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Irradiation of a dielectric by nonresonance infrared light leads to excitation of short-wavelength phonon 
modes (two-phonon absorption). ~It is shown that there exists an intensity threshold above which 
spontaneous lowering of the symmetry occurs in the gas of nonequilibrium short-wavelength phonons-the 
stable state of the gas is one in which the phonon distribution function is of lower symmetry than the 
crystal. 

PACS numbers: 63.20.-e 

1. THE MODEL AND KINETIC EQUATION 

An isotropic model of a crystal with a center of in­
version is considered; in the crystal there are two 
acoustic branches (a transverse (TA) and a longitudinal 
(LA) branch) and several optical branches (0) (see Fig. 
1). The crystal is at a low temperature T« WD, where 
wD is the Debye frequency. 

The frequency II of the incident light does not coincide 
with any of the limiting (q =0) frequencies Wo of the op­
tical phonons active in infrared absorption. In this case 
the absorption is associated with the creation of a pair 
of short-wavelength phonons (usually acoustic) and pro­
ceeds according to the scheme 

v->-TA+LA; (1.1) 

the frequencies of the phonons created are of the order 
of wD • 

The LA phonons created are rapidly thermalized in 
spontaneous decay processes, and therefore their oc­
cupation numbers can be assumed equal to zero. Spon­
taneous decay of the TA phonons is impossible. [11 
Therefore, they can be destroyed either by scattering 
by defects with the conversion TA- LA[21 or by interac­
tion between nonequilibrium TA phonons. In lowest or­
der in the anharmonicity the latter corresponds to the 
coalescence process 

TA+TA->-O. (1. 2) 

O-branch phonons are also rapidly thermalized and if 
we assume their occupation numbers to be equal to zero 
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the coalescence .of two TA phonons is equivalent to their 
destruction. 

The kinetic equation for the occupation numbers of the 
TA phonons can be written in the following form: 

N(q)=D(q)+G(q). (1. 3) 

The term G describes the generation of TA phonons by 
the light and the term D describes the destruction of 
these phonons. 

We shall consider first the generation term G, assum­
ing, as inC3l, that the spectral intensity of the exciting 
light is given by a Lorentzian form factor 

{l'1v/2)Z 
q>(v)= (v-vo)'+(l'1v!2)" cp(vo)=1 (1. 4) 

with central frequency 111) and width all. We then have[81 

G(q) =Aq>(q) [N(q) +1], (1. 5) 

where 

w 

FIG. 1. 
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A=2,r,-' (IK/avodv), (1. 6) 

(where J is the intensity of the exciting light, K is the 
(linear) two-phonon absorption coefficient, and (J is the 
two-phonon density of states) and 

(1. 7) 

Because of the form factor qJ (q), the TA phonons are ex­
cited near the surface of a sphere with radius qo deter­
mined from the equation qJ (qo) = 1. The frequencies of 
these phonons are close to WO=WTA(qO)' 

We turn now to the term D. Since there are two de­
struction processes for TA phonons, 

D(q)=D,(q)+D,(q), (1. 8) 

where 

D,(q) =-.-'N(q) (1. 9) 

and 

D,(q)=- J dq'W(s,s')N(q)N(q'). (1.10) 

Here T is the time of "spontaneous" destruction of TA 
phonons, e. g., in the conversion TA- LA; it can be 
assumed to be independent of q in the small range of mo­
menta near qo that is important for us. W is the proba­
bility of coalescence of two TA phonons with momenta 
q and q'; it can be assumed to depend only on the direc­
tions of these momenta, specified by the unit vectors s 
and s'. 

2. THE STATIONARY SOLUTION AND THE 
CRITERION FOR ITS STABILITY 

For convenience we shall introduce dimensionless 
quantities of various kinds. In place of q we introduce 

x=(q-qo) (sTA+SLA)/(dv/2), (2.1) 

where the s are the group velocities of the corresponding 
phonons. Then 

CPt q) =cp(x) = (x'+1) -'. (2.2) 

In place of W(s, s') we introduce the dimensionless ker­
nel K(S, s'), such that 

U(S)='Jdq'W(s,S')N(q')=! J~:' K(s,s'») dx'N(x',s'). (2.3) 

Here do is the element of solid angle and the dimension­
less constant fJ is chosen in such a way that 

do' J-K(s,s')=1. 
411 

(2.4) 

In order of magnitude, fJ"" (rO/WD)(.1V/T-1), where ro is 
the typical width for third-order processes in which 
phonons with frequency of the order of the Debye fre-
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quency participate. In this notation the kinetic equation 
takes the form 

.N(x, s)=-[1-6CP(X)+u(s)]N(x, S)+6CP(X), (2.5) 

where ~ = ~ T is the dimensionless pumping parameter. 

