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The modification of the dispersion relation and the damping of the spin waves in a medium in which the 
magnetic-anisotropy parameters (the magnitude of the anisotropy and the orientation of its axis) are 
randomly fluctuating in space are calculated by the methods of the correlation theory of random functions. 
The spin waves are treated with neglect of the dipole-dipole interaction. The nonuniformity of the 
parameters of the medium is described by a random function with an arbitrary correlation length l/ko 
determined by the size of the inhomogeneities. The presence of anisotropic inhomogeneities leads to the 
appearance of a static stochastic magnetic structure with a correlation length l/k, determined by the 
exchange interaction and the magnetic field. Both of the characteristic wave numbers k, and k, appear in 
the modified dispersion law. A shift of the frequency of the uniform oscillation ( k  = 0) and a decrease of 
the damping for k> ko are also characteristic for anisotropic inhomogeneities. The limiting case k<ko 
describes the modification of the dispersion relation and the damping in amorphous ferromagnets, in which 
ko-a/a (a is the lattice constant). 

PACS numbers: 75.30.Ds, 75 .30 .G~ 

INTRODUCTION to study light scattering in the atmosphere, diffuse re-  

The quasi-particle spectrum in an imperfect crystal flection of radio waves from the ionosphere, etc. How- 

has been investigated in a large number of papers, the ever, in the papers H~~~~~~~ and Henderson and de 

results of which have been reflected in the monographs ~ r a a f ' l ' ]  such a method has already also been used to 

of Maradudin, Montroll and ~ e i s s [ ' ]  and ~ a r a d u d i n ' ~ '  obtain the dispersion relation. 

(for phonons).and Izyumov and ~ e d v e d e v ' ~ '  (for mag- 
nons). The inhomogeneities considered in these papers 
were impurity atoms differing in their interaction con- 
stant, mass o r  spin magnitude from the atoms of the 
perfect crystal lattice; in papers by ~ a n e ~ o s h i ' ~ '  and 
Edwards and i ones'^'^' another type of inhomogeneity 
was investigated-disordered alloys of magnetic with 
nonmagnetic materials. Now yet another type of in- 
homogeneity in magnetically ordered materials is being 
intensively investigated-amorphous magnets. In view 
of the great mathematical difficulties, two simplified 
models a re  considered. The first is  the so-called 
stochastic lattice model, in which the lattice is ideal 
but the exchange-interaction constant fluctuatesL7'; the 
second i s  a model with topological disorder, in which 
the angles between the bonds (the Bravais angles) fluc- 
tuate and all the interactions a r e  assumed to be con- 
stant. [" 

It is clear that in the long-wavelength approximation 
(ka= 1) all microscopic inhomogeneities (whose size is 
of the order of the lattice constant a)  will lead to the 
same modification of the dispersion relation. There- 
fore, besides the microscopic approach typical of"'8', 
for  long waves it i s  also correct to use the phenomeno- 
logical approach in which the inhomogeneities a re  
modeled by stationary random functions of the coordi- 
nates, reflecting the spatial fluctuations of the density 
of the material, the interaction "constant, " etc. 

The propagation of waves in media with parameters 
varying randomly in space i s  the subject of a vast liter- 
ature (cf. , e. g. , the re vie^'^'), the problematics of 
which, it is true, differs substantially from that 
In the former case the phenomenological method is used 

In the present paper the phenomenological approach, 
based on the correlation theory of random functions, is 
applied to calculate the dispersion relation and damping 
of the spin waves in a medium with spatially fluctuating 
magnetic anisotropy. So far a s  we know, this question 
has not been investigated before, either in a microscop- 
ic model o r  phenomenologically. We can mention only 
the following papers. For  a discrete model of an amor- 
phous magnet, Harris, Plischke and ~uckermann ' '~ '  
have calculated the effect of inhomogeneities in the an- 
isotropy on the Curie temperature and magnetization; 
the phenomenological approach has been widely used 
to calculate the effect of anisotropic inhomogeneities on 
the uniform ferromagnetic resonance ( F ~ ~ ) ( f o r  crys- 
tallites with no mutual exchange interaction, cf., 
e. g. , [I3]; for strongly interacting crystallites, 
cf. [14.15'). However, the modification of the dispersion 
relation and the spin-wave damping were not considered 
in these papers. 

