depending only on the absolute value of the parameter 
au(p); if these terms are small, 11> a solution au(p) cor
responding to a nonattenuating current state exists. 12 ) 

In view of this, below we shall investigate only the effect 
of the Hamiltonian H' on the degeneracy of the system 
with respect to the phase of the order parameter. 

We shall consider in sequence the different interac
tions describable by the Hamiltonian H'. 

a) The electron-phonon interaction, scattering by im
purities, and other processes in which the band index of 
the particle being scattered is conserved. It is obvious 
that the terms in H' (of the type 2A:,qMt ",b;",bt ) describing 
these processes are invariant under the replacement (9) 
with qJp = const, and, thus, do not destroy the coherence 
of the state. 

b) Tunneling transitions of the pairing quasi-particles 
between bands. The terms in H I corresponding to these 
have the form (the last term describes the hybridization) 

The quantity 

<H'>= .E (T 1<a+b+><a+b+>+T2<a+a><a+b+>+T,<a+b+><b+b> 

+T.<a+b+>+H.c.) +0, 

(since the anomalous averages (a+b+) '" 0), and, after the 
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transformation (9), depends essentially on the constant 
phase qJ. The appearance of the terms o (H')/o IA I and 
o(H')/o qJ in Eqs. (10) fixes the phase qJ of the order 
parameter with respect to the phases of the matrix ele
ments Th Ta, Ts and T4 (in particular, if Th Ta, Ts 
and T, are real, qJ = 0), and, consequently, current 
states are impossible in the system for finite Th Ta, Ts 
and T,. The critical role of the interband-transition 
operator, leading to the result that the kinetic properties 
of an "excitonic insulator" coinCide with those of ordi
nary insulators, was established (for the semiconduc
tor-excitonic insulator transition) by Gusel.nov and 
Keldysh. [14] However, unlike in an excitonic insulator, 
in the systems we are considering the matrix elements 
T1,a,3,' are aSSOCiated with the overlap of the electron 
wavefunctions from different films, i. e., with an ex
ponentially small quantity: T 1,2 ,s ,4 - exp[ - D,f 2m W ] , 
where m -mo (mo is the electron mass) and W is the 
height of the barrier created by the dielectric layer of 
thickness D; for W-2 eV and D-I00 A, the quantities 
T1,a,3,4 are negligibly small: _e-60• Although, formal
ly, an arbitrarily small deviation of T1,!,3,4 from zero 
fixes the phase of the system, in reality the time over 
which the fixed phase is established and, consequently, 
the current states decay, is inversely proportional to 
T1,a,3,4 and, for such small T1,a,s.h turns out to be 
astronomically long. ThUS, for the systems under con
sideration the effect of tunneling interband transitions on 
their superfluid properties can be neglected. 13) 

c) Interband transitions unconnected with tunneling. 
We shall consider first the system described in part I 
of Sec. 1. For simplicity we shall confine ourselves to 
consideration of one band (of holes) in the film A and 
two electron bands in the film B. The Hamiltonian of the 
system has the form 

H=Ho+ L,E,(p)cp+cp+H,,+H,"+H,,+ L,[V,c+c+bb+H.c.J 

+L, [V,c+c+cb+H.c.J+L, [V,c+b+bb+H.c.), (15) 

where Ho is the operator (1) describing the pairing of 
electrons from the band b of film B and holes from film 
A; c and c· are operators annihilating and creating an 
electron in the extra band c, just introduced into the 
treatment, in the film B. We assume for simpliCity 
that dielectric pairing, and also ordinary superconduct
ing pairing, of electrons from band c is absent14) «cb) 
= (c+b) = (cc) = 0). We assume also that pairing between 
electrons of c and holes of a is absent, so that (ac) = 0 
(the case when the holes are paired with electrons from 
the two bands simultaneously is analogous to that con
sidered in paragraph (J». The terms Hcc+Hc/J+HCb de
scribe the Coulomb interaction of the quasi-particles 
from the corresponding bands and conserve the number 
of electrons in each band. The last three sums in (15) 
correspond to transitions between the bands band c in 
film B. These terms are not invariant under the re
placement (9) with qJp = const, but it turns out neverthe
less that they do not fix the phase of the states of the 
system. In fact, since they do not conserve the number 
of electrons in band c, their expectation value in the 
ground state of the operator Heft (2) is equal to zero, 
since, by assumption, (cb) = (c·b) = (cc) = O. If we wish 
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to go beyond the framework of the approximation leading 
to Eqs. (10), it is necessary to take H' into accoUnt in _. 
all orders of perturbation theory. We note that not only 
is the expectation value of the last three operators in 
(15) equal to zero, but, for the reason indicated above, 
the expectation value, in the state under consideration, 
of any term of the expansion of the S-matrix that con
tains a product of unequal numbers of c· and c operators 
is also equal to zero. The terms with equal numbers of 
c· and c necessarily contain equal numbers of b· and b 
operators (the total number of electrons in the film does 
not change) and, consequently, do not depend on the 
phase qJ. 

