
AT' for single-crystal CdCr2Se4 (sample I), in which no 
selenium deficiency i s  detected, and for single-crystal 
gadolinium; both values a re  close to 4". A similar in- 
vestigation was made of two CdCr2Se4 single crystals 
having a selenium deficiency up to 1.5%. It turned out 
that AT,' = 26" for one of them (sample II) and AT, = 35 " 
for the other (sample III). After the described anneal- 
ing of sample 111 in the selenium atmosphere, the value 
of &T: decreased to 12". We conclude therefore that 
the shift AT,' i s  due to the selenium deficiency of the 
sample and to the impurity. 

The foregoing examples show clearly that the Curie 
point of magnetic semiconductors must be determined 
by methods that exclude the external magnetic field, 
since the error  can be quite large. 

In conclusion, we thank 6. L. Nagaev and A. P. 
Grigin for a discussion of the results. 
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Bound states of a large number of magnons in a 
ferromagnet with a single-ion anisotropy 
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The conditions for the formation of a magnon bound state in one- and threedimensional ferromagnets 
with the "easy axis" type of anisotropy are investigated. Explicit expressions are obtained in the one- 
dimensional case for the energies and wave functions of the bound states of an arbitrary number of 
magnons under the natural assumption that the magnetic anisotropy energy is small compared to the 
exchange energy. The binding energy per magnon increases monotonically with increasing number of' 
magnons. For large numbers of magnons (N>l) the solution to the quantum problem goes over into the 
specific self-localized solution to the Landau-Lishitz equation for the magnetization vector. It is shown 
that, if there do not exist in a three-dimensional ferromagnet bound states of two magnons with a low 
quasimomentum, then there can arise in this ferromagnet bound states of a large number, N, of magnons 
(in the case when N> N., where the quantity N. is determined by the ratio of the exchange energy to the 
anisotropy .energy). The form of the self-localized solution is obtained by means of a numerical solution of 
the nonlinear equation of motion for the magnetization vector, and the dependence of the parameters of 
this solution on N is determined. An interpretation is given of the physical meaning of the bound state of 
a large number of magnons. 

PACS numbers: 75.30.G~ 

INTRODUCTION excitations of the magnetic substance-the magnons. 
The weakly excited states of a magnetic substance a re  

The physical properties of magnetically ordered crys- usually described in terms of an ideal quasiparticle gas, 
tals at low temperatures are  determined to a consider- i. e., in the approximation of noninteracting magnons. 
able extent by the properties of the gas of elementary It is, however, clear that the interaction of the magnons 
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can lead to a substantial reconstruction of the elemen- 
tary-excitation spectrum, in particular, to the forma- 
tion of magnon bound states. Since magnons are very 
similar in their statistical properties to Bose particles, 
which are capable of "agglomerating" in the low-energy 
states, the presence of magnon bound states can lead to 
the spatial inhomogeneity of the excited state of a ferro- 
magnet. 

A substantial portion of the investigations of rnagnon 
bound states pertains to one-dimensional magnetic sub- 
stances. Interest in the one-dimensional models is due 
both to the appreciable simplification of their analysis 
(while retaining a niunber of important physical features 
of the general problem) and to the fact that some real 
magnetic substances a re  well described by quasi-one- 
dimensional models. The problem of the existence of 
bound states of an arbitrary number of magnons in an 
isotropic Heisenberg chain with spin $ was first for- 
mulated and fully analyzed by Bethe. '" In a number of 
subsequent papersc841 Bethe's results were generalized 
to the case of an anisotropic Heisenberg chain. 

In the present paper we consider magnon bound states 
in one- and three-dimensional ferromagnets with an ar-  
bitrary spin value at the lattice sites in the presence of 
a single-ion anisotropy. In the spin variables the an- 
isotropy energy X A  can be represented in the form 

where s, i s  the spin operator at the 1-th site (s is the 
magnitude of the spin), fl is the magnetic anisotropy con- 
stant ( P >  O), k i s  the Bohr magneton, and Mo = 2 & s/a3 
is the saturation magnetization (aS i s  the volume of the 
unit cell of the crystal). 

We succeeded in deriving analytic expressions for the 
energies of the bound states of N magnons in the one- 
dimensional case under the natural assumption that the 
magnetic-anisotropy energy is  significantly smaller 
than the exchange energy (i. e., that flp,, Mo << I, where 
I is the ferromagnet's exchange integral, equal in order 
of magnitude to the Curie temperature). In describing 
the excited states of a ferromagnetic chain with N<< N,, 
where N, = 4s (1/2 &j3M,,)'" >> 1, we used the Holstein- 
Primahoff representation, and reduced the problem of 
the N-magnon bound state to that of the ground state of 
a one-dimensional system of a finite number of bosons 
with a 6-function pair attraction. ' Such a problem admits 
of an exact solution. 