At the same time, anisotropic inhomogeneities a r e  
characteristic for magnetically ordered materials. 
Thus, in a polycrystalline material the orientation of 
the anisotropy axis can be regarded a s  a random func- 
tion of the space coordinate r. True, if the crystallites 
a r e  sufficiently large and are ,  therefore, relatively in- 
dependent, then, besides the method of random fund- 
tions, simpler methods can be used, e. g. ,  averaging 
with the appropriate distribution function for physical 
characteristics calculated for one crystallite. However, 
for finely dispersed systems, in which the crystallites 
can no longer be treated independently since the range 
r, of the exchange correlations becomes greater than 
the radius r,, of a crystallite, only by representing the 
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anisotropy in the form of a random function is it possible 
to formulate the problem correctly. The relationship 
r, >> ro should also be well fulfilled for all amorphous 
magnets in which crystalline order is preserved only in 
the first  coordination spheres. Nonuniform internal 
elastic stresses and certain defects can also be de- 
scribed in many cases by an effective anisotropy in 
which both the magnitude of the anisotropy and the orien- 
tation of i ts  axis a r e  random functions of the coordinates. 

In the first  section we discuss the approximations used 
in the paper, justify the choice of the form of the cor- 
relation function of the inhomogeneities, and give the 
dispersion relations for a medium with isotropic inho- 
mogeneities (the results of the subsequent sections of the 
paper will be compared with these). In the second sec- 
tion the static stochastic magnetic structure that arises 
when the magnetic-anisotropy axis fluctuates is consid- 
ered. In the third section the dispersion relations for 
spin waves propagating in a medium with anisotropic in- 
homogeneities a r e  derived. 

1. DISPERSION RELATIONS AND DAMPING OF 
WAVES IN A MEDIUM WITH ISOTROPIC 
INHOMOGENEITIES 

We shall give an account of the approximations em- 
ployed in the paper, using the simple example of a one- 
dimensional wave equation of the type of the elasticity 
equation for a medium with nonuniform density: 

B2u d2cz 
[G+AGp ( x )  I---- - A -  = 0, 

at2 8s' 

where A is the interaction constant, G is the mean den- 
sity, AG is the mean-square fluctuation of the density, 
and p(x) is a dimensionless stationary random function 
with mathematical expectation equal to zero and disper- 
sion D =  1. 

Expanding (1. 1) in plane waves - exp[i(kx- wt ) ] ,  we 
obtain 

L ( k )  u ( k )  + y  f u ( k c )  p (k-kr)dk'=O, 

where 

The dispersion relation corresponding to uniform den- 
sity of the substance ( y  = 0) i s  ~ ( k )  = 0, i. e. , 

Averaging (1.2) over random realizations and decou- 
pling the correlator (u(k')p(k - kt)) that is formed, in 
lowest order in the parameter y we obtain 

Since p(x) is a stationary random function, we have 

where ~ ( k )  is the spectral density of the correlation 

function. Substituting (1. 5) into (1.4) and performing 
one integration, we obtain the dispersion relation in the 
form 

dk' S ( k - k ' )  
= 0. 

Thus, all that we need to know about the structure of 
the inhomogeneity in our approximation i s  ~ ( k ) .  For 
each concrete model ~ ( k )  can be calculated exactly if the 
autocorrelation function ~ ( x  - x') of the inhomogeneities 
is known. In most cases, however, a knowledge of just 
two parameters of the autocorrelation function-the rel- 
ative dispersion y' of the fluctuating parameter, and the 
correlation length l/ko-is sufficient; the details of the 
law describing the cutoff of the correlation do not play 
an important role, since the law appears inside the in- 
tegral in the general dispersion relation (1.6). 

