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The behavior of a nonequilibrium superconductor near the phase-transition point is investigated. 
Nonequilibrium quasi-particles are created as a result of absorption of an electromagnetic field with 
frequency considerably greater than the superconducting gap. The energy distribution of the quasi­
particles at zero temperature and at temperatures close to the transition temperature is studied by means 
of the kinetic equation describing the energy relaxation of the excess quasi-particles with emission of 
phonons. The dependence of the order parameter on the power of the source and on the temperature is 
found. It is shown that, above a certain critical power at a fixed temperature (or above a certain 
temperature at a fixed power of the source), this dependence becomes double-valued, i.e., apart from the 
usual solution, according to which the gap decreases with increase of pumping power, there appears a 
second solution, describing an increase of the gap with increased pumping. The existence of the second 
solution is connected with the coherent character of the interaction of the quasi-particles of the 
superconductor with the phonons. The stability of the state of a superconductor with optical pumping 
against small fluctuations is considered and it is postulated that the double-valued dependence of the order 
parameter on the pumping power may be responsible for the experimentally observed gradual increase in 
the resistivity of a superconductor with increased pumping. 

PACS numbers: 74.30.Hp 

INTRODUCTION 

In recent years papers have appeared that are devoted 
to the experimental study of superconductors subjected 
to the action of an electromagnetic field with frequency 
considerably greater than the magnitude of the gap a 
(so-called optical pumping). [1,2l In this case the absorp­
tion of the field leads to the formation of extra quasi­
particles, in excess of the thermal quasi-particles. 

It was discovered that the state of the superconductors 
and, in particular, the magnitude of the order param­
eter a are exceptionally sensitive to the number of ex­
cess quasi-particles and to the form of their distribu­
tion function, and the phase transition from the super­
conducting to the normal state possesses, in nonequi­
librium conditions, a number of important distinctive 
features. 

In 1972 Owen and Scalapino[3l postulated that the dis­
tribution function of the excess quasi-particles is de­
scribed by a Fermi function nF with a nonzero chemical 
potential (a quasi-equilibrium function). At zero tem­
perature this function becomes equal to unity in a cer­
tain range of energies. This means that there is an in­
verted population for the quasi-particles (n>t). An in­
verted population would lead to a number of unusual 
properties-in particular, to a first-order transition to 
the normal state when the gap reaches the value ~/3 
(~ is the gap in the absence of pumping). 

However, it was shown in a paper by the author[4] that 
the distribution function of the optically excited quasi­
particles in ordinary superconductors (in which the gap 
a is much smaller than the Debye frequency wD ) cannot 
exceed t. The reason is that the scattering and recom­
bination of the quasi-particles as a result of one-phonon 
processes proceed with almost equal probability. In 
addition, it was found that the order parameter does not 
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vanish discontinuously at ~/3, but decreases and goes 
to zero at a certain critical power f3c of the source. Sub­
sequent experimental investigations[S-7] have confirmed 
this behavior of the order parameter. At the same time, 
new interesting phenomena were observed near the 
phase-transition point. In particular, it was found that 
the appearance of finite resistance of the nonequilibrium 
superconductor occurs not discontinuously at a = 0 (as in 
the equilibrium case) but smoothly, starting from a cer­
tain critical value of the power of the pumping 
source. [6,7] 

Despite the considerations at hand in[6-8l, the causes 
of the smeared-out transition for the resistance of a 
superconductor with optical pumping and also of certain 
other phenomena analyzed in[9l remain, as yet, insuf­
ficiently clear. 

The purpose of the present paper is to investigate the 
behavior of a superconductor with optically excited 
quasi-particles near the phase-transition point, when 
the order parameter is small owing to the action of the 
source (T =0) or of the source and the temperature (T 
:S Tc; Tc is the temperature of the transition in the equi­
librium superconductor). For this we have obtained a 
more accurate (as compared with[4]) solution of the 
kinetic equation and, on the basis of this, have found the 
dependence of the order parameter a on the pumping 
power and temperature. The principal result is that 
the dependence of a on the pumping and temperature (in 
the presence of pumping) turns out to be nonunique in 
the region of small a. In other words, above a certain 
critical pumping power f3c at a fixed temperature (or 
above a certain temperature at a fixed pumping power), 
there exist two solutions for a: one describes an in­
crease of the gap with pumping and the other describes 
a decrease of a with increase of the power of the source. 
There is a definite analogy between the dependence of a 
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on {3 and T and the dependence obtained by EliashbergUOl 