It is to be expected that we can use in the investiga- 
tion of states with a large number of spin deviations the 
classical description in terms of the macroscopic mag- 
netization density M(r, t), for which equations of motion 
(the Landau-Lifshitz equations) exist. The energy, 
w{M}, of the ferromagnet and the number, N{M}, of spin 
deviations are functionals of the magnetization M(r, t) .  
The magnetization distribution corresponding to'the 
bound state of a large number of magnons, i s  realized 
by the minimum of the energy functional W{M} for a 
given integral value of N{M}. This distribution corre- 

sponds to the self-localized solution to the nonlinear 
' 

Landau-Lifshitz equation for the magnetization. 

We have verified that for 1 << N << N, the quantum and 
classical expressions for the bound-state energy and for 
the spatial magnon density coincide. Thus, the analysis, 
of the one-dimensional model allowed us to draw the 
conclusion that the bound state of a large number (N>> 1)' 
of magnons in a ferromagnet is quasiclassical in nature 
and, thereby, to significantly simplify the analysis of 
the conditions for the existence of N-magnon bound 
states in the three-dimensional case. It is well known 
that, in cohtrast to the one-dimensional case, two quasi- 
particles will form a bound state in a three-dimensional 
crystal only when the amplitude of the attractive inter- 
action between them exceeds some critical value. In 
an isotropic Heisenberg ferromagnet, this circumstance 
leads to the absence of bound states of two magnons 
with a small total quasimomentum. "' As shown in Ref. 
7, the presence of magnetic anisotropy leads to the ap- 
pearance of bound states of two magnons with a small 
total quasimomentum only when & m o  k I, i. e., only 
upon the fulfillment of conditions that are far from real- 
ity. We shall show that the condition for the existence 
of a bound state of a large number, N, of magnons with 
zero total quasimomentum assumes another form and 
becomes less rigid. To wit, an N-magnon bound state 
is formed when 

At the end of the paper we shall discuss the physical 
meaning of the bound state of a large number of mag- 
nons, interpreting it a s  a magnon drop. 

$1. QUANTUM ANALYSIS OF THE BOUND STATE 
OF A FINITE NUMBER OF MAGNONS IN A 
FERROMAGNETIC CHAIN 

A standard procedure for an approximate quantum 
analysis of a weakly excited state of a ferromagnet 
consists in the use of the Holstein-Primakoff represen- 
tation, which allows us to go over from the spin opera- 
tors to the magnon creation and annihilation operators 
a+ and a. In terms of these operators we can write 

where a+(l)a ( I )  has the meaning of a number operator 
for the spin deviations at the site 1 and s is the.value of 
the atomic spin. When the number of excitations i s  not 
large, the Hamiltonian of the magnon gas in the k-rep- 
resentation is determined by the expression 

where ~ ( k )  is the energy of the one-magnon state (a:a, 
is the number operator for the magnons in the state k), 
while the operator describes the magnon interaction. 

The dominant magnon interaction stems, generally 
speaking, from the exchange interaction. It is well 
known, however, that the exchange-interaction-pro- 
duced two-magnon scattering amplitude is  proportional 
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'to ~(ak,) (aka), where k, and k, are  the wave vectors of 
the colliding spin waves. Therefore, in the long-wave 
approximation (ak - O), the interaction of exchange ori- 
gin becomes vanishingly small. At the same time, ow- 
ing to the single-ion anisotropy energy (I), the magnon 
interaction gives a nonzero spin-wave scattering am- 
plitude even in the limit a s  k- 0. Indeed, if we sub- 
stitute (2) into (1) and limit ourselves to only terms of 
fourth order in the operators a; and a,, then we can 
easily derive for the Hamiltonian of the magnon-magnon 
interaction the expression 

where ~ ( k )  is the Kronecker symbol, L is the length of 
the chain, and the amplitude of the interaction possessec 
the following limit for k - 0: 

The principal characteristic of the magnon interaction 
in a ferromagnet with an "easy-axis" type of anisotropy 
(PO)  consists in such a behavior of the amplitude 
V(klk2, k,k,). 

Taking interest henceforth in only the long-wave ap- 
proximation (ak << I), we can restrict ourselves to the 
consideration of only the contact interaction of the mag- 
nons and reduce the expression for 1, as  follows: 

It i s  clear that in the case of such a simplification of 
the Hamiltonian, we are justified in describing only 
those inhomogeneous states of the magnetic substance 
for which the characteristic magnon wave vector satis- 
fies the condition 

Assuming that the condition (7) i s  fulfilled, let us re- 
write the Hamiltonian, (3), of the ferromagnet in the 
long-wave approximation: 

where c0 =Ewe =2~lg@kl~ is  the frequency of the homo- 
geneous ferromagnetic resonance and I coincides in or- 
der of magnitude with the exchange integral. 