ThUS, interband transitions within one and the same 
film do not affect the superconducting properties of the 
paired, spatially separated charges. 

d) We shall investigate now the role of the interaction 
of the subsystem 1 (electrons of A and holes of B) and 
the subsystem 2 (holes of A and electrons of B) in the 
system of semimetallic films considered in part II of 
Sec. 1. 

The Hamiltonian of the system has the form 

(16) 

Here the first two terms COinCide, apart from the nota
tion, with the Hamiltonian (1) and are responsible for 
the pairing in subsystems 1 and 2; Hi contains (a) in
teractions conserving the number of particles in each 
band, (b) operators corresponding to tunneling pro
cesses, and (c) operators of interband transitions within 
each film (except for transitions between bands a and b, 
which are described by the term H~ in (16) and by anal
ogous sums not written out); bA (aA ) and bB (aB ) are 
operators annihilating an electron (hole) in the films A 
and B. The roles of the terms (a), (b) and (c) appearing 
in H~ were elucidated in paragraphs (a), (b) and (c), re
spectively, of this section. The term H~ in (16) and 
those analogous to it are analyzed in tl\e same way as in 
paragraph (c). In fact, Since, by assumption (cf. part 
n of Sec. 1), pairing within each film is absent, anoma
lous averages of the type (bBaB) are equal to zero. Only 
the perturbation-theory terms in this operator that con
tain equal numbers of creation and annihilation opera
tors for the particles in each band are nonzero; conse
quently, they are invariant under the replacement (9) 
with qJ = const. 

Finally, we shall consider the last term H; in the 
Hamiltonian (16), corresponding to two simultaneous in
terband transitions within each of the films A and B, so 
that the total number of electrons in each film remains 
unchanged. However, this process corresponds to simul
taneous creation of two electron-hole pairs, one in each 
of the subsystems (electrons of A and holes of B) and 
(electrons of B and holes of A), and, as it does not con
serve the total number of pairing quasi-particles, is, 
in prinCiple, dangerous for the superfluidity in the sys
tem. We shall study this question in more detail. 
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When the terms H {'a,3 are not taken into account the 
Hamiltonian (16) decomposes into two independent Ham
iltonians, describing the pairing in the corresponding 
subsystems. If the pairing occurs in only one of the 
subsystems (as was assumed in case 2 in part II of Sec. 
1), e. g., in subsystem 1, the anomalous operator aver
ages pertaining to the subsystem 2 are equal to zero: 
(a:Ab:B) = O. Consequently, the expectation value of the 
term under consideration in the rearranged state of sub
system 1 and the unrearranged ground state of subsys
tem 2 is equal to zero and fixation of the phase of the 
order parameter does not occur (it is also easy to show 
this when all orders of perturbation theory are taken in
to account). Suppose now that pairing occurs in both 
subsystems (cf. case 3 in part II of Sec. 1), and the cor
responding order parameters are equal to f~l felllli and 
f~a fe'"a. The Hamiltonian of the mutually noninteract
ing subsystems is invariant under the replacement 

(17) 

where ~ and qJa are constants. This corresponds to in
dependent motion of the subsystems relative to each 
other. However, the term H~ is not invariant under the 
replacement (17)-it is easy to see that it depends on the 
sumofthephases qJ= qJl + qJz. The expectation value of 
the operator under consideration in a state of the effec
tive Hamiltonian decomposes into a sum of products of 
anomalous averages: 

since, by the assumption made, (a:Ab:B) * 0 and (aBbA) * O. 
Thus, the interaction H~ lifts the degeneracy of the sys
tem with respect to the sum of the phases qJ = qJl + qJz so 
that not only independent, but also joint superfluid mo
tion of the subsystems 1 and 2 becomes impossible in 
the case 3 (part II of Sec. 1).15) 