for superconductors irradiated by a high-frequency field 
with w« Ao. However, the physical reason for the ap­
pearance of the growing solution is different, and is as 
follows. The coherent character of the interaction of 
the quasi-particles with the phonons (the interaction with 
phonons is responsible for the relaxation of the nonequi­
librium quasi-particles) leads to an increase in the 
probability of recombination of quasi-particles, which 
is proportional to A2/ee'. Therefore, with increase of 
pumping power a decrease occurs in the number of 
quasi-particles near the Fermi surface (which make 
the principal contribution to the equation for the gap) 
and, consequently, the gap increases. 

We postulate that the nonunique dependence of the or­
der parameter on the pumping power is able to explain 
the smooth growth of the d. c. resistance of a super con­
ducting film. In fact, the existence of two solutions for 
the gap can lead to instability of the uniform state of the 
superconductor and to partition into regions correspond­
ing to the different solutions (including the solution A 
=0); in its turn, the nonuniform state leads to a finite 
resistance. 

In the paper we find the solutions of the kinetic equa­
tion and the equation for the gap at T =0 (Secs. 2, 3) and 
at temperatures close to the critical temperature Tc 

(Sec. 4). In Sec. 5 we discuss the stability of the non­
equilibrium state of the superconductor. For simplicity 
we consider a spatially uniform system and assume that 
the phonons are in equilibrium, inasmuch as allowance 
for nonuniformity and phonon heating will not change the 
qualitative results. 

1. BASIC EQUATIONS AND FORMULATION OF THE 
PROBLEM 

We shall consider a model in which the energy relaxa­
tion of the excess quasi-particles proceeds as a result 
of interaction with phonons. As shown inCll,12l, owing to 
the small value of the effective interaction constant, 
electron-electron collisions have only a weak influence 
on the form of the quasi-particle distribution function. 
They lead, however, to a substantial renormalization of 
the quasi-particle source, and we shall assume that this 
has been carried out. The kinetic equation for the dis­
tribution function n and the equation for the gap in the 
nonequilibrium state have the formC10l 
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~ [nS(n')-S+(n') ]=Q(e), 
2<0";1 

S(n')= T (n'+N.,_,) (1-~) (e-e')'+' dS' 
01 Ee I , 

, 6.' 
+ S (l-n'-N._.,) (1--;;;-) (e-e')'+'ds' 

o 

~D A~ 

S+(n')= S n'(HN,,_.) (1--;;') (e-e')'+'ds' 
, 
, 6.' 

+ S n' N,_.' ( 1- -;;;- ) (e-e') ,+, ds' 
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(1) 

+ oJ (l-n')N.+., (1+ ::,) (e+£')'+' ds', 
o 

n(s')=m', 8(;'):=8', h=l, I.=g' ;:: ' 

·SD 1-2n(s) 
1=1. ---ds, 

e 
(2) 

where N. is the equilibrium distribution function of the 
phonons, k is the power in the dependence of the square 
of the matrix element of the electron-phonon interaction 
on the wave vector q(k =0, ± 1), 

(3) 

WD is the Debye frequency, and IJ. is the Fermi level of 
the superconductor in equilibrium. The right-hand side 
Q(e) of Eq. (1) describes the interaction of the quasi­
particles with the electromagnetic field. This interac­
tion leads to a change in the energy distribution of the 
quasi-particles and to the creation of new quasi-par­
ticles (w > 2Ao). It can be shown (cf. [4l) that in the case 
of interest to us, i. e., the case of optical pumping, 
when the frequency of the field is considerably greater 
than the gap (the case of a broad source), the principal 
effect is the creation of quasi-particles, since the ratio 
of the probabilities of the two effects is proportional to 
wi Ao. In this approximation the expression for Q(e) is 
simplified and takes the form 

Q(e)=2a6(w-e), (4) 

where E is the amplitude of the field, 1 is the electron 
mean free path, and Cl is the ratio of the electron-elec­
tron to the electron-phonon constant. [1ll It is convenient 
to supplement Eq. (1) by the condition 

IdS J ds' (nn' -.'11.+., (l-n-n')) (1 + ~:;) (e+e') H, 

= j dSQ(e)= 4IiW,,~+' , (5) 

which is obtained if we integrate (1). The point is that, 
in the case of a broad source, it is sufficient to solve 
the homogeneous equation (1) and then, with the aid of 
(5), find the coupling of the resulting solution with the 
pumping source. 