For the estimates we choose the correlation function, 
and the spectral density related to i ts  Fourier trans- 
form, in the form 

where ko is the characteristic wave number ( b  = 2/k0 i s  
the characteristic size of an inhomogeneity and ro = l/ko 
is the correlation length of the random function p(x) de- 
scribing the inhomogeneities); D i s  the dispersion of 
p(x); in our case D = 1 by definition. 

The spectral density that we have chosen has the form 
characteristic for white noise for k<< ko and is cut off 
sufficiently sharply when k >  ko. This form of ~ ( k )  de- 
scribes a sufficiently wide class of inhomogeneities. If 
the nonuniformity has a macroscopic character, the 
analysis is valid for wave numbers both smaller and 
larger than ko. If the inhomogeneities have a size of the 
order of the lattice constant a ,  our treatment is valid 
only for kc< ko, a s  the long-wavelength approximation is 
limited by the relationship ka<< 1. 

We substitute ~ ( k )  into (1.6) and consider the integral 
that is formed. It has poles on the real axis, which 
give the damping, and poles in the complex plane, which 
lead to modification of the dispersion relation. The in- 
tegral (like all subsequent integrals in this paper), is 
taken exactly, and (1.6) takes the form 

where q =  w/s  is the frequency normalized to the dimen- 
sions of wave number. 

Because of the approximation (1.4) we can treat only 
small departures from the unperturbed dispersion rela- 
tion (1. 3). Solving Eq. (1.8) for q, in first  order in y2 
we obtain the final form of the dispersion relation for a 
one-dimensional medium with a fluctuating density: 

By the same method, for waves in a one-dimensional 
medium with a fluctuating interaction constant A we ob- 
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tain an expression corresponding to the results ofC'O1'): 

where y, = W/A. 

For real waves in three-dimensional space the wave 
number k in the expressions (1.2)-(1.6) is replaced by a 
three-dimensional wave vector. In the spherical system 
of coordinates the correlation function and the corre- 
sponding spectral density will have the form 

D k ,  
K ( r )  =De-'o', S (k) = ---- - 2  [k0?+k2]?  ' 

For a plane wave propagating in a three-dimensional 
region with fluctuating density G we obtain the following 
dispersion relation: 

Y? 
o=sk 1 i- i y -  1 2 k*:+4k2 

For  a wave of the same type in the presence of fluctu- 
ation of the interaction constant A the dispersion rela- 
tion has the form 

Comparison of these expressions with the correspond- 
ing one-dimensional expressions (1.9) and (1.10) shows 
that both the modification of the dispersion relation and 
the damping change sharply (even to the extent of a 
change of sign of the correction) when we go over to 
three-dimensional space. Consequently, the one-di- 
mensional model is a very poor approximation to the real 
situation. This is connected with the fact that waves 
with different k make a contribution both to the modifica- 
tion and to the damping (this is expressed by the integral 
term in (1.6)); withchange of the dimensionality of space 
the number of such waves and the character of the con- 
tribution made by them change sharply. 

We now consider the spin waves in a medium with a 
fluctuating exchange-interaction constant a, with neglect 
of the dipole-dipole interaction. The spin system is de- 
scribed by the Landau-Lifshitz equation: 

a a 3% 
)I=-g[Jl,x H'], He=--+ - 

311 4.zz ~ ( o M I ~ z , )  . (1.14) 

The Hamiltonian of the system and the effective mag- 
netic field corresponding to it have, in our case, the 
form 

Putting 

11 (r. t )  =JI,+rn (r, t )  (1. 16) 

and orienting the z axis along M, II H ,  we obtain for the 
circular projections nz* = m,iim, the following system 
of linearized equations of motion: 

[ H - v ~ ( ~ + A ~ ~ )  P Z - . M J . ( T ~ )  v m-=o. (1.17) 

FIG. 1. Dispersion relations (the curves w1 and w f )  and damp- 
ing (the curves w") for isotropic inhomogeneities: a) the de- 
pendence w & )  for phonons; b) the dependence w k2) for spin 
waves. The dashed curves correspond to the unperturbed dis- 
persion relations, the solid curves w1 to fluctuation of the in- 
teraction constant, and the curve wf to fluctuation of the density. 