The stationary "solution" of Eq. (2.5) 

N(xs)= ~cp(x) 6 1 
, 1-6CP(X)+U(s) 1+u(s) x'+[(1+U(S)-6)/(1+U(s»)] 

(2.6) 
is a Lorentzian distribution in q - qo with a width and 
height that depend on direction. Substituting (2.6) into 
(2.3) and integrating over x we find a nonlinear integral 
equation for u: 

U(s)= S~K(s,s')tD(6; u(s'», 
411 

where 

(2.7) 

(2.8) 

When u(s) has been found from this equation we can find 
the stationary phonon distribution N(x, s). 

Next comes the question of the stability of this dis­
tribution. We represent the solution of the nonstation­
ary equation in the form 

N(x, s)+15N(x, s)e-p'j, (2.9) 

and linearize (2.5) in oN about the stationary solution N. 
Then, substituting (2.9) into (2.3), we find 

U(s, t)=u(s)+15u(s)e- ptj" (2.10) 

where u corresponds to the stationary solution N, and 

~ J do' ') J 'N(' ') 15u(s)=- _K(s,s dx 15 x,s . 
11 411 

(2.11) 

On the other hand, after the linearization we obtain from 
Eq. (2.5) 

15u(s) 
15N(x,s)=-N(x,s) I-P-6CP(X)+U(s) 

(2.12) 

Substituting (2.12) into (2.11) and integrating over x we 
obtain a linear integral equation for au: 

p15u(s) = S~K(S, s') ltD (6; u(s'» -tD (6; u(s') -p) ]Ilu(s'). (2.13) 
411 

The conditions for solubility of this equation determine 
p. The distribution N is unstable if Eq. (2.13) is solu­
ble for p < O. We remark that in this case the integral 
over x that arises certainly converges. 

3. THE ISOTROPIC DISTRIBUTION AND ITS 
STABILITY 

It is natural to seek first an isotropic stationary solu­
tion, when u(s) = const. Then, using (2.4), we obtain 
from (2.7) an algebraiC equation for u: 
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(3.1) 

For each ~ this equation has one real and positive solu­
tion u(~), increasing monotonically with increase of ~. 
Therefore, for each ~ there exists a single isotropic 
distribution. We shall consider its stability. 

For the isotropic stationary solution the expression 
in square brackets in (2.13) can be taken outside the in­
tegral. Since the kernel K depends only on the angle be­
tween sand s', it can be represented in the following 
form: 

K(s,s')=4rt E k,Y,m(s) Y,m'(S'), (3.2) 
'm 

where the Y ,m are spherical harmonics (with phase and 
normalization as in[4J). We note that (2.4) is then 
equivalent to ko=1. It follows from (3.2) that on linear­
ization about the isotropic stationary distribution the 
solutions of (2. 13) are spherical harmonics and the 
solubility condition gives a series of independent alge­
braic equations 

(3.3) 

in which we must substitute uW for u. Then from (3 • .3) 
'the solutions P =PI(~) are obtained. The isotropic dis­
tribution is unstable for a given ~ if P, <0 holds for some 
l. This is possible only in the case when k, <0. - But if 
k,>O, Eq. (3.2) cannot be satisfied by a negative p, 
since <p{~; u) falls off with increase of u. 

The threshold of instability is determined by the con­
dition P,W =0. When P- 0 Eq. (3.3) is transformed into 

1 a W= -TuCll(s; u(~»)""''¥(;), k,<O. (3.4) 

Solving this equation we find ~ i -the threshold for loss 
of stability against distribution-function fluctuations that 
depend on the direction of q, such as Y,J.s). 

