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Heating of electrons in a plasma by resonant ion-sound oscillations is considered under conditions when 
the effective turbulent collision frequency exceeds the frequency of the ion-sound oscillations, 
we,> k~, , (m, / rn , )"~ .  It is shown that under these conditions the plasma heating cannot be described in the 
weak-turbulence approximation. A collision integral that describes the heating under conditions of strong 
ion-sound turbulence is obtained. It is found that the stationary solutions of the equation for the regular 
part of the electron distribution function exist for sufficiently wide spectra of the ion-sound oscillations 
and have a power-law dependence on the particle velocity v (or on the energy mv2/2). 

PACS numbers: 52.50.Gj 

1. Plasma heating by ion-sound turbulence has 
been discussed numerous times. C1'31 In these investi- 
gations, however, no attention was paid to effects con- 
nected with strong turbulence, which can change sig- 
nificantly the collision integral even a t  relatively low 
energy levels of the ion-sound oscillations W/nT, 
>m,/m ,. A strong-turbulence theory connected with 
broadening of resonancesCG5' has already been used 
in the problem of ion-sound turbulence. What was 
investigated there was the effect of turbulent oscilla- 
tions on the nonlinear increment of the ion-sound in- 
stability. 

The purpose of the present paper is to employ a pre- 
viously developed theorycB1 to analyze the collision inte- 
gral  of particles with resonant ion-sound oscillations. 
In first-order approximation, this collision integral 
describes almost-elast scattering of the particles by 
the oscillations, while the turbulent broadening of the 
resonance, a s  already shown, has little effect on the 
indicated scattering processes. We call attention be- 
low to the fact that the heating processes in the plasma 
a re  due to the rather low inelasticity of these colli- 
sions, so that the collision integral that describes the 
heating i s  smaller by a factor (w,/k~,,)~ - %/mi. 
Weakly a s  the turbulent broadening influences the scat- 
tering processes, i t  can strongly affect the heating 
processes. The broadening of the resonances leads 
to an uncertainty in the frequencies of the ion-spund 
oscillations of the order of v,,,. A strong ion-sound 
turbulence corresponds to a condition when this fre- 
quency v,,, exceeds the frequency w, of the ion-sound 
oscillations. It is then natural to expect the heating 
to be determined not by the parameter (~,/kv,,)~ but 
by (~,,,/kv,,)~. On the other hand, the earlier esti- 
mateCB1 was v,,- w,(ws/~T,)"~. It is therefore na- 
tural  to expect the heating to be determined by the pa- 
rameter (~,,i/kv,,)~ - wS/nTe, if kv ,, - o,,, i. e. , the tur- 
bulent broadening of the resonances affects strongly the 
particle heating at wS/nTe > m,/m,. We assume at the 
same time that wS/nTe < 1. Thus, the present theory 
of heating is constructed under the following assump- 
tions: 

These conditions have been written out for thermal par- 
ticles. Actually the collision integral derived below is 
valid for both thermal particles and particles on the tail 
of the distribution (epithermal). The applicability cr i -  
terion contains therefore in the general case not the 
average velocity but the particle velocity, and the ap- 
plicability condition i s  that the heating due to the turbu- 
lent broadening of the resonances exceed the heating due 
to the inelasticity of the collisions. 

2. Following the previously developed approach, "I 
we break up the electron distribution function f, into 
regular and turbulent parts and f, respectively: 

In the absence of an external electric field, the equation 
for @ is ( e=  l e l )  

The collision integral (3) can be written in the form 

where 

cp, and f, are  respectively the Fourier components of 
the potential and of the turbulent part of the distribu- 
tion function. In the strong-turbulence theory, a 
new perturbation theory was developed, in which the 
expansion parameter was not the turbulence potential 
(0, but Zcp, where 2 is an operator defined by an inte- 
gral equation derived inCB1 and having a maximum value 
estimated at (gcp),, -g/v, , ,  . The equation for ik is of 
the form 
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gh(v, v') = g g : ( v )  6 (v-v')  f g ! , f & ,  (15) 