An important property of the function n in the case 
~o« wD usually realized (which is considered below) is 
the absence of an inverted population on optical pumping, 
i. e. , 

n(s) <'/,. (6) 

This property was proved in[4l for T =0. It can be shown 
that it also remains valid at finite temperatures. 

2. THE ORDER PARAMETER NEAR THE 
TRANSITION POINT FOR T=O,k=-1 

We shall consider a superconductor at T = 0, in which 
the order parameter vanishes on account of the action of 
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optical pumping. For a clear idea of the features of the 
problem it is convenient to study first a model in which 
the dependence (3) for the matrix element has the form 
M~ -l/q, i. e., k = -1. Substituting k = -1 into Eq. (1) 
and putting T =0, N =0, we obtain the following equation: 

WD L\2 
+n J ds'n' (i +~) =0. (7) 

• 
The normalization condition (5) takes the form 

i ~ ~ d' 
-. JdsJds'nn'(i+-,)=~o, 
j,o~ f\ (\ £E 

(8) 

We seek the solution of (7) in the form 

n(s) =n, (s) +n, (s), (9) 

where the functions no and nl respectively satisfy the 
equations 

(GD ~ \liD 

-(i-no) S d!;'",'+no S di;'(i-n,')+no S ds'n,'=O, 

1t1l'(S)-P(i;) S n,' dS'=Ijl(i;), , 
~ q 

I'(6)=a+ S(i-2n,')d~', P(S)=i-2no, a=2Snod6; 

• d' ["SD ds'n,' S~ dS' (i-2n,') ] 
"'«(;)=-- --,--110 , . 

e e e 
~ II 

(10) 

(11) 

(12) 

We are interested in the behavior of the order param­
eter t::. at values of the pumping power for which t::. be­
comes small compared with t::.o• In this case, the quan­
titya characterizing the energy interval which is oc­
cupied by nonequilibrium quasi-particles is approximate­
ly equal to L::.o. (41 It can be seen from (11), (12) that the 
function nl is proportional to the small parameter t::./a, 
so that the terms III t::.2 in Eq. (7) have a higher order of 
smallness and, for this reason, are omitted in (11). In 
the approximation taken, the normalization condition has 
the form 

(13) 

Equation (10) is solved exactly (cf. (4]): 

n =~(i __ S_) 
o(s) 3 (;'+a')"" (14) 

The constant a is found from the condition (13) and, as 
will be shown, is equal to 

a=2do (~o) 'I,. (15) 

With the aid of (14) we can find the critical pumping 
power at which the gap vanishes. Substituting (14) into 
(2) and putting t::. =0, we find 

(16) 
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TIG. 1. Dependence of the 
order parameter on pumping 
power at T=O. 

which coincides with formula (21) of the paper. (41 But, 
as we shall see, this solution is not unique. If t::. '* 0 it 
is necessary to take nl into consideration. Solving Eq. 
(11), we obtain for the function nl the following expres­
sion: 

n, = ~ + P1~;) Y Ijl(s')ds', , 
P(s) =;/ (s'+a') ''', r (S) = (£'+a') 'I,. (17) 

With the aid of (14) the function if! (12) can be calculated 
in explicit form: 

d' [a+d 6 8+ (s'+a')'" ] .h(S)= -- 10--+---10 . 
or 2e s+e (s'+a') 'I, a+d 

(18) 

It is not difficult to see that the function nl does not ex­
ceed the small quantity (t::./ t::.o) In (t::.o/ t::.)« 1, and, there­
fore, the approximations we have made are justified. 

Since the function if! is negative, the correction nl to 
the distribution function, arising on account of the co­
herent terms t::.2/e e', also turns out to be negative. This 
important property, which is conserved in the general 
case, gives rise to the nonunique dependence of the gap 
on the pumping power. 

Substituting (9), (14), (17) and (18) into (2), we obtain 
the equation for the gap 

d [ do 2 ] 2 a-a, - In---(HG) =---, 
do d 1t 1t a, 

S dz In z 
G= --'" 0.91;;, 

0'+1 

2 
-(l+G) "'1.8 

1t 

(19) 

to within terms (t::./ !::.o)2. We note that the principal con­
tribution from the function nl for ~ - t::. is made by the 
first term in (17). 