Thus, the question of the stability of the isotropic 
stationary solution turns out to be connected with the 
question of the existence of negative eigenvalues of the 
kernel K. Therefore, we shall conSider the properties 
of this kernel in somewhat more detail. The coales­
cence (1. 2) is possible only in the case when the mo­
menta of the TA phonons form a definite angle X. unique­
ly determined by the conservation laws: 

2C!lo=C!lo(sq,+S'q,), cos 1(=ss', (3.5) 

where wo(q) is the O-phonon dispersion law. Therefore, 

K(s, s') =26 (ss'-cos 1() , 

k,=P,(cos x). 

(3.6) 
(3.7) 

The coefficient of the Ii-function is chosen in accordance 
with the normalization (2.4). 

It follows from the properties of Legendre polynomials 
that we can always find an 1 for which k, < 0, and that 
I k,l .:s 1 for all 1. If coalescence into several different 
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optical branches is possible, there is an angle Xi and a 
value (3i corresponding to each channel. If we choose 

(3.8) 

then 

(3.9) 

where ( ... > denotes averaging over the coalesc~mce 
channels, with weights (3/13. It is obvious that I k,l .:s 1 
in this case too. The existence of negative k, follows 
from the equality 

K (s, SI = .E (2l+1) k,=O, (3.10) 

provided that, amongst the angles Xi' there is no chance 
angle Xi =0. Now it is possible to show, starting from 
the known properties of the kernel K, that Eq. (3.4) 
necessarily has a solution, and only one at that. By di­
rect calculation it is easily verified that 

(3.11) 

and 

'¥ (1)= ~ [1 + _U_] <1, u"",.(1). 
2 1+,. 

(3.12) 

Thus, starting from a certain value less than unity at 
~ = 1, 'lr(~~ increases monotonically and without limit 
with increase of~. Since I k,l .:s 1, Eq. (3.4) necessarily 
has a solution ~ i > 1, and with increase of I k,l the 
threshold value ~ i falls. This means that the lowest 
threshold corresponds to the negative value of k, with 
the largest modulus. Differentiating (3.3) and letting ~ 
tend to ~ i, we can show that 

d 
di; p,(s,')<O. (3.13) 

Thus, for ~ < ~ i we have P,W > 0 and the isotropiC dis­
tribution is stable, while for ~ > ~ i we have P, W < 0 and 
the isotropiC distribution is unstable. 

ExpliCit expressions for the threshold can be found for 
, the limiting values of the coalescence parameter: 

(3.14) 

where 

x=2/Ik,J>2. 

4. THE BRANCHING EQUATIONS 

It does not appear to be possible to find an anisotropic 
solution of the integral equation (2.7). Therefore, we 
shall confine ourselves to studying the solutions near 
the point of loss of stability (the point of bifurcation of 
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the isotropic solution). [5] Let lo be that value of l for 
which ~ i is a minimum. Denoting 

u(s) =ll(;,:) +w(s). 

/!=i;-;,:. 

(4.1) 

(4.2) 

we expand (2.8) in IJ. and w. The following equation for 
w is obtained: 

f do' 
w(s)= ~K(s. s'){a,,/!+aotw(s')+F(/!; w(s'))). (4.3) 

Here and belOW, the constants 

(4.4) 

and F denotes the higher terms of the expansion. 

Equation (4.3) cannot be iterated in the nonlinearity, 
since its linear part cannot be solved for w. The in­
solubility is connected with the fact that the eigenvalues 
of the kernel (47T)"lalOK that correspond to the eigenfunc­
tions Y'om are equal to alOk,o = 1; the latter follows from 
(3.4). Therefore, it is necessary to separate out from 
the kernel K the part responsible for the instability: 

~a"K(s. s')=K(s. s')+ \"lY"m(S) Y;,m(S'). 
4n ~ 

(4.5) 

After substitution of this representation into the linear 
part of Eq. (4.3) the coefficients 

Cm = S dow(s)Y;,m(S). (4.6) 

of the expansion in the "unstable" harmonics appear, 
and the equation itself takes the following form: 

w(s)- f do'R'(s.s')w(s')=/!a,,+ 1: cmY"m(s) + f ~~ K(s.s')F(/!;w(s». 