The operator can be expressed here in matrix form: 

The expansion of the distribution function f in terms of 
the parameter i c p  is 

where 

a a, 
1:" (.)= {$Y. ( k d r ) )  . (8) 

e ' 8  
( v ) = & ( v )  (;) j d k ,  dk2 k , ,k2 ,6(k-k , -k!)  

am 
X $,(v) (cpr,cpr,-(cpr,cpr,)) - 

au. 
(9) 

In accordance with these three terms, we obtain three 
terms of the collision integral: 

The derivation of I "'(v) i s  based on a Poisson equation 
in which the charge density was determined by the 
zeroth approximation f kO), s o  that the expression for 
I "'(v) contains the modified permittivity E, with a 
valuec6] 

The integral I "'(v) corresponds to a refined quasilinear 
equation describing the elastic collisions of the par- 
ticles with the ion-sound oscillations, whereas I "'(v) 
and I "'(v) a re  of higher order than i c p  and describe the 
corrections. Being interested in the heating effect, it 
is expedient to eliminate the elastic scattering from the 
very outset, by averaging the integrals over the angle 
variables. The integral I "'(v) is then small in first-  
order approximation, so  that I "'(v) and I "'(v) must be 
taken into account. Using the well known properties of 
the correlation function I cp, 1' = I cp+ 1 2 ,  and also the fact 
that Reg and Img are  respectively odd and even in k, 
we can show that the integral I "'(v) is odd in v and van- 
ishes after averaging over the angles. 

The solution of the integral equation (6) for g can be 
written in the formc6' 
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where g s  is the correction to the solutiong!,,~, and 
g,'PI takes the form 

( 0 )  
g,,, ( v )  =- i  j d r  exp{iq~-~/,D,r~). 

0 

Here 

It will be shown below that the collision integral I ("(v) 
averaged over the angles in velocity space and making 
use of the function g,'Pi(v) is af the same order of magni- 
tude as the integral I "'(v) in which gCL(v) is used. The 
averaging over the angles makes it necessary to take in- 
to account in the function g,'P:(v) used for the calculation 
of I 'O1(v) the correction iD0?9 in the exponential, for 
otherwise I @)(v) vanishes. In the calculation of I"'(v) 
it suffices to use the function g,'Pi(v) without this cor- 
rection. The correction g,':{ need not be taken into ac- 
count in the calculation of either I "'(v) or  I "'(v). 

We note that the condition (1) v,,, /kvT, << 1 (this i s  in 
fact the expansion parameter in expressions (7)- (13)) 
imposes a restriction on the electron velocity. Name- 
ly, sincec6' v,,, - D:l3, i t  follows that the parameter 
~ , / (kv) '  must be small. This takes place when 

All the results that follow a r e  valid only under this con- 
dition. 

3. To average the collision integrals over the angle 
variables 0, and cp, in velocity space, we shall use the 
identity 

1 a 
( k z )  \O = dir. k\O = -- ( u ' k f )  

U= au 
I a I @ +-- (sin Ook,,\O) + -- 

v sin 0, 30, u  sin €Io acp, (k&). (19) 

After the averaging we a r e  left with only the f i rs t  term. 
In the expression for g:i (v), the dimensionless quanti- 
ties (w,/kv)' and ~ ~ / ( k v ) '  a re  small parameters, since 
(~, /kv~,)~-rn , / rn~ and ~ ~ / ( k v ) ~  - ( W ~ / ~ T , )  (vTe/v)*. The 
calculation of the collision integral I "'(v) averaged over 
0, and cpo, with g,'Pi (v) in the form 

yields zero. Allowance for iw,r and neglect of +Do? 
in the exponential leads to the small quantity ( w , / ~ v ~ , ) ~  - m,/mi . We a r e  interested in the opposite case, when 
account must be taken of the parameter ~ , / ( k v ) ~ -  (wS/ 
nT,) (v~ , /v )~ .  The calculation of Do with neglect of the 
t e rms  iw,T and +Do? in the exponential in (17) yields 

a(1-2) 2 
Do = ------ a=n2(--) k z j  k , ~ ~ ,  dk , .  (21) 
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Here 