Next, by the method described above, we obtain the 
following dispersion relation fo r  m': 

where y, = ACY/CY. 

Comparison of this expression with the corresponding 
expression (1.13) for elastic waves shows that the cor- 
rections have the same form i f  we put y: = 2Yf. 

Graphs of the expressions (1.12), (1.13) and (1. 18) 
a r e  shown in Fig. 1. The size b = 2/ko of an inhomo- 
geneity is clearly manifested in the shape of the disper- 
sion curves: a change in the character of the dispersion 
law occurs in the vicinity of the point k = ko/2. For 
k<< ko /2  formula (1.18) goes over into the corresponding 
formulas 

The dispersion relation for fluctuation of the exchange 
constants of an antiferromagnet can be obtained anal- 
ogously. It is similar in form to the dispersion rela- 
tion (1.13) for phonons and for k<< k0/2 i t  goes over into 
the corresponding expression oft6'. 

2. ANISOTROPIC INHOMOGENEITIES. THE 
STOCHASTIC MAGNETIC STRUCTURE 

Spatial nonuniformity of the anisotropy can consist 
both in fluctuation of the direction of the anisotropy axis 
and in fluctuation of the magnitude of the anisotropy. In 
this section we consider only the fluctuation of the direc- 
tion of the anisotropy axis. 

We choose the Hamiltonian in the form (as in the first  
section, we neglect the dipole-dipole interaction) 

and the effective magnetic field is, correspondingly, 

Here p, is the constant of the uniaxial anisotropy that is 
uniform over the whole material, n is the unit vector 
along the easy axis of this anisotropy, 6 is the nonuni- 
form-anisotropy constant and 1 = l(r) is the easy-axis 
unit vector, which has a different direction in different 

528 Sov. Phys. JETP 45(3), Mar. 1977 V. A. ~~natchenko'and R. S. lskhakov 528 



crystallites. 

This model of the two anisotropies-the uniform and 
nonuniform-is very convenient for taking texture into 
account. Indeed, in this model we can assume that the 
unit vector 1 is oriented completely randomly in space, 
so that the probability density that the orientation of 1 
is in the solid angle dS1 = sine dp dB i s  a constant: 

The degree of texturing can be taken into account not 
by change of the distribution function but by the relation- 
ship between the constants p, and 0; in this way, all 
cases a re  encompassed: the perfect monocrystal (po 
+ 0, p =  0), polycrystals textured to different extents (&, 
# 0, 8' O), and the "ideal" (untextured) amorphous state 
(p0=0, ~ ' 0 ) .  

A Hamiltonian similar to (2. 1) was considered earlier 
in["', in which the effect of nonuniformity of the orien- 
tation of the anisotropy axis on the uniform FMR in thin 
films was studied. Therefore, the results of this sec- 
tion will partly repeat the results of"41; however, the 
concrete expressions differ from those of"4' on account 
of the difference in the models: there we had a thin film 
and the dipole-dipole interaction was taken into account; 
here we have an unbounded medium and the dipole-di- 
pole interaction is neglected. 

Let the external constant magnetic field & be directed 
along the easy axis n, parallel to the z axis. Substitut- 
ing (2.2) into (1. 14) we convince ourselves that the lin- 
earization (with respect to the dynamical variable) used 
in the spin-wave theory cannot be carried out by the usu- 
a l  representation (1. 16) of the magnetization, which is 
valid both in a perfect crystal and in a randomly inho- 
mogeneous isotropic medium. The spatial fluctuations 
of the anisotropy axis lead to the result that the ground 
state of the magnetization becomes directionally non- 
uniform and the linearization with respect to the dynam- 
ical variable should be carried out by a representation of 
the magnetization in which the ground state is a function 
of the space coordinate r: 

a1 (r, t )  =a1 (I) +m (I, t )  . (2.4) 

Substituting this expression into the Landau-Lifshitz 
equation we obtain two systems of differential equations: 
a static system for the ground state M(r) and a dynarni- 
cal system for the elementary excitations m(r, t )  propa- 
gating against the background of the nonuniform ground 
state. The dynamical system will be considered in the 
next section; here we study the static system. 