(4.7) 
We introduce the resolvent R of the kernel K: 

R(s.s')= 1:' r,Y,m(S) Y,m'(S'), r,=aOl k,(l-aOlk,)-" (4.8) 
'm 

where the prime on the summation sign signifies that 
l '" lo in the summation. Transforming now Eq. (4.7), 
we have 

where 

Q(s, s' )=~K(s.s')+ f do" R(s.s")K(s",s') = \"l q,Y,m(S) Y,m·(S'). 
4n 4n .l-l 

'm (4.10) 
q,=k,,, 1=1.; q,=k,(1-a"k,)-I, 1""10, 

In the form (4.9), the equation for w can be iterated 
in the non-linearity. It is more convenient to seek not 
the function w itself, but the expansion coefficients cm 

of the unstable harmonics and the expansion coefficients 
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b'm =S do w(s) Y,m·(S). 1""1. (4.11) 

of the "stable" harmonics. Multiplying (4.9) by Yio'" 
and integrating, we find 

S do'Y,',m(s')F(/!; w(s'» =0. (4.12) 

Analogously, multiplying by Yi". with l '" la, we obtain 

b,m= (4n)-'h6, .• /UZ,,(1-a,,)-I+q, ~ dOY'm'(s)F(/!; w (s». (4.13) 

As in the theory of phase transitions, the subsequent 
procedure is found to depend on the symmetry property 
of the "order parameter, " i. e., in the present case, on 
the parity of lo. 

Even lo. As will be seen from the following, in this 
case we obtain a solution in which c"., bo- IJ. and b'm(l 
'" lo) - l. Therefore, in F it is necessary to keep only 
the next terms, of order 1J.2: 

(4.14) 

From (4.13) we find that, in lowest order, 

(4.15) 

In substituting F into (4.12) it is necessary to keep only 
the leading terms, of order IJ., in w, i. e., Cm and boo 
Then, using (4.15), we find an equation for cm: 

(4.16) 

where 

(4.17) 

Here we have introduced notation for the integral of sev­
eral spherical harmonics: 

l,m;'.m'.I.m •... = S do Y'm·(s)Y"m'(S)Y'''''.(s) .... (4.18) 

For even lo the coefficient A (3) '" 0, and it can be seen 
that all the solutions of Eq. (4. 16) give cm - IJ., as was 
assumed. It follows from (4.13) with l '" lo that b,- 1J.2. 
We shall not need explicit expressions for these coeffi­
cients. 

Odd lo. In this case it is found that c".- 1J.1I2, and all 
the b'm - IJ.. Now it is necessary to keep terms of order 
IJ. and 1J.3/2 in F: 

(4.19) 

In substituting this expansion into (4.13) it is sufficient 
to keep only its leading term w2, and also keep only the 
leading term, of order 1J.1/2 (i. e., cm), in W. We then 
find 

b,m = (4n)-·/'6, .• /!a,,(1- aOl) -I + Ta"q, 1: cm,cm,l'm;"m,.~m •. (4.20) 
mlmz 
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When the expansion (4.19) is substituted into (4.12) it is 
necessary to keep all three of the terms written out, and 
in substituting w into the leading term ul' it is necessary 
also to keep the terms of b'm in w. Using these terms 
(4.20), we find from (4.12) the following equation for Cm: 

(4.21) 

where the coeffiCient A (1) is the same as in (4.16), and 

(4.22) 
It can be seen that all the solutions of (4.21) give cm 

- jJ.1!2, as was assumed. We note that, with the chosen 
phase of the spherical harmonics, the coeffiCients A (3) 

and A (4) are real, and from the reality of w it follows 
that 

5. CRITERION FOR THE STABILITY OF THE 
SOLUTIONS NEAR THE BIFURCATION POINT 

(4.23) 

To investigate the stability of the solutions near the 
bifurcation point we can expand the expression in square 
brackets in Eq. (2.13) in the small quantities jJ., wand 
p. This equation then takes the form 

S do' 
Ilu(s)= 4;"K(s,s')[aOi +G(p, 11; w(s'»]llu(s'), (5.1) 

where G contains higher terms of the expansion, of or­
ders not lower than jJ., p and w. Multiplying (5.1) by a 
spherical harmonic and integrating, we find the coeffi­
cients of the expansion of 6u(s) in the Y ,m: 

(5.2) 

If 1'" 10, this equation can be solved for 6u ,m, whence it 
can be seen that 6u'm - G6u(s). Since G is small, this 
means that the major part of 6u(s) is made up of the un­
stable harmonics Y'om(s). The subsequent analysis of 
the stability is different for even and odd 10, as was the 
case in the derivation of the branching equations. 