The solution of Eq. (19) is depicted in Fig. 1. It can 
be seen from Fig. 1 that, for a <ae, the gap decreases 
monotonically with increase of pumping power /30, to a 
value t::./ t::.o '" 0.16. If the pumping power exceeds the 
critical value ae there appears a second solution, ac­
cording to which the order parameter t::. increases with 
increase of a. The two solutions merge at pumping 
ae2/ae = 1.1, t::.2/!::.o =0.06, above which the gap vanishes. 
(We note that in the interval 1 <alae < 1.1 the gap t::./ t::.o 
< 0.16, so that the parameter (t::./2!::.o) In (!::.o/ t::.) '" 1. 5 re­
mains small in the region of interest to us. ) 

The growing solution arises because of the negative 
sign of the correction nl to the distribution function. In 
its turn, the sign of the correction is due to the sign of 
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the terms A2 lEt in Eq. (1), which take into account the 
coherent character of the interaction of the quasi-par­
ticles of the superconductor with the phonons. These 
terms A2 1£ £1 lead to an increase in the recombination 
and a decrease in the scattering of quasi-particles. (In 
an excitonic insulator the sign of the correction is posi­
tive, since the coherence factors decrease the recom­
bination and increase the scattering of quasi-particles, 
and, consequently, the growing solution is absent.) For 
small A, when this effect is important, a decrease of 
the quasi-particle distribution function in the interval 
~ - A occurs, giving rise to the increase of the gap. 

We draw attention to a certain analogy between the 
dependence of A on a and the dependence obtained in(lOJ 
for superconductors irradiated by a high-frequency field 
with w« Ao. In the latter case the growing solution 
arises not from the coherent character of the relaxation 
processes but from the action of the field, which changes 
the energy distribution of the quasi-particles. 

The model solution 11t (~) that we have found possesses 
certain properties that are conserved in the general 
case. As has been noted, the prinCipal contribution at 
small values of ~ is made by the first term in (17); this 
term is obtained from Eq. (11) if in it we neglect the in­
tegral term. Taking into account that 

~ 1 ~ /':,. Ii' 
S ntd~=-S\jl(~)d~=-(-ln~) , 

a 2/':,.0 /':,. 
(20) 

o 0 

we can omit the integral term in (11) in our approxima­
tion. If we substitute (9), (17) and (20) into (13), we ar­
rive at the relation (15), which is obtained immediately 
if we omit the last two terms in (13). 

3. THE ORDER PARAMETER FOR T=O, k = 1 

We now consider the more realistic case when the de­
pendence of the matrix element has the form M ~ - q. 
Equation (1) takes the form 

- (1-n) Y n' (1- ~',) (e-e')' d~' 
I 

t d~ "'D AZ 
+n S (1-n') (1--;;;) (e-e')'d~'+n S n' (1+-;;;) (eh')'dS'. (21) 

o 0 

It is not difficult to show that the distribution function n 
and its derivative at the pOint ~ = 0 are respectively equal 
to 

1 ( 3/':,.a t ) n(~=O)=- 1--- , 
2 a, 

dn I at 
de ~=O = - 2a2' 

(22) 

® 

am = J d~emn(~), m=0,1,2. (23) 

We shall seek the solution of (21) in the form n =no(E) 
+nl(~); then the equations for the functions no and nl are 
found to be the following: 

WD , 

-(i-no) J no'(8-e')2d~'+noS (I-no') (e-e')'d;' 
, 0 

+no S no' (e+e')'dli'=O; (24) 
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"D 

S{n,}=4noe S nt'e' d~'-(1-2no) S n,'(e-e')'d~', (26) 

/':,.' WD n ' , d~: 
~,= - -;- [ S 7(e-8')2 d~'+4noeao-no S 7(1-2no') (e-e')']. (27) 

, 0 

Here S(no, 0) is given by Eq. (1), in which the terms 
with A21 £ £', N, are put equal to zero. Taking into ac­
count that the integral term in (25) gives a correction 
(AI Aof, for nl we find 

n,=\jl(£)/S(no.O), (28) 

and the gap equation (2) takes the form 

~= WSD J-2no(e) d~-2S® "'(6)d~ . 
A 8 8S(no,0) 

(29) 
o 0 

We shall confine ourselves to calculating the terms lin­
ear in A. Therefore, we can put A = 0 in the first term 
of (29), since it is not difficult to show that the correc­
tions will be proportional to (.6.1 ilo)2 • Taking into ac­
count that the principal contribution to the last term is 
made by small ~ -.6., we obtain 