For 0 = 0 and the chosen orientations of the field & 
and the unit vector n of the uniform anisotropy the static 
system has a uniform solution: M,= M, M, = My = 0. We 
shall assume that for p #  0 the deviations from the uni- 
form solution a re  not large, and linearize the system 
(M, - M; M,, My << M); the limits of app l ice l i ty  of this 
approximation will be considered below. 

Then the static system will take the form 

where pi,= lil, ( i ' j ) ,  pi = 1;- 15, and all the p =p(r) a re  
stationary random functions of the coordinates. Some 
of their probability characteristics were determined 
from the distribution function (2. 3) in'"]. 

In the system (2. 5) we shall neglect all products of the 
functions with the transverse magnetization components 
M, and &Iy; the limits of applicability of this approxima- 
tion will also be considered below. Then this system 
breaks down into two independent equations, from which 
we can determine the Fourier transforms ,zI,(~) and 
My(k): 

JM'p,: ( k )  J.l12p,, ( k )  
-11, ( k )  = .\Iv ( k )  = 

sr.lIk2+H ' a.11k2+H ' 

where H = Ho + &AI. 

We shall determine the probability characteristics of 
the solution for .5fi(k). The mathematical expectation 
(Mi(k)) -(pi ,(k)) = 0. The spectral densities of the mag- 
netizations Al,  and AI, a re  the same and will be denoted 
by S,: 

pz,' 
S, ,  ( k )  = 

(aZlk2+H) ' S ( k ) ,  

where ~(k)-the spectral density of the functions p,, and 
py,-is determined by the expression (1. 11). 

Thus, the spectral density of the spatial fluctuations 
of the magnetization has the form 

where k, = (H/CYAI)'/~ is the characteristic wave number 
of the exchange correlations and r, = l/k, i s  the range 
of the exchange correlations. It follows from this ex- 
pression that the properties of the stochastic magnetic 
structure depend on the relative sizes of the correla- 
tions lengths Y, and r,,. 

The case r, << ro corresponds to the approximation 
of noninteracting (by exchange) crystallites; in this case 
S,  takes the form 

i. e . ,  it does not contain the exchange constant cu and is 
analytically the same a s  the spectral density ~ ( k )  of the 
function pi ,(r). Physically, this signifies that in each 
crystallite the orientation of the magnetization is estab- 
lished in accordance with the local minimum of the en- 
ergy associated with the anisotropy and magnetic field 
of the given crystallite. 

The case Y, >> yo corresponds to the approximation of 
strongly interacting crystallites; in this case S, takes the 
form 
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In this case the properties of the stochastic magnetic 
structure differ sharply from those of the random func- 
tion p(r) which generates this structure. The correla- 
tion length of the random function M(r) is now deter- 
mined not by the size of the crystallites but by the inter- 
action constant and other parameters of the magnetic 
system. The local minimum of the energy associated 
with the anisotropy and magnetic field no longer has 
decisive significance for the orientation of the magneti- 
zation in a given crystallite. The exchange correlations 
defeat the disordering action of the nonuniform anisot- 
ropy, making the magnetizations of neighboring crys- 
tallites almost parallel to each other. A magnetic 
structure arises in which small spatial fluctuations of 
the magnetization vector relative to the mean position 
have a characteristic wavelength 2n/k, that depends on 
the magnitude of the magnetic field H. 

