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The problem of percolation in a system of sites is examined by the method of scaling transformation. The 
position of the percolation level and the character of the variation of the correlation length (the critical 
exponent v )  are found. 

PACS numbers: 1 1.10. - z 

The problem of percolation in a system of si tes in a Relationship (2) is easily generalized for the case of 
- plane can be formulated in the following way: Let us an arbitrary dimensionality d: 

suppose that the entire plane is marked off into squares 2 zd-l 
of side a.  Each square is conducting with probability P PC= 1 - (1 - p J  (3) 

- - - 
o r  non-conducting with probability 1 -p. It i s  required 

The solution of (3) is given in Fig. 1. to find the critical value p=pc at which the conducting 
regions form channels which go to infinity. That is, we 
a re  interested in that minimum value p =PC at which the 
system begins to conduct a s  a unit. ['I 

The problem formulated above, if a - 0, is equivalent 
to the problem of percolation in a random field. [2-41 In 
order to find PC, let us proceed a s  follows. Let us 
change over to squares of side 2a. A square of side 2a 
will conduct in a direction perpendicular to one of its 
sides with probability 

In this case, such a square will be considered conducting. 
Near the percolation level, linear channels of percola- 
tion play a fundamental role. Each square of side 2a 
which strikes such a "direct" channel will again con- 
duct. In other words, if a percolation channel existed 
in the system of squares of side a, then it will be pre- 
served in the system of squares of side 2a. 

We can further go from squares of side 2a to squares 
of side 4a. Each square of side 4a will be regarded a s  
consistingof four squares of side 2a. Then the prob- 
ability p" that a square of side 4a will conduct is again 
given by the left side of expression (I), but, instead of 
p on the right side, we must put p'. 

If p r  > p, then also p" > p' and consequently, continu- 
ing the described process, we will eventually arrive a t  
a square of side 2"a (n- m), which will conduct with 
probability 1. 

The presence o r  absence of a percolation channel in 
the system is preserved at each step. Therefore, at 
p' >p, there was a percolation channel in the system of 
original squares. Analogously, if p '<  p, there was no 
percolation channel. We arrive in this way at a rela- 
tionship for PC: 

In other words, when p=pc, the system does not change 
under the scaling transformation (1). At the point of 
formation of a percolation channel the system is scale- 
invariant. 

The construction described above is analogous to the 
construction of  ada an off'^' in the theory of second-or- 
der of phase transitions. We note that a relationship 
analogous to (2) was given earlierr8] for the problem of 
bonds in a plane. It seems unclear, however, how the 
relationship ofCa1 can be generalized for the case d >  2. 

In the derivation of Eq. (2) we actually took into ac- 
count only rectilinear percolation channels. Let us  
change now in the manner indicated above from squares 
of side a to squares of side 2a, and then to squares of 
side 4a. Under such a transition, the square in Fig. 2 
will be considered conducting a s  a unit, while the square 
in Fig. 3 will be considered nonconducting. In reality, 
however, the situation is just the opposite. In order to 
correctly take into account such cases, let us introduce 
a new quantity 1 - a, the probability that the configura- 
tion represented in Fig. 2b conducts in the vertical di-  
rection (the probability of contiguity). Let us likewise 
introduce 6,  the probability that the system in Fig. 3b 
is  conducting (the probability of conducting along the di- 
agonal). 

Under the scaling transformation, the quantities a 
and j3 will change along with p. After straightforward 
h t  cumbersome calculations we get 

FIG. 1. Curve 1 -dependence of the critical exponent v on 
the dimensioqality of space (calculations on the basis of 
(3)): *-value of v, calculated from (5); O--results of the nu- 
merical calculations of vCs1 (d = 2; 3), (d= 4; 5; 6). Curve 
2--dependence of the percolation level on the dimensionality 
of space (calculations from relationship (3)): +-pc calculated 
with the help of (4); A-the results of numerical calculations 
of p; (d= 2; 3), 15' (d=4; 5; 6),C61 
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FIG. 2. Transition from an initial system of conducting FIG. 4. Transition to an effective system of conducting 
squares to an effective System under the Scaling transforma- squares under the scaling transformation (4) (the conducting 
tion (3) (the conducting squares a r e  cross-hatched); the square squares a r e  crosshatched). 
a s  a whole conducts. 