Even 10 , Assuming that p - jJ., we find the leading 
terms of the expansion: 

(5.3) 

With the assumption made, G - jJ., and therefore 6u' ;</O 
- jJ.i5UIO' In Eq. (5.2) with 1 = 10, in the function i5u(s) in 
the integrand it is sufficient to keep only the unstable 
harmonics. The following system of equations is then 
obtained: 

(5.4) 
m' 

where 

A - .. A{I). +2 ~A{'). 
mm' - f4L1 Vmm' ~ m,m TIlle", •• (5.5) ... 
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Equation (5.4) implies that ¥L02P is the eigenvalue of the 
matrix A. Since C - jJ., p also turns out to be of order jJ., 

as was assumed. 

Odd 10 , Assuming again that p - jJ., we find the leading 
terms of the expansion 

(5.6) 

In this case G - ,,1!2 and i5u - ,,1!2i5u If we take Eq. 
,,.. '"/0 ''' '0' 

(5.2) for 1=10, we cannot now confine ourselves just to 
the unstable harmonics in 6u(s), Since, e. g., the term 
w6u' '' /O is of the same order as ul'i5UIO' The Situation 
here is entirely analogous to that which obtained in the 
derivation of (4.21). Therefore, it is necessary first 
to express i5U,;</O in terms of 6u'0 using (5.2) for 1*10, 

and then substitute them into (5.2) for 1 = 10 , Then the 
system (5.4) is obtained again, but now 

(5.7) 

6. AXIALLY SYMMETRIC SOLUTIONS AND THEIR 
STABILITY 

Any solution of Eq. (2.7) possesses the symmetry of 
one of the subgroups of the rotation group. Moreover, 
if this solution is rotated arbitrarily in space, we again 
obtain a solution. Both these remarks also apply, of 
course, to the solutions of the branching equations 
(4.16) and (4.21). 

It is easiest of all to find axially symmetric solutions 
of the branching equations. The symmetry axis of such 
a solution can have arbitrary direction; by choosing the 
"quantization axis" z of the spherical harmonics to lie 
along the symmetry axis, we shall have cm =0 for m *0. 
Then, from (4.16) we obtain 

Co = -I1A(!)IAo{.::, lo even, (6.1) 

and from (4.21), 

10 ,odd. (6.2) 

We shall show that for 10 = 1,2 these exhaust all the 
possible solutions. 

If 10 =1, the coefficients Cm transform like components 
of a vector c, and 

1:, cmY m (8) -cs. (6.3) 

It is obvious that this function is axially symmetric 
about c, along which we can point the z axis. 

If lo = 2, the coeffiCients em transform like the compo­
nents of a symmetric second-rank tensor, since 

XZ, YZ-Y±l> xy-Y,-Y_" 

x'-y'-Y,+Y_2 , x'+y'-Yo• 
(6.4) 

If the x, y and z axes are directed along the axes of the 
tensor, its xy, xz and yz components vanish. This 
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means that, in solving (4.16) for 10 = 2, we can assume 
without loss of generality that 

(6.5) 

It then follows from (4.23) and (6.5) that 

(6.6) 

The system (4.16) is reduced to a system of two equa­
tions: 

(6.7) 

Here we have used the symmetry property 

which follows from the explicit expression for the inte­
gral of three spherical harmonics in terms of Wigner 
coefficients. [4] The system (6.7) has a solution with C2 

= ° and Co determined from (6.1); this solution is axially 
symmetric about the z axis. But if C2 *0, then, calcu­
lating the coefficients A (3) explicitly, we can find that 
c2ico =± (3/2)1/2. Then, 

~ c",Y", (s) ~ (1 - 3 cos' 8) ± 3 sin' 0 cos 2cp, (6.8) 

where () and cp are the polar angles of the vector s. Us­
ing the addition theorem, it is easy to verify that the 
latter expression coincides with P2(e. s), where, for 
the upper sign, the unit vector e II x, and for the lower 
sign, ell y. Thus, the solutions with ca *0 are also axi­
ally symmetric, but now about other axes of the tensor­
x and y. 