Thus, allowance for the interaction of subsystems 1 
and 2 in semimetallic films destroys the superfluid cur
rent state in the case 3 (rearrangement of both subsys
tems), while in the case 2 (pairing in one subsystem) the 
superfluidity is conserved. 

e) Incorporation of the system in an electric circuit. 
Suppose that the system of films under consideration 
(part I, Sec. 1) is incorporated in an electric circuit 
(Fig. 1b), i. e., electrons from the film B, passing along 
a conductor C connecting the films, arrive at the film 
A, where they are annihilated with holes. It might ap
pear that this process is equivalent to an interband tran
sition and, consequently, destroys the superconducting 
state. We shall show, however, that this does not oc
cur, generally speaking. The terms in the Hamiltonian 
H' that describe this transition have the form 

where ~A is an operator annihilating a hole in film A 
and ~B,c are operators annihilating an electron in the 
film B and in the conductor C. Taking the expectation 
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value of the above operator in an eigenstate of the effec
tive Hamiltonian (2), we obtain 

This average does indeed depend on the phase of the 
parameter ~ (~-(~A~B»' but the correlation function 
of the electrons in conductor C that appears in it falls 
off rapidly with increase of the length R of the conduc
tor: 

o.COn<! is the mean free path of electrons in the conductor 
C) and can be made negligibly small. 16) Thus, for R 
»Acon<! the incorporation of the system under considera
tion into an electric circuit does not lift the degeneracy 
of the system with respect to the phase of the parameter 
~ and does not destroy the nondissipative current state 
in the films. 17) 

f) Spin-orbit interaction. Up to now we have not writ
ten out the spin variables in the Hamiltonian, it having 
been assumed that the subsystems of particles with a 
fixed spin projection can be treated independently. 18) 

However, the spin-orbit interaction induces transitions 
between these subsystems. We shall show that these 
processes do not destroy the coherence properties of 
the system. The corresponding terms in the Hamil
tonian H' have the form (the arrows correspond to the 
spin projections) 

Averaging H' over an eigenfunction of the Hamiltonian 
Heff (2), we obtain (for definiteness, we consider singlet 
pairing) 

where ~.ellll' and ~,e- II>, are the pairing parameters for 
the subsystems of spin-up electrons (spin-down holes) 
and spin-down electrons (spin-up holes) respectively. 
As can be seen from this expression, the spin-orbit in
teraction lifts the degeneracy of the system with respect 
to each of the phases qJ. and qJ" but conserves the de
generacy with respect to their sum qJ = (/J. + qJ, • This 
means that when the spin-orbit interaction is taken into 
account the subsystems with different spin projections 
cannot move independently of each other but their jOint 
motion is, as before, superfluid. 

3. THE CRITICAL CURRENT 

As in ordinary superconductors too, in our system the 
superfluidity of the electron-hole condensate is destroyed 
if the velocity U of its motion with respect to the films 
cf. Sec. 2) exceeds a certain critical value Uc• The 
existence of a critical velocity in the system places an 
upper bound on the electric currents: j <jc =neUc, where 
n is the surface density of electrons and holes. (We do 
not consider here the restrictions on the velocitY U that 
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are connected with the possibility of formation of vor
tices in the system, i. e., je is the so-called pair-break
ing current.) We shall find the quantity Ue• The equa
tion for the order parameter Au(p) describing the pair
ing of electrons and holes moving as a whole with veloc
ity U with respect to the films was written out in Sec. 
2; cf. (12), (13). Because of the presence of the factor 
[1- n(EU +71U) - n(EU _71U)] in the right-hand side of Eq. 
(12), a contribution to the quantity Au(p) is given only 
by those regions of p- space for which E U > 171u I, which 
means (when (13) is taken into account) 

-e.(p+m.U)eh(p-mhU)<~F'(P). (18) 

For U = 0 the relationship (18) is obviously valid for all 
p. We assume below that me,AU«PO and, therefore, we 
shall omit terms quadratic in U. It is easy to show that 
the inequality (18) is valid for all p, if U < Ue, where 

r,;;;;;. 
U.=2I\u_, ( , . 

m,+mh)p, (19) 

For U < Ue the order parameter Au coincides with AuaO, 
obtained in Sec. 1 (cf. (8», since for [1- n(EU +71U ) 