The case r, >> ro is characteristic for, e. g. , thin 
magnetic films ( r 0 6  1V6 cm) in sufficiently low magnetic 
fields. In films the stochastic magnetic structure (often 
called the "fine magnetic structure" o r  "magnetization 
ripple") is observed by means of an electron micro- 
scope. [I6' A theoretical calculation of the characteristic 
wavelength of such a structure and of the dispersion for 
films was first  carried out by ~offrnann["]; the form of 
i t s  spectral density was obtained theoretically in''" and 
investigated experimentally in[18'191; the effect of the 
stochastic structure on the uniform FMR was studied 
theoretically in[15'. 

Here we wish to draw attention to the fact that the 
stochastic magnetic structure is not connected with thin- 
film size effects and should arise in all  finely dispersed 
magnetic systems and in all magnetic materials with 
microscopic inhomogeneities, if these inhomogeneities 
have an anisotropic character; in particular, the latter 
situation i s  evidently characteristic for amorphous mag- 
nets. 

The correlation function of the magnetic structure and 
i t s  dispersion a re  determined by the expressions 

= 

K,, (r) = j S,, ( k )  eak' dk. D,,=K:, (0). 
- Y 

In the calculation of the dispersion the integral is taken 
exactly and we have 

?:.11'D 
D,, = 

a'k, (k ,+k, )  

or ,  in the limiting cases, 

We shall discuss the conditions of applicability of the 
expressions obtained. The linearization of the static 
system of equations corresponds to the inequality DM 
<< M2. However, we did not confine ourselves to the 
linearization: even in the linearized system (2.5) we 
neglected the products pMi; as shown inCl4], this is pos- 
sible only when the stronger inequality 8DM << M' is ful- 

filled. Using the latter inequality we obtain the follow- 
ing conditions in the limiting cases: 

Thus, for noninteracting crystallites we obtain the 
well-known result: for the declination of the magnetiza- 
tion from the external field to be  small  the latter should 
be very much greater than the effective anisotropy field 
H a =  Phil, the axis of which does not coincide with the di- 
rection of the field. For  interacting crystallites the ef- 
fective anisotropy field is multiplied by the coefficient 
( P / I Y ~ ) ~ ,  which can be several  orders smaller than unity; 
in this case our treatment remains valid down to very 
low magnetic fields. 

3. SPIN WAVES IN AN ANISOTROPICALLY 
INHOMOGENEOUS MEDIUM 

We turn now to the dynamical system of equations for 
m(r, t) that is formed a s  a result of substituting the ex- 
pression (2.4) into the Landau-Lifshitz equation. After 
the change to Fourier components the linearized dynam- 
ical system of equations takes the form 

io - rn. ( k )  + (aMk2+H) m ,  (k) -8 [ F ,  ( k )  -Gt ( k )  1 =0, 
g 
io 

(3.1) 
- nt , (k )  - (a.l lk2+H) ni,(k) + $ [ F ? ( k )  -G,(k) ]=0. 

fl 

where the terms proportional to the nonuniform anisot- 
ropy a re  determined by the expressions 

G,  ( k )  = J j d k ,  dk, m , ( k ? )  [ ~ ( k , ) ~ , ~ ( k - k , - k , )  +4MV(k,)p ,r (k-k , -k:)  1. 

F, and G2 a r e  obtained from F, and GI by replacing x by 
y and y by x. 

Thus, anisotropic inhomogeneities lead to the appear- 
ance of terms of two types in the equation of motion. In 
coordinate space the terms of the type F have the form 
p(r)m,(r, t )  and correspond to the direct interaction of 
the dynamical part  of the magnetization m with the de- 
fining random function p; only terms of this form ap- 
peared in the equations of motion of the first  section of 
this paper, in which isotropic inhomogeneities were con- 
sidered. In coordinate space the terms of the type G 
have the form p(r)M,(r)m ,(r, t)  and describe the interac- 
tion of the spin waves m with the stochastic magnetic 
structure M(r) due to p(r). The need to take nonlinear 
terms of the type G into account is justified inCl5l, where 
i t  is shown that they make the same contribution to the 
shift in the uniform FMR frequency a s  the terms of the 
type F; as will be seen from the following, this also re- 
mains valid for k # 0. '' 