The matrices A determining the stability of the axi­
ally symmetric solutions are diagonal: 

Amm' = 6mm, [!lA(l) + 2coA~~~,), 

Amm' = 6mm, [ftA (I) + 3c,'A~~~oo), 

lo even, 

I, odd, 

(6.9) 

The diagonal elements determine the damping constants 
Pm of fluctuations of the type Y1om' Substituting the ex­
pression for Co from (6.1) and (6.2) into (6.9), we obtain 

Pm = - fta [1 - 3A~~~ool A;~)oo), 
a",,-2A (ilia", 

I, odd. 
(6.10) 

The solutions of the branching equations and the cor­
responding damping constants are arranged differently 
for even and odd 10 , For even 10 a solution w(s) exists 
on both sides of the threshold; both the solution and the 
damping constants are completely independent of the 
properties of the kernel K that are associated with the 
stable harmoniCS, i. e., independent of the kl with 1* le. 
The ratio of the coefficients A (3) in (6.10) i.s simply a 
ratio of Wigner coeffiCients, and the stability is com­
pletely determined by the symmetry of the problem. On 
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the other hand, for odd 10 a real solution w(s) exists only 
on one side of the threshold, where 

!lA (I)/A.~::. > 0, (6.11) 

Since, according to (4.23), Co is pure-imaginary. The 
condition for the existence of the solution and the sta­
bility of the solution depend not only on kl but also on 
the kl with 1=0,2, • •• ,210, i. e., on the p~operties of 
the kernel K that are associated with the stable har­
monics. 

It is instructive to ascertain at which values of /.L the 
anisotropy of the distribution (2.6) becomes of order 
unity, i. e., . in effect, up to which values of /.L the 
branching equations obtained by expanding in /.L are valid. 
For this we can consider, e. g., the occupation numbers 
in the center of the distribution: 

N(O, s)=S/(Hu(s)-s), (6.12) 

The anisotropy becomes of order unity when w(s) is 
comparable with 1 +u(s) - ~ for ~ = no' Estimates show 
that, irrespective of whether 10 is even or odd, this 
happens when /.L'" {32/3, if {3« 1, and when /.L'" {3, if (3» 1; 
i. e., as we should expect, the characteristic range of 
variation of /.L is the spacing between neighboring thresh­
olds ~;, an estimate for which is obtained from (3.14). 

We shall consider in more detail the simplest insta­
bilities, with 10 = 1,2. From (6.10) we find 

(6.13) 

. The vanishing of the damping constants P±1 is a general 
property of the axially symmetric solutions; it reflects 
the neutrality of the equilibrium with respect to rota­
tions of the distribution. In fact, under an infinitesimal 
rotation of the distribution N(q), it changes by 

6N(q)=ill'l'LN(q), (6.14) 

where rxp is the rotation vector, and L is the "angular­
momentum" operator (in q-space). If N(q) is axially 
symmetric (N(q)- YloO ) then 6N(q) contains 

(6.15) 

It is easily verified that 

A(I)=_~,¥("')<O 0 0 ds ~, , a" > , a> . 

Therefore, the axially symmetriC distribution with 10 = 2 
is unstable below the threshold against fluctuations with 
m =0, which do not lower its symmetry, and unstable 
above the threshold against fluctuations with m = ± 2, 
which do lower the symmetry. The instability below the 
threshold implies a transformation of the axially sym­
metric distribution into an isotropic distribution (with 
raising of the symmetry). The instability above the 
threshold implies the absf'nce of nearly-isotropic solu­
tions. 
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An axially symmetric distribution with Zo = 1 is stable 
above the threshold, if it exists there, i. e., if A~~~oo <0. 
Calculating the coefficient A (4), we can show that the 
condition for the existence of a solution above the 
threshold is 

k, 4 k,k, 3 a" --+---->----
k, -15k, - k, 5 (a02 )" 

(6.16) 

For {3« 1, from this inequality we obtain the condition 

5lk,i' 
k,> 4-lk,1 >0. (6.17) 

It is interesting that if only one coalescence channel is 
operating and k1 and k2 are determined by formula (3.7), 
then (6.17) is never fulfilled. However, as soon as 
there are two coalescence channels it is possible to se­
lect~, /3z, X1> and X2 in such a way that (6.17) is ful­
filled. This example is extremely instructive-the sta­
bility conditions and the character of the change of the 
distribution near the threshold can depend on quite de­
tailed properties of the nonlinear mechanism. 