- n(EU -71lf)] = 1 the integrand in (12) does not depend on 
U (to within terms U2). This is why the value of Au for 
U = 0 was written out in (19). For U> Uc regions of p
space appear in which the inequality (18) does not hold. 
ThUS, these regions cease to make a contribution to the 
right-hand side of Eq. (12), thereby decreaSing the val
ue of Au, and this, in its turn, decreases the region of 
validity of the inequality (18), etc. As a result it turns 
out that for U> Ue the only solution of Eq. (12) is the 
trivial solution: Au = O. We can also convince ourselves 
directly that, for U < Ue, fulfilment of the condition E U 

> l71u I, which is equivalent to the inequality (18), en
sures that the spectrum of the elementary excitations of 
the system is pOSitive, i. e., that the rearranged state 
is stable. For U> Ue excitations with negative energy 
are possible in the system, i. e., the current state be
comes unstable, or, in other words, when U> Ue the flow 
of particles changes from superfluid to dissipative flow. 

The expreSSion (19) for the critical velocity Ue can 
also be obtained by conSidering the Galilean transforma
tion from a reference frame associated with the sta
tionary films to a frame associated with the electrons 
and holes moving as a whole. 

An estimate of the magnitude of the critical current 
je=neUe for me-mA, n-1012 cm-2 and A-l0-lOO K 
gives je - O. 1- 1. 0 A/cm. 

4. ON THE POSSIBLE OBSERVATION OF ELECTRON
HOLE SUPERCONDUCTIVITY 

We shall discuss briefly the possibility of experimen
tal discovery of the effects predicted in the article. 

Evidently, it is worthwhile to convince ourselves first 
of the existence of the gap A in the spectrum of the ele
mentary excitations of the system that correspond to 
breaking of electron-hole pairs. The appearance of a 
gap on pairing of electrons and holes can be noticed 
from the sharp decrease in the signal in a cyclotron-
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resonance experiment, from the change in the Q-factor 
of a resonant cavity when the system under investigation 
is placed in it, or from the threshold singularity (at 
'Ifw = 2A) in the infrared absorption spectrum. In the 
latter case, the loss coefficient K(w)-the ratio of the 
energy absorbed in the films to the energy flux in the 
electromagnetic wave-is found to beU8] 

4n'ne' ( 1 1) 1\'6 (1i00-21\) 
x(oo)=-- -+-

Nc m, m. lic.i'( (1i00/2) '_1\' J'" • (20) 

where N is the refractive index, at frequency w, of the 
medium surrounding the films A andB; K(W) * 0 only for 
'Ifw >2A, and K(W) - co as 'Ifw - 2A. In all these experi
ments the gap should also be observed to disappear when 
T > Te or (for small A) under the action of a constant 
electric field applied parallel to the plates and breaking 
the pairs (here an effect analogous to the Franz-Keldysh 
effect is also possible). It is also possible to observe 
the change in the gap ariSing from the change in the con
centrations of electrons and holes with variation of the 
potential difference applied to the films. Of course, the 
most interesting thing would be the direct discovery of 
the existence of antiparallel superconducting currents 
in the system. Apparently, the simplest object for this 
purpose is a noncontacting system of coaxial cylindrical 
films (radius R): film A-layer of thickness D-film B 
(Fig. 4). If at T> Te we apply a uniform magnetic field 
h parallel to the axis of the cylinders (the currents are 
absent: j = 0), cool the system to T < Te (with neglect of 
the small currents analogous to the currents in the Lit
tle-Parks effect for superconductors, [27] we have, as 
before, j = 0) and switch off the field h, nonattenuating 
antiparallel currents (diamagnetic, [18] as in supercon
ductors) will appear in the system. The magnitude j of 
these currents is related to h (we assume that R» D): 
j=-ne2Dh/(me +m,,)c. The intrinsic magnetic field of 
these currents can be detected. We note that if we break 
the films A and B (or one of them) by a small dielectriC 
seam, nonattenuating antiparallel currents are neverthe
less possible in the system (the analog of the stationary 
Josephson effect; the nonstationarY Josephson effect can 
also be realized in the systems under discussion). 