Substituting in expression (11) for I"'(v) the f i rs t  right- 
hand term of (19) and the expression (16) for g,,($ with- 
out allowance for iw,r in the exponential and in (21), 
we obtain 

Here 

In the derivation of (22) and throughout the sequel it is 
assumed that the regular part of the distribution func- 
tion + is isotropic, i. e., @ =@(v). 

The asymptotic form of the function F(P) is calculated 
in Appendix I. We obtain ultimately for  the collision 
integral I "'(v) the expression 

Recognizing that the second approximation IC2'(v) is 
small in terms of the parameter i 4 p ,  we use the func- 
tion g:P& (v) in the form (20) to calculate I '2'(~). The 
calculation of I "'(v) is given in Appendix 11. The re-  
sult is 

To integrate (24) and (25) with respect to k and k, it 
is necessary to know the turbulence spectrum of the 
ion-sound plasmons. In many cases this spectrum is 
approximated by the expression 

The spectrum (26) corresponds to the case of generation 
of ion-sound plasmons. Integration of (24) and (25) with 
respect to k and k, (kmi, =k*, kmE,, =kg) yields 

On the other hand, if there is no generation of ion- 
sound oscillations in the considered wave-number re-  
gion, then the spectrum is approximated by the expres- 
sion[% '3 

(29) 

Integration of (24) and (25) with respect to k and k ,  
(kmin = ko, kmPI = k S )  yields 

Equation (27) remains in force for I"'(v) (with allow- 
ance for  the fact that k,< k*), 

4. We now write down a general expression for  the 
collision integral I(v) =I "'(v) +I '2'(~). For  the spec- 
trum (26) at k* << k, we have 

For  the spectrum (29) at ko<< k* we have 

(32) 
It is easily seen that Eq. (3) with I(v) in the form (31) 
or  (32) has a stationary power-law solution + =+,u7. 
We present the values of y  a s  functions of the width of 
the turbulence spectrum ln(kmE,,/kmin) for the spectrum 
(26): 

and for the spectrum (29): 

We note that the solutions that a re  stationary in the 
full sense of the word a r e  those with y >  3, for only in 
this case does the total number of electrons /@(v)dv 
not diverge a t  infinity. This corresponds to sufficiently 
broad spectra of the ion-sound turbulence (ln(ko/k*) 
> 4.5 for the spectrum (26) and ln(k*/ko) > 6 for the 
spectrum (29)). 

We rewrite the collision integral 

in a form more suitable for  applications: 

For  the unknown functions X(u), Y(v) ,  and Z(u) we have 

and the function F(u) satisfies the differential equation 
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We seek the solution of (36) in the form F(v) =v"; the 
equation for  n is then 

and from (32) we have a t  @(v) =iPov-* an equation for  y 

Equations (37) and (38) a re  presented in canonical form 
with identical coefficients, whence follows a unique re- 
lation between n and y 

5. Our results can be used to interpret a number of 
astrophysical observations, particularly of fast  elec- 
trons accelerated in chromospheric flares on the sun,Ce1 
which generate hard x rays. The theoretical 
schemederg1 that describe the plasma processes that 
occur in the current layers usually associated with re-  
gions from which solar flares emerge, include an in- 
tense ion-sound turbulence. After the passage of the 
magentic-f ield annihilation wave, a region is left in 
which the ion-sound turbulence is damped and the par- 
ticles a re  accelerated. It is frequently assumed that 
the ion-sound turbulence is accompanied by Langmuir 
turbulence. There a r e  a number of mechanisms capa- 
ble of causing the Langmuir turbulence. A strong 
Langmuir turbulence is absorbed, owing to modulation 
instability, in the tails of the Maxwellian distribution, 
and produces likewise fast particles. According to 
~ a l e e v ,  C1O1 the energy spectrum f,  of such particles 
is given by 