We substitute (2.6) into (3.2), change to the circular 
variables m i =  m,i im, in the dynamical system (3. I), 
and average the resulting equations over the random 
realizations, taking into account the relations that fol- 
low from (2.3) and the stationarity of the random func- 
tions p(r): 
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(~t i (k)~, , ' (kt)  )=S(k) 6 (k-k,), 
(PC (k) Pl'(k,) )i+j=2S(k) 6 (k-k,), 

(pa (k) pi'(k,) )=4S(k) 6 (k-k,), 
<pi (k) p2j' (kt) )=O, 

where p(k) =p*(- k) by virtue of the fact that the function 
p(r) is real. 

Decoupling the correlations (mp) exactly to terms - p 2 ,  we obtain the following dispersion relation for 
(m+): 

w 
-= 
g L+ (k,) L-(k,) B(k,) 

(3.4) 
where 

The first  two terms under the integral in this expres- 
sion arise from the inhomogeneous terms of the type F 
and the last term in the integrand arises from the inho- 
mogeneous terms of the type G. We substitute S(k), de- 
termined by the expression (1. l l ) ,  into (3.4) and con- 
sider the integrals that a r e  formed. The first  integral 
has poles on the real axis, which give the damping, and 
poles in the complex plane, which lead to modification of 
the dispersion relation. The second and third integrals 
lead only to modification of the dispersion relation, since 
they do not have poles on the real  axis. The integrals 
a re  taken exactly; when the equation that i s  obtained after 
the integration is solved for w in the same approxima- 
tions as in Sec. 1, we obtain the final form of the dis- 
persion relation: 

where the corrections 6' and 6" a re  determined by the 
following expressions: 

The real and imaginary parts of (3.5) a re  depicted in 
Fig. 2a for the case k, << ko. The damping w" reaches a 
maximum at k = k0/2, going to zero as  k - 0 and at k >> ko. 
The modification of the dispersion relation depends not 
only on the parameter ko, as was the case in an isotro- 
pically inhomogeneous medium, but also on the second 
parameter k,-the characteristic wave number of the 
stochastic magnetic structure: at k- 2k, the correction 
6' changes sign. 

The frequency shift also remains nonzero for the uni- 
form oscillation (k = 0): 

4+18x,+ 2 0 ~ , ~ + 6 x , ~  
6'(0, x,) =-%, 

l+5x,+9x,2+7x,3+2x,' ' 

This expression is always negative, and tends to zero a s  
x, - 0 (the point 0 is unphysical; cf. (2.14)) and to -3 
for x, >> 1. 

We now consider the spin waves in a medium in which 
the anisotropy constant fluctuates while the direction of 

FIG. 2. Dispersion relations w' and damping w" for aniso- 
tropic inhomogeneities: a) fluctuation of the direction of the 
anisotropy axis; b) fluctuation of the magnitude of the anisot- 
ropy. The dashed curves correspond to  the unperturbed dis- 
persion relations. 

the easy axis of the anisotropy is the same over the 
whole material (and coincides, for simplicity, with the 
direction of the external magnetic field Ho). The Ham- 
iltonian in this case takes the form 

where p is the mathematical expectation and A@ the 
mean-square fluctuation of the anisotropy constant; p(r) 
is a dimensionless stationary random function with 
mathematical expectation equal to zero and dispersion 
D = 1 .  

By writing the equations of motion for this Hamiltonian 
we see  that the ground state in this case remains uni- 
form, as in the case of isotropic inhomogeneities, and a 
stochastic magnetic structure does not arise. For the 
dynamical variables we obtain the following system of 
linearized equations in the circular projections: 

The dispersion relation for m+ has the form 

-= Ho+$.lJ+aMk'+[ (-lJ)221r/ak,'] [d,'(z)+r,3,"(z) I .  
g (3.10) 

1 22 
6, ' (z)=-  - 

I+&' ' 1+4z2 ' 

The real and imaginary parts of (3.10) a r e  depicted in 
Fig. 2b. The damping w" is functionally similar to the 
damping determined by the dispersion relation (3.5). 