1 ·SD 1-2no (li, a) na, A 

-- d~=-L>, 
}.. 6 2a, 

(30) 
o 

where no(~, a) is the distribution function for .6. =0 and for 
pumping power corresponding to a. In its turn, a char­
acterizes the energy interval in which the quasi-parti­
cles are concentrated (a - .6.0 - ao - a~/2 - a~/3). The func­
tion no(~, a) possesses the following properties: 

no(~, a) =no(li/a) "'no(x); 
(31) 

1-2no(x) ~x, x-"O, no(x) ~x-', x-.. oo • 

Using these we transform the left-hand side of (30) to 
the form 

finally we obtain 

(32) 

where ac - ilot is the critical pumping power; t is a nu­
merical factor of order unity. 

Thus, we again obtain a solution according to which 
the order parameter grows with increase of pumping 
power. It is obvious that the growing solution is bound 
to merge with the ordinary decreasing solution, and we 
arrive at a dependence of the gap on pumping that coin­
cides qualitatively with the dependence depicted in Fig. 
1. 

4. THE ORDER PARAMETER AT NEAR-CRITICAL 
TEMPERATURES, k = 1 

We shall generalize the results obtained to the case 
of finite temperatures. We shall find the equation for 
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the gap in the situation when the lattice temperature is 
close to Te (Te is the temperature of the superconduct­
ing transition in the equilibrium state) and the pumping 
power is small (f:3« 1). We seek the solution of Eq. (1) 
in the form 

(33) 

where nT(E) is the distribution function of the thermal 
quasi-particles: 

(34) 

and no, nl are the distribution functions of the excess 
quasi-particles created by the source. The functions no 
and nl satisfy the equations 

~ 2wu' 
noS (n,', 0) + S{no}= --Q(e), 

111. 

n,S(n/, 0) +S{n,} =ljJ(S), 

(35) 

(36) 

where § is the integral operator 

S{ni}=4B1ZT S n/e' dS'-(1-2nT) S n/(e-e')'ds' 
o ( 

"D 

+ S n/[Nt'-"t(e-e')'-N'H,(e+e')'jds', (37) 
• 

I , m 

+(2nT-1) S~(e-e')'ds'+4B1ZT(e) S no' ds'}' (38) 
, e • 

The function no is nonzero in the interval of energies 
£ - T and possesses the following properties: 

n,(e, T) =n,(ejT) ""'n,(x); n,(x) -x, X"" 0; 
(39) 

For the function nl we again obtain (28), neglecting the 
integral term, which is of order (a/T~). As a result 
we arrive at the equation for the gap: 

(40) 

The first two terms in (40) give the usual terms of the 
Ginzburg-Landau equation. In the zeroth approxima­
tion in a, the third term has, with allowance for the 
normalization (5), the formll 

S• n, (s) 
2 -s- ds=2~~" , 

(41) 

where tl and t2 are numerical factors of order unity: 

~,= S dx S d~' y(x')[nT(x)+Nm ,], . , 
1 • dx 

~,=-;:- S -y(x), 
':,1 0 x 

~I 
y(x)=Tn,(x). 

(42) 

It can be shown that the next term in the expansion in 
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FIG. 2. Dependence of the order 
parameter on temperature in the 
absence of pumping ({3 = 0, curve 
1) and at fixed pumping ({3=O, 
curve 2). 

a is proportional to (a/Te)2 f3. Since f:3« 1 this term is 
small, and we omit it. For a similar reason we confine 
ourselves to terms linear in a in the last term af:3t3/Te 
of Eq. (40), in which 

~.= ~"7~(3) f y(x)x(1+2Nx )dx. 

Collecting the results we obtain the gap equation 

T-T, ( ~)' ~ --+ 2~~2=-b - + - ~~., 
T, T, T, 

n(3) 
b=--

8n' ' 
(43) 

which, for a fixed temperature, possesses the features 
that were discussed above. From the solution of (43): 

(44) 

it follows that in the temperature interval Te2 < T< Tel at 
fixed pumping (and in the pumping-power interval f:3e2 
< f:3< f:3e1 at fixed temperature), with 

(45) 

(46) 

there exist two solutions (Fig. 2). Generally speaking, 
it should be necessary to add a term quadratic in f:3 to 
(43); however, allowance for this would lead only to a 
shift of Te2 and Tel without changing the temperature in­
terval in which the two solutions exist. 