This spectrum is not too steep, since the x-ray flare 
observation data yield f ,  - I/&' with y, 3-4. Other 
schemes in which the loss mechanisms a re  taken into 
accountte' can yield steeper spectra. 

The mechanism considered in this paper for the gen- 
eration of fast pa r t ides  is capable of competing with 
the mechanism of acceleration by Langmuir oscillations. 
It appears that under real conditions both mechanisms 
may be in operation. Acceleration by ion-sound plas- 
mons differs qualitatively from acceleration by Lang- 
muir oscillations. First ,  the spectra of the particles 
accelerated by the ion-sound oscillations a r e  always 
power-law functions: 

It is also obvious that the results of the present in- 
vestigation can be applied to other problems, for ex- 
ample collisionless shock waves in laboratory and cos- 
mic plasmas, and other laboratory experiments in 
which ion-sound oscillations a r e  excited in one way o r  
another. 

APPENDIX I 

Let us  calculate the asymptotic form of the integral 
(23). The standard variants of the stationary-phase 
method cannot be used for this integral, since the phase 
function S = -xy has a stationary point ( 0 , ~ )  lying on the 
level line y = O  of the phase. 

We consider the auxiliary integral 

(I. 1) 

where the function q(x, y)  is infinitely differentiable 
and is finite in (x, y). 

Lemma. The following asymptotic expansion is valid 
a s  p -  +m: 

where the coefficients a, a r e  given by 

Proof. The inner integral in (I. 1) is equal to 

where E = t/p. According to Taylor's formula 

where 

Substituting this expansion in (I. I) ,  we get 

(D ( p )  = anp-"-'+F~ (p) . 
"-0 

The residual term is 

(I. 2) 

(I. 3) 

Here 

Second, the energy spectra of the particles can be quite 
steep. Thus, according toCe1, ln(ko/k,) 0 10-12 and 
y =  9-10, i.e., (y -1)/2=4-4.5. Thus, a strong ion- 
sound turbulence produces steeper particle spectra, in 
agreement with the observations. 

where $(x, T )  = D  ,N*lq(x, T ) .  The positions of the inte- 
grals can be interchanged because the function q h ,  r) 
is finite. For  any k >  0 the estimate 
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i s  valid uniformly over ? E  [0, m), by virtue of the finite- 
ness and smoothness of the function cpb, ?). Conse- 
quently 

This proves the lemma. 

Let us calculate the coefficients a,. We have (seec"') 

Consequently, 

a -i"+l inn 
n- (x-"-' ,  Dyncp ( x ,  0)  ) + - L),"D,"tp ( 0 , O ) .  

n! (I. 4) 

Here x"-' i s  a generalized function; at n =3,  in particu- 
lar,  we have 

(I. 5) 

for any finite smooth function I). We note that the main 
contribution to the asymptotic form of the integral a@) 
is made by the entire x axis (more accurately, by that 
part of the axis on which cp #O), and not only by the sta- 
tionary point (0,O). 

We calculate now the asymptotic form of the integral 
(23). We introduce an auxiliary even function q(x) 
E C ;(- 1, 1), ~ ( x )  = 1 at small I x I . Then 

where F o b )  i s  of the form (I, l) ,  and 

From the lemma and from formula (1.4) it follows that 
the expansion (I. 2) with a, = 0 at  n = 0 ,  1, and 2 holds for 
F,(P), and 

- 
a3=6j [ (xz-1)  q ( x )  + ilx-' dx .  