value A,, of the matrix of the linearized scaling trans-  
p1=2p2-p~-2 ap2(l-p2) +2$pZ(1-p)2 formation (4) 

+4ai3p"(l-p) -a2p'(l-P)?; 
a1=2 (p2/p')2{(l-p)z-a(l-p) (I-7p+4pZ) 

( 4 4  
3 (p'. a', 3') 

+$(l-p)'(1-2p)+2a$ (1-p) (I-p-3p2+4p3) (5) 
-aY1+12p-33p'+22p3-3p4) 

-$2(I-p)3(l+p) -r2$(3-28p+4jp2- IOp3-9p') As a result ,  we have v =  ln2/lnhm,= 1 . 3 2 6 7 .  If the eig- 
+a$2(l-p)2(3-10p+jp') 

+a3(1+8p-44p2+jOp3-13p') -?3(l-p) .); envector corresponding to this eigenvalue is known, 

B'-(p2/(p' (1-P')) )2{(1-p)2(l-~Z)Z(p+pZ-p3) (2+5p 
(4b) then, following Niemeyer and van Leeuwen, [" 'I  i t  is 

-3p2-p3) -2ap (I-p) (4+19p-2p2-i4p3-32p- possible to calculate PC=  0.5872. 
+67p'+27p6-19p1-4p8)+?( l -p )  '(3+18p+18p? 

-36p"-59p*+IOp5+jOp6-2pi-10p8)} .  ( 4 ~ )  In the transformation (4) the possibilities of percola- 
tion "around a square, " which a r i s e  in connection with 

The change of the system of conducting squares under 
the scaling transformation (4) i s  illustrated in Fig. 4. 
In relationship (4b) only t e rms  up to cubic in a and P 
a r e  considered, while in (4c) only t e rms  l inear in a 
and p a r e  considered. This i s  justified by the numeri- 
cal smallness of the discarded te rms.  

The system (4) describes the change of p, a, and P 
on going from squares of s ide 2""a to squares of s ide 
2". Going from squares  of s ide a  to squares of s ide 
2a, it is necessary to s e t  a = p = 0. With subsequent 
iterations ei ther  p - 0 o r  p - 1. The presence o r  ab- 
sence of a percolation channel in the system ispreserved 
a t  each step of the scaling transformation (4). Conse- 
quently, there was no percolation channel in the f i r s t  
case  and there was a channel in the second. The s ta -  
tionary point of the transformation (4) 

P'(P', a', $')=p', al(p', a'. 3') =a', S1(p'. a'. 3') =$'. 

p *  = 0.5182; a *  = 0.1274; P* = 0.6513 determines the 
critical probability PC. 

Near the percolation level ( p <  p,), the correlation 
length 5 (the mean dimension of the conducting region) 
behaves like 5 -  (p,-p)'". It i s  well known[91 that the 
critical exponent v is determined by the largest  eigen- 

FIG. 3. Transition from an initial system of conducting 
squares to an effective system of conducting squares under 
the scaling transformation (3) (the conducting squares a r e  
crosshatched); the square a s  a whole does not conduct. 

succeeding iterations, a r e  not taken into account. Such 
an approximation is analogous to the well-known ap- 
proximation of local interaction for  an Ising system. 

In Fig. 1 is also shown the cri t ical  exponent v for  
d >2, calculated on the basis  of relationship (3). As  
d -  m, the exponent v found in this  way approaches 1, 
which contradicts the results  of numerical calcula- 
tions. This, apparently, is connected with the great- 
e r  role assumed by non-rectilinear percolation channels 
with increasing dimensionality of space. To find rela-  
tions analogous to (4) and taking properly into account 
such channels for  d> 2 cal ls  for  cumbersome calcula- 
tions. With the method developed it is possible to cal- 
culate also other critical exponents in the problem of 
percolation in a random field. 

In conclusion, the author expresses deep gratitude to 
B. I. ~ h k l o v s k i c  A. M. Lagar'kov and V. G. Vaks for  
for  useful discussions of this work. 
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