5. INVESTIGATION OF THE STABILITY OF THE 
STATE OF THE SUPERCONDUCTOR 

We shall consider the stability of the system against 
small fluctuations of the gap and of the quasi-particle 
distribution function over times during which collision 
processes are unimportant. Linearizing the system 
consisting of the equations for the gap a(r, t) and the 
collisionless equation for the distribution function n(r, t) 
we obtain the following criterion for stability against 
perturbations with frequency 0 = 0, q - 0: 

S~ ds ( 1-2n dn) 
J=~2 _ --+2- >0. 

o e2 e de 
(47) 

This criterion is contained in the paper, (13) if we take 
into account, in the limit of small 0 and q, the first 
term omitted there. It can also be obtained from the 
results of (a) in the limit q -0, O/q- O. After integra­
tion by parts the criterion (47) reduces to the form 
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~ iJ 
J=1+2 f ~d~>O, 

, OS 
(48) 

which expresses the fact that it is necessary for sta­
bility that the superconductor remain diamagnetic (to 
avoid misunderstandings, we recall that we are con­
cerned with an ordinary superconductor with attraction, 
with t.a« wD ). Calculating (48) using the distribution 
functions found in Secs. 2-4, we obtain 

2A ( It Ao 1 ) J=- -In--2G+-
Ao 2 A 2 ' 

T=O, k=-1; (49) 

1= 6..!!:!!::...., T=O, k=l; 
2a, 

(50) 

A 0 A 
J=2b (z;;- r+T:~~3' T';;'T" k=i. (51) 

It can be seen that in all cases (in (49) within the limits 
of applicability) the current is positive, i. e., according 
to the criterion (48) a nonequilibrium superconductor is 
stable against small fluctuations. 

It is also of interest to ascertain the sign of the cur­
rent in an external electric field E with frequency n1 • 

It can be shown (cf. [15J) that, with allowance for scatter­
ing by impurities, the expression for the current has 
the form 

nA 
j=i-(1-2n(~=O) )a.,E, 

QJ 
(52) 

where UN is the conductivity of the normal metal. By 
virtue of the condition (6), the sign of the current re­
mains the same as the sign characteristic of the equi­
librium situation. We draw attention to the possibility 
of checking the relation (6) experimentally by measur­
ing the sign of the current (52). 

It must be noted that the criterion (48) is extremely 
sensitive to the form of the distribution function. If, 
e. g., we substitute into (48) a Fermi function with a 
nonzero chemical potential, the sign can become nega­
tive. Thus, at T = 0 the function nF is a single step, and 
it is easy to see that J < 0 for all values of the chemical 
potential (i. e., of the pumping), which is in disagree­
ment with (49), (50). From this follows the necessity of 
using quasi-particle distribution functions satisfying a 
kinetic equation. 

We note that if 2ao> WD , the function n becomes, in 
accordance with (1), a Fermi function, and J<O, as was 
shown inL16J in a discussion of nonequilibrium supercon­
ductivity with repulsion. However, in ordinary super­
conductors (Ao« wD ) the distribution functions of the ex­
cess quasi-particles differ substantially from equilib­
rium functions in the cases of interest to us. [12,4J 

Thus, according to the criterion (48) for q - 0, which 
obviously does not exhaust the possible instabilities, a 
superconductor with optical pumping remains stable. 
Consequently, a more detailed investigation of the sta­
bility of the different nonequilibrium situations is nec­
essary. This investigation is a complicated problem, 
lying outside the scope of the present paper. However, 
it is well known that a nonunique dependence of the 
characteristics of a system on the external parameters 
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usually leads to instability and to a transition to a non­
uniform state. For example, inL17,18J it was shown that 
a nonunique dependence of the order parameter A on the 
internal magnetic field (in a certain range of magnetic 
fields), analogous in form to the dependence depicted in 
Figs. 1 and 2, leads to a second-order phase transition 
to a nonuniform state with finite q. 

In our case the role of the internal magnetic field is 
played by the pumping power f3. Attention was drawn 
to this fact in the paper. [19J There it was found that the 
critical power f3c (at which A =0) decreases monotonical­
ly with increase of q (in contrast with the Situation with 
an internal magnetic fielde17,18l) and it was concluded 
that a second-order transition to a nonuniform state is 
impossible. As can be seen from the results of our 
work, this is valid if the power is less than the critical 
power f3c • In the interval f3c < f3< f3c2 a first-order phase 
transition to a nonuniform state2) with finite q is pos­
sible. (To find the interval of q for which a transition 
occurs a numerical calculation is required, as in[17i18J.) 
In this case partition occurs into regions with a"* 0 and 
a =0, and the latter give rise to the appearance of a 
finite d. c. resistance of the sample. 