7. SOLUTIONS WITH POINT-GROUP SYMMETRY 

If Zo > 2, there exist solutions of the branching equa­
tions with point-group symmetry. Thus, for 10 = 4 
there exists a solution with cubic symmetry, i. e., 
bmcmY4m is a cubic harmonic withAl.&" symmetry. It can 
be shown, however, that for even Zo all solutions of the 
branching equations are unstable. For this it is suffi­
cient to show that the matrix (5.5) has eigenvalues of 
opposite sign. 

Multiplying Eq. (4.16) by two and comparing the re­
sult with (5.4), we can see that the matrix A + J.J.A (1) I has 
eigenvalue zero, i. e., A has eigenvalue- J.J.A U) • At the 
same time, Tr A = (210 + 1) J.J.A (1), whence follows the ex­
istence of eigenvalues with sign opposite to the sign of 
- J.J.A (1). In the calculation of the trace the second term 
in (5.5) makes no contribution, since 

E 2 EA~l~~lm em! = COa02 E Ilom;loo,lom = O. (7.1) 
m ml m 

The latter equality follows from the following property 
of the Wigner coefficients: 

E (-1),,-m (I. I. 1')=6 
O /0.0, 

. ' -m m (7.2) 

which can be obtained easily from the orthogonality rela­
tions for these coefficients. 

Odd Zo have not been investigated, since the question 
of the stability in this case is connected with a very 
large number of parameters: even for 10 = 3, besides k3 
three parameters (ka, k4 and k6) appear. 

8. RESULTS AND DISCUSSION 

The principal result of this work can be formulated as 
follows: in two-phonon absorption of light with creation 
of nondecaying TA phonons there exists a threshold 
light-intensity J: above which the nonequilibrium gas of 
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TA phonons goes over into a state with lower symmetry 
than that of the crystal. The threshold J: lies above 
the threshold J* for parametriC generation; the amount 
by which J: exceeds J* is determined by that nonlinear 
mechanism of TA-phonon destruction (coalescence) 
which limits the generation of TA phonons near the pa­
rametric threshold J*. If the nonlinear destruction 
mechanism is weak compared with the linear mechanism 
({3« 1), then J: is close to J* -more preCisely, J: 
- J* - {32/3. If the nonlinear mechanism is strong ({3 

»1), J: is substantially greater than J* -more pre­
cisely, J: - f3" * . 

Below the threshold J: the phonon distribution func­
tion N(q) is isotropic. The distribution is concentrated 
about a sphere q =qo, in a certain spherical layer of 
thickness t.q« qo. Above the threshold J: such a dis­
tribution is unstable against certain fluctuations liN(q), 
concentrated in the same spherical layer but destroying 
the isotropy of the distribution. The instability is con­
nected with the following circumstance. By the con­
servation laws, the coalescence of two TA phonons from 
the spherical layer is possible only when the angle X be­
tween the momenta of these phonons coincides with one 
of the several permissible XI; usually, none of the 
angles Xi is equal to zero, i. e., identical TA phonons 
do not coalesce. We now picture a fluctuation liN(q) con­
centrated predominantly in those directions of q between 
which the angles are far from all the Xi' Since the gas 
is above the parametric-generation threshold, this fluc­
tuation begins to grow, while preserving its angular dis­
tribution; at the same time the operation of the nonlin­
ear suppression mechanism-the coalescence-will be 
made more difficult. 

As a result of the development of such a fluctuation 
the phonon gas goes over into a state with an anisotropic 
distribution N(q); as before, the distribution is concen­
trated about a sphere q =qo, but the thickness !:J.q of the 
spherical layer and the maximum No of the distribution 
(at q =qo) now depend on direction. 