In conclusion we express our gratitude to A. A. Abriko
sov, V. M. Agranovich, N. E. Alekseevski1, V. L. 
Ginzburg, L. V. Keldysh, and D. A. Kirztmits for dis
cussion of the results of the work. 
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FIG. 4. 
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APPENDIX 

Calculation of the screened interaction of the 
electrons and holes 

We shall consider the problem of the screening of a 
point test charge placed on one of the films (e. g., B) of 
the system described in part I of Sec. 1. We shall as
sume that the magnitude Q of the test charge oscillates 
with frequency w. Neglecting retardation, we write out 
the relations for the w-components of the potentials of 
the electric fields produced in the films B and A by both 
the test charge and the induced change in the density of 
electrons and holes (below it is assumed that the film 
thickness d is small compared with the characteristic 
lengths in the problem; r is a two-dimensional radius 
vector)19): 

'( ) f p'(.', w)d'r' + f p'(.', w)d'r' Q(w) 
<p " w = + --=--'-'---

1.-r'l [lr-r'I'+D')' [r'+D'j" 
(A. 1) 

'(r w)= J ph(.',w)d'r' + J p,(.',w)d'r' + Q(w) 
<p, [1.-r'I'+D'j'" 1.-r'l r' 

Changing to the two-dimensional spatial Fourier com
ponents of the quantities appearing in (A. 1) and assum
ing the relationship between the induced density pe.h and 
the potential qt." to be linear (pe.h(p, w) = ae.,,(p, w) 
Xqt·h(p,W», we obtain a system of algebraiC equations: 

2lt 2lt 2n 
<ph = _ ahcp" + _ e-PDcxt<pf' + ----,e-PVQ, 

p p P 
2lt 2lt 2n 

<p' = -e-.Da'<p' +-a'<p' -+- -Q, 
p p p 

(A. 2) 

where all quantities correspond to a two-dimensional 
vector p and frequency w. Solving the system (A.2), we 
find the potential q/' of the electric field in the film A 
(when the test charge is placed on the film B) or the re
quired potential (proportional to the latter) of the 
screened interaction between the electrons and holes: 

e' 
V(p, w)= - _<ph(p, w) 

Q 
=_e,2lt exp(-pD) (A. 3) 

p 1- (a'+ah)2nlp+a'ah(2nlp)2[ 1-exp( -2pD) I . 

We now find the quantities ae.,,(p, w). The equations de
scribing the motion of a charged Fermi gas have the 
form 

on(r,t) +nVv=O 
at ' 

ov 1 2 e 
....,--= --s Vn-- V<p, at n m 

(A. 4) 

(A. 5) 

where S2 = '/Tn/ m2 and v is the local velocity of the two
dimensional electron gas. Equation (A.4) is a conse
quence of the conservation of the number of particles; 
the first term in the right-hand side of Eq. (A. 5) corre
sponds to the change of pressure in the gas as its den
sity is varied, and the second describes the force acting 
on the charges in the electric field E = - V rp. Changing 
in (A.4) and (A. 5) to Fourier components with respect 
to the time and coordinates, we obtain the system of 
equations 
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-wn.+npv.=O, 

1 e 
-wv.= - --;s'pn. - -;;;: PCP •. 

(A. 6) 

(A. 7) 

Substituting vp determined by Eq. (A. 7) into (A. 6) we 
find the relation between p(p, w) = en(p, w) and rp(p, w): 

neZ
( p' ) p(p,w)=--, -'----;--1' <p(p,w). 

ms p -w s 
(A. 8) 

ThUS, the required coefficients ae.,,(p, w) connecting 
pe.,,(p, w) and rpe'''(p, w) are equal to 

( ne' p' ) '.h 1 p' 
a"h(p w)= = 

, ms' (p'-w'ls') lta',h (p'-w'ls:,,) 
(A. 9) 

(We recall that ae,h= dme."e2.) 

We note that the potential V( p, w) determined by (A. 3) 
and (A. 9) is < 0 for w < w.{p), corresponding to an at
tractive interaction, and changes sign when w.(p) < w 
<w.(p), where w.(p) and w.(p) are the poles of the ex
pression (A. 3) and determine the two branches of char
acteristic plasma oscillations in the system (w.(p) is the 
lower branch). For w« w.(p) the potential V(p, w) is 
approximately equal to its value for w = O. Therefore, 
in the spirit of the BCS model, in the calculation of the 
quantity .1 later we shall use the model potential V(p) 
= V(p, 0), cutting off the integration in Eq. (6) by the 
quantity w = w.<p), where p is the characteristic value of 
the wave vectors giving the prinCipal contribution to the 
integral over p in Eq. (6); as can be seen from an analy
sis of formula (A. 3), P = 2(1/ae + 1/a,,) for D ~ ae .". Cal
culating (for D« ae .,,) the roots of the denominator in 
formula (A.3), we find the dispersion law of the lower 
branch of plasma OSCillations; for small p the latter 
has the form 