We postulate that the nonunique dependence, found in 
this paper, of the order parameter on the pumping 
power, and the associated transition of the superconduc­
tor to a nonuniform state, can explain the experimental 
results on the smooth increase in the resistance of a 
sample with increase of the pumping power above the 
critical value. [6,7J An argument in favor of the proposed 
interpretation is provided by the analogy with the situa­
tion in superconductors with high-frequency pumping 
(a« w). In fact, in the experiments of Rose and Sher­
rill[20J it was discovered that, above a certain critical 
power, a film acquired a finite d. c. reSistance, which 
increased gradually, up to the normal value. On the 
other hand, Eliashberg showed [10J that the gap in a 
superconductor with high-frequency pumping (a« w) has 
a nonunique dependence on the pumping power. 

The author is grateful to Yu. V. Kopaev for discus­
sion of the work and useful comments. 

1) A term of a similar type has been obtained earlier. C12J 

2)We note that, in the model of Owen and Scalapino, [3J in which, 
at T= 0, a nonunique dependence exists for any pumping pow­
er, a transition to a nonuniform state is possible even for 
small q. [8J 
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Electron properties of amorphic and crystalline ytterbium 
films 
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The electron properties (electric conductivity, magnetoresistance and Hall effect) of amorphous and 
crystalline ytterbium films are investigated at low temperatures. Some peculiarities are observed, 
especially a reduction of the resistivity of amorphous Yb films with decrease of their thickness. 
Information is obtained regarding the number of carriers, and their mobility and mean free path in the 
films. The differences in the properties of amorphous and crystalline Yb are ascribed to a shift of the 
conduction band relative to the valence band. 

PACS numbers: 73.60.Fw 

1. INTRODUCTION 

The last 10-15 years have seen an intensive develop­
ment of experimental and theoretical investigations of 
noncrystalline substances, particularly amorphous met­
als and alloys. [l) These new metallic modifications fre­
quently exhibit interesting and unexpected physical prop­
erties, such as superconductivity of the amorphous 
films of Bi, Ga, and Be. [2,3) This, however, is not the 
only reason for interest in amorphous metals. A quan­
tum-mechanical explanation of the electronic properties 
of metals and semiconductors, which was based on 
periodicity of the potential, on the presence of long­
range order in the arrangement of the atoms, is recent­
ly being substantially reconsidered. [4,5) It appears that 
not the long-range order but the short-range order is 
responsible for the main electronic properties. The ex­
perimental data on the properties of amorphous metals 
are extremely scanty. 

We report here a comprehensive investigation of the 
electric and galvanomagnetic properties of low-tempera­
ture films of a rare-earth metal, ytterbium, both in 
the amorphous and in the crystalline state. It was ob­
served earlier[S) that condensation of ytterbium vapor 
in ultrahigh vacuum on a substrate cooled with liquid 
helium leads to the formation of a new modification of 
this metal. It was shown by electron diffractionl ) that 
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the low-temperature modification of ytterbium is an 
amorphous state. Amorphous ytterbium films are meta­
stable and undergo an irreversible transition into the 
crystalline states (a-c transitions) when heated to a 
definite temperature Ttr and when they reach a critical 
thickness dcr in the course of the condensation. 

The value of dcr obtained in preliminary investiga­
tions[S) was - 3000 A. It is known, however, [1) that im­
purities greatly increase the stability of amorphous 
metallic films, increasing both their crystallization 
temperature and their critical thickness. The value of 
dcr for the purest ytterbium films obtained recently is 
500-1000 A. (7) It has also been shown[7,8) that the crys­
tallization temperature of amorphous ytterbium films 
increases in accordance with a hyperbOlic law with de­
crease of their thickness. Ttr of subcritical thickness 
is apprOximately 14 "K. The amorphous ytterbium lay­
ers whose thickness is smaller by several percent than 
critical undergo an a-c transition also when a magnetic 
field of definite intensity is applied perpendicular to the 
layer. [9) 

In this paper we report an investigation of the elec­
tronic properties of amorphous Yb films in the interval 
of thicknesses, temperatures, and fields that limit their 
stability. 
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