Depending on the detailed properties of the coales­
cence probability, the transition from the isotropiC to 
the anisotropic state at J =J: can resemble a first-or­
der or a second-order phase transition. In the first 
variant, the anisotropy of the distribution N(q) increases 
discontinuously to values of order unity when the thresh­
old is exceeded by an arbitrarily small amount; solu­
tions with small anisotropy are absent or unstable. In 
the second variant, stable distributions with small an­
isotropy arise when the threshold is slightly exceeded. 
In this case the anisotropy is determined by a spherical 
harmonic of a certain order Zo. For example, for Zo = 1 
there appears an axially symmetric distribution in which 

~q-a+b cos e, b- (1-/:) "'. 

Here 9 is the angle between q and a certain direction e­
the symmetry axis of the distribUtion, which can be ar­
bitrarily oriented with respect to the crystal. We note 
that in the transition to such an anisotropic state, which 
does not possess a center of inversion, a heat flux 
arises spontaneously. Its magnitude can be estimated, 
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assuming that the anisotropy of the distribution is of or­
der unity: 

ft!1v 
Q ""--, STA~-'''. 

a, 
(8.1) 

Here a~ is the volume of the unit cell. Assuming that 
~1I"'0.01 cm-t, which is typical for gas molecular la­
sers, we find Q'" 100 W / cm2 • 

Another manifestation of an axially symmetric dis­
tribution in the isotropic model is the existence of Gold­
stone modes corresponding to the group of rotations of 
the axis e. However, when the real crystal anisotropy 
is taken into account these modes disappear. 

The threshold J: can be detected from the Singularity 
of the coefficient of nonlinear absorption of infrared ra­
diation, which should have a kink or a discontinuity near J:, depending on the type of transition. 

In the model conSidered, two circumstances have not 
been taken into account: the presence of elastic scatter­
ing of TA phonons and the presence of crystal anisotro­
py. It is easy to show that in the framework of the iso­
tropic model elastic scattering does not qualitatively 
alter the phenomenon, although quantitative factors (the 
thresholds and stability conditions) are changed. 

To take the crystal anisotropy into account is rather 
complicated. For weak coalescence (13« 1) we are in­
terested in the region near the parametric threshold J* • 
However, in the anisotropic case, this threshold de­
pends on the direction of the momentum on the constant­
energy surface near which the phonons are created. It 
may happen that phonons created in the directions with 
the lowest threshold J* cannot coalesce, and then the 

. situation differs sharply from the isotropiC case. How­
ever, this effect is blunted by effective elastic scatter­
ing of phonons by impurities, and the situation approxi­
mates to the isotropiC situation. For strong coales­
cence (j3» 1) the anisotropy of the thresholds J: is un­
important, since in this case we are interested~in the 
region of subl:!tantially higher intenSities, at which the 
whole constant-energy surface is already excited. In 
the isotropic model conSidered, the loss of stability 
arose from the impossibility of coalescence of identical 
phonons. Since this property is not destroyed by anisot­
ropy, we may suppose that the phenomenon as a whole 
is also preserved. 

In crystals without a center of inverSion, besides (1.1) 
the process 11.- 2TA is possible. In this case the theory 
is entirely analogous, with the sole difference that the 
generation term (1. 5) contains the sum N(q) +N(-q) in 
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place of N(q). Therefore, fluctuations with odd 1, for 
which 6N(q) + 6N(-q) =0, are not amplified by pumping 
and are always stable. ConSidering the case of even 1, 
we can show that all anisotropic solutions near the bi­
furcation point are unstable, and therefore, the transi­
tion to the anisotropic state (if such a state exists) 
should occur discontinuously. 

The last remark concerns the question of phase cor­
relations in the phonon system. In the paper it has been 
assumed that there is no correlation between the phases 
of the individual phonon modes, although correlation 
could arise in the process of nonlinear interaction be­
tween modes (the so-called synchronization of modes). 
The frequency interval (~w)s in which synchronization 
can arise is determined by the "nonlinear time, " i. e. , 
by the time for transfer of energy from one mode to 
another. Therefore, in our case, 

C".Ul) , "" S dq'W(s,s')N(q'). (8.2) 

Using the estimates given in[6l, it is easy to verify that 
(~w)s« ~w; this means that synchronization of modes is 
unimportant. 

In conclusion we note that instabilities with respect to 
fluctuations that lower the symmetry of the system have 
also been noted in the classical problem of the paramet­
ric excitation of spin waves in a ferromagnet by mono­
chromatic pumping. C7l 
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