-- 
(I. 6) 

It is easily seen that the next nonvanishing coefficient 
in the expansion (I. 2) i s  a,. Thus, 

where a, takes the form (I. 6). The remaining integral 
F1(P) is of the form 

I cr 

pl ( p )  = j d x  ( j ( x .  Y) ( Y )  I 

- I  0 

where 

Integrating by parts with respect to d y ,  we obtain the 
asymptotic expansion 

where 

In particular, b, = 0 at n = 0, 1, 2 

and the next nonzero coefficient is b,; since 

we obtain ultimately 

F ( p )  =24p-'+0 (p- ' ) ,  (p++-) , 

APPENDIX I1 

Let u s  calculate the collision integral 1 "'(v). After 
averaging over the angle variables in velocity space, we 
can represent I "'(v) in the form 

(11.1) 
where (x = cos8), 

Here 8,, cpO; 8, cp; el, q1 a re  the angle variables in the 
spaces of v, k, and k,, respectively. We express I) in 
the form 

+ik ,  ( r , + T z )  AZA,- ikr2AZA,A1 d x d x ,  d q  dcp,e'k~'*~i'~+T~l-ikLA('tffff 1 
(11.5) 

N -  I { - k , ' ~ ,  ( T , + T ~ ) A A ~ A ~ + ~ ~ , T , T ~ A A , A ~  

1 1 
- A A ,  (BB,+CC, sin2 tlo) - AB, (AB,+A ,B)  
uZ 

-- I AC,  [sin 0 sin 0, sinZ Basin (rp+q,-29,) 
u2 

+sin 8 cos 0, sin 0, cos 0, sin (cp-cpo) +cos 0 sin 0, sin 0, cos 80 

x (F,-'Pg) 1) e i * . u l ~ + ~ . i * . - ' k k * l . + ~ . l  d x  d x  1 dd drp I ,  (11.6) 
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where 

A=sin O sin 8, cos (cp-cp,) +cos O cos eo=kv/kv, 
A,=sine,sin Oocos(cp,-m,)+cos 0,  cos &=k,v/k,u. . . -  . . . - .  
A,=sint) s ine,  cos(cp-rp,) +cos 0 cos O,=kk,lkk,, (n,  7) 

d A a A dA BAl 
B =  B,=--! ,  CsinZOo=-, C,sin'Oo=-. 

doo ' ae, avo ~ C P C  

The integration with respect to cp  and q~, is carried out 
with account taken of the relations 

2.1 2x7 

f e"'""dy=2nJo(a), e'"'"*cos (P drp=2niJ1 ( a ) ,  f 
2 1  2 1  

Sc" '". sin qj dv=O, f em "'"POS [I sin (P drp=O, 
0 

7 e3,' - cos2 cp dp-r [ J. ( a )  -I. (a )  1, 

The integration with respect to x  and x ,  is carried out 
by differentiating with respect to the fictitious param- 
e ters  p and y the relation 

The results of the integration with respect to x ,  X I ,  cp, 
and cp, are  

d' sina d' sin b L=16n- - - - 
da2( a d b  b 1' (II.1Oa) 

sin a dZ sin b 
x (+) ( T ) ?  

d' sina dZ sin b 
N=-16n2ki2r, ( T ,  ' t 2 ) z ( a )  

d h i n  a d3 sin b 32 n2 d sina dL sin b 
+16n2kk,r,rz- - - - ---- - - - 

da ( a b ) 0' a d a (  a ) d b z (  b ) 
sina 3cosa 3 s i p a ) (  s inb 3cosb 3 d n b  

+ X ~ X ~ / ~ I ; , T , T ~  (- + - - - -+----;-- 
a- aJ bZ b 

Here 

After integrating with respect to T ,  T , ,  and T ,  we obtain 

(II. l l a )  

(II. l l b )  

(II. l l c )  

It follows ultimately from (II. I ) ,  (11. 3), and (11.11)  that 
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