(A. 10) 

which corresponds to a sound dispersion law. (The 
branch w.(p) behaves like w.(p) -..;p for small p.) Sub
stituting the quantity P into formula (A. 10), we find the 
frequency w at which the integration in Eq. (6) for the 
parameter .1 is cut off: 

e2 me+m", 
(jj~----

El (m.m,) 'I •• 
(A. 11) 

IlFor a brief account of some of the results of this article, 
see[6,7]. 

2l Bei ow we indicate systems in which spatial separation of 
charges corresponds to the ground state, so that we are con
cerned with stationary superconductivity. Nonequilibrium 
charge separation corresponds to non stationary supercon
ductivity. 

3lExciton-like bound states of an electron and a hole poSitioned 
in different planes have been considered in[SJ. 

4lSuperconductivity and, consequently, thermal superconduc
tivity and "anomalous diamagnetism" are possible in periodic 
structures too, in the absence of tunneling between the e and 
h layers or filaments. 

5lA separate paper will be devoted to a proof of the existence 
of a Bose condensare in the ground state of a two-dimensional 
dilute nonideal Bose gas. 
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6)We note that in a restrictedLl9] region of extremely low con
centrations the ground state of the system of pairs corre
sponds not to a Bose condensate but to a quasi-two-dimen
sional crystal lattice of pairs. 

7)We note once again that it is precisely the part H' of the total 
Hamiltonian which destroys the coherence properties of an 
excitonic insulator, whereas in our systems its influence on 
the superfluidity can be eliminated; cf. Sec. 2. 

SIWe note that a rearrangement also occurs even when only 
certain portions of the Fermi surfaces are similar in shape. 
In this case the quantity A depends fairly weakly on the sizes 
of these portions (cf. [22]). This case is especially interest
ing in that, although an order parameter A and superconduc
tivity exist in the system, the gap in the excitation spectrum 
of the electrons and holes is absent. 

9) A system of "charged" filaments can also possess analogous 
properties. For this system, in the most interesting, strong
interaction regime, to which correspond values l-a*, we 
should expect the gap to be comparable in magnitude with the 
binding energy of a "one-dimensional exciton": A - (m*e4/,.2) 
xln2(a*/d) (d is the diameter of a filament; d«a*). 

l°lwenote that, for II' = 0, as can be seen from (10) the largest 
value of A and, correspondingly, the smallest value of the 
ground-state energy <p~ are attained for qJp;: const, and we 
then return to Eq. (6) for A(P) from Sec. 1. 

11lThequestionof the critical values of the perturbation param
eters (such as, e.g., the critical concentration of impurities) 
at which A vanishes and a rearrangement does not occur at 
all in the system will be investigated in a separate paper. 
For sufficiently small H' the solution A=Ao+A1 differs weak
ly from its value A ° for H' = O. 

mIt is assumed that the velocity U is smaller than its critical 
value Uc (cf. Sec. 3). 

13)It is obvious that an analogous conclusion is also valid for 
tunneling transitions (between the bands of the pairing quasi
particles) induced by phonons, etc. 

14lBy slightly altering the subsequent arguments, we can drop 
this restriction; in this case, the final conclusion, that per
turbations of the type under consideration do not fix the phase, 
remains valid. 

15)In the paper'S] an incorrect statement was made about the 
possibility of current states under certain conditions in the 
case 3. 

16) At the same time, the magnitude of the electric current in 
the conductor C is determined by the value of the correlation 
function for coinciding arguments and is not bound to be 
small. 

17)We recall that the electric current is not accompanied by 
energy diSSipation in the films. 

ISIWe note that, with neglect of the spin-orbit interaction, and 
also of the exchange (tunneling) interaction between the pair
ing quasi-particles, rearrangements both with singlet and 
with triplet pairings are possible in the system, and the cor
responding energies of the rearranged states coincide. In an 
external magnetic field triplet pairing becomes the more fa
vorable. 

19)In the intermediate calculations we omit the dielectric con
stant E of the medium surrounding the film, restoring it in 
the final expression (A. 11). 
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