The modification of the dispersion relation depends , 
only on the parameter k,,, as was the case in an isotro- 
pically inhomogeneous medium; it is always negative, 
is maximum for the uniform oscillation k =  0, and tends 
to zero for .A>> 1. 

CONCLUSION 

The presence of random magnetic anisotropy in a 
medium leads to physical effects that a re  essentially new 
in comparison with the effects induced by isotropic in- 
homogeneities (fluctuations of the density of the materi- 
al, the interaction constant, etc. ). 

1. The static equilibrium equations (2.5) for the mag- 
netization become inhomogeneous: in the right-hand side 
there is an external force-the random function p(r), 
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geneities and absent for fluctuation of the density of the 
material o r  of the interaction constant. 

FIG. 3. Scheme of the interactions of the function p(r) of the 
inhomogeneities with the dynamical variable m(r,  t )  for fluctua- 
tion of the direction of the anisotropy axis. 

which "excites" a static stochastic magnetic structure. 
(Unlikedomain structure, which is excited by surface 
nonuniformity and is, therefore, described by homoge- 
neous equations, the stochastic magnetic structure is 
excited by the bulk nonuniformity p(rj. ) For  finely dis- 
persed and amorphous systems, in which the size of the 
inhomogeneities is much smaller than the range of the 
exchange correlations, only the dispersion DM of the 
magnetic structure M(r) is proportional to the disper- 
sion D of the "external" force p(r); the correlation prop- 
ert ies of the random function M(r) can differ sharply 
from the correlation properties of p(r). 

2. In the dynamical equation for the spin waves, be- 
sides the interaction terms of the usual type pm, new 
terms of the type pMim, arise; the corresponding scheme 
of the interactions is depicted in Fig. 3. The random 
function p(r) of the inhomogeneities gives rise to two ef- 
fects: a complex modification of the dispersion relation 
for m(r, t ) ,  and the "generation" of a stochastic magnet- 
ic  structure M(r); in i t s  turn, the latter, interacting with 
m(r, t), leads to an additional modification of the disper- 
sion relation. The two channels of the interaction of p 
with m-the direct one and through the stochastic mag- 
netic structure-give contributions of the same order to 
the modification of the dispersion relation. In the dis- 
persion law thus modified, two characteristic values of 
the wave number arise: one corresponds, as  usual, to 
the correlation length of the random function p(r), and 
the other to the correlation length of the random func- 
tion M(r). 

These effects should be observed, however, only under 
the condition that the direction of the anisotropy axis 
fluctuates. If it i s  only the magnitude of the anisotropy 
that fluctuates, while the direction remains constant, a 
stochastic magnetic structure does not arise,  and in the 
modified dispersion relation there is only one character- 
istic wave-number value, corresponding to the correla- 
tion length of the random function p(r). At the same 
time, properties appear (a shift in the frequency of the 
uniform oscillation (k = 0) and a decrease of the damping 
for k>> k,) that a re  general for all anisotropic inhomo- 

"The calculation incio] was carr ied  out for a fluctuating density 
of the material; however, the neglect of the quadratic t e rm in 
the expansion of the denominator led in reality to an  expres- 
sion corresponding to a fluctuating interaction constant. 

2 ) ~ t  is necessary to note the following: here  we have not taken 
into account nonlinear t e rms  of the type Mi&) Mi(ki)m,(&, t ) ,  
although, siqce M i  - p(k), they a r e  very close in structure to 
the terms of the type G. However, the symmetry of these 
terms i s  such that their  nonvanishing contribution to the dis- 
persion relation begins a t  f14, and in the following we shall 
confine ourselves to t e rms  giving a contribution no higher 
than p2.  
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