In the coordinate representation, a magnon-magnon 
interaction of the form (6) i s  described by the potential 
energy 

where xl is the coordinate of the i-th quasiparticle. The 
problem of the bound state of N bosons interacting ac- 
cording to the law (9) admits of an exact solution. ts' 
This state i s  described by a wave function of the form 

while the bound-state energy E(N) is determined by the 
formula 

We shall assume that the number N, is large (N ,  >> 1). 
Using the explicit form of the wave function (lo), we can 
easily derive an expression for the mean wave vector 
of the magnons forming the bound state. It turns out 
that for N>> 1 we have in order magnitude 

Comparing (12) with the condition (7), we see that the 
Hamiltonian (8) can be used only to describe magnon 
bound states with N<< N,. Thus, the assumption that 
N, >> 1, which is equivalent to the assumption that the 
magnetic-anisotropy energy i s  small compared to the 
exchange energy (i.e., that j&VZo<<I), i s  extremely 
important. In terms of the one-magnon excitations, 
the latter inequality corresponds to the smallness of 
the energy of interaction of two quasiparticles in com- 
parison with the energy-band width of the free quasi- 
particles. When this inequality is fulfilled, the localiza- 
tion radius of the bound state is much greater than the 
range of the two-body forces, which completely justi- 
fies the replacement of the interaction potential by the 
6-function (9). Notice that, when this condition is ful- 
filled, two-quasiparticle bound states are  not formed in 
a three-dimensional crystal. 

8 2. QUASICLASSICAL DESCRIPTION OF THE BOUND 
STATE OF A LARGE NUMBER OF MAGNONS. THE 
ONE-DIMENSIONAL CASE 

We have convinced ourselves that the quantum analy- 
sis of the magnon bound states on the basis of the Hamil- 
tonian (8) makes sense only when N<< N,. But i f  N>> 1, 
then the description of the bound states of a large num- 
ber, NZN,, of magnons can be approached from another 
angle. It was recently showncg1 that the bound state of 
a large number of phonons in an anharmonic chain is 
the quantum analog of the classical self-localized vi- 
brations of a nonlinear string, which are  describable 
in terms of the macroscopic equations of vibrations. 
A similar situation should obtain in a magnetic substance 
to which the quantum model used by us in the preceding 
section, a s  well a s  the macroscopic description in terms 
of the nonuniform magnetization density, is applicable. 
It is well known that the classical behavior of a magnetic 
substance can be studied with the aid of the Landau- 
kLifshitz equations. clll Therefore, it is natural to raise 
the question of the existence of self-localized solutions 
of the one-dimensional nonlinear Landau-Lifshitz equa- 
tion and of the correspondence of these solutions to the 
bound states of a large number of magnons. 

Let M(r) be the density of the magnetization vector 
of the ferromagnet. The presence of self-localized os- 
cillations implies that in a bounded region of space (in 
the one-dimensional case, in a finite section of the 
chain) the magnetization, M,(r), along the easy axis dif- 
fers from the nominal value M,, and there arises a fi- 
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nite total deviation of the z component of the magnetic 
moment from the equilibrium value. Let us define the 
number, N, of magnons in such a state a s  the total num- 
ber of spin deviations in the system, to wit, 

Since the Hamiltonian, (4), of the interaction commutes 
with the total z component of the magnetic moment, the 
total number of magnons is an integral of the motion in 
both the quantum and classical descriptions. 

The requirement that the quantity N(N>> 1) in the clas- 
sical relation (13) should have integral values is equiv- 
alent to the quasiclassical quantization of the corre- 
sponding localized solutions of the Landau-Lifshitz 
equation. The Landau-Lifshitz equations can be de- 
rived with the aid of a variational principle which uses 
the expression for the energy of the ferromagnet and 
which is written in the form of a functional of the mag- 
netization vector M(r). The energy, W, of the ferro- 
magnet includes the exchange energy, the magnetic- 
anisotropy energy, and the energy of the magnetic-di- 
pole interaction. We shall henceforth assume that P 
>> 4s. When this inequality is fulfilled, the contribution 
of the dipole interactions to the energy of the ferromag- 
net is small, 2' and allowance for them insignificantly 
(to the extent of 47r/B) alters the form of the self-local- 
ized solutions of the Landau-Lifshitz equations of in- 
terest  to us. Therefore, we shall restrict  ourselves to 
the consideration of the exchange-interaction energy 
and the anisotropy energy (1). Then 

where (u =1a~/2~&, is the exchange constant. The 
equations for the free motion of the magnetization, which 
a r e  the Landau-Lifshitz equations with relaxation ne- 
glected, can be written in the form 

We shall be interested in the localized solutions to 
(15), i. e., in the solutions for which M(r)- M, a s  I rl - m. Let us choose the z axis along M,,, and let us 
represent the components of the density of the mag- 
netization vector in the form 

M,=M. cos 0, M,+iM,=Mo sin Clew. (16) 

Let us consider the localized solutions for which 

where the angle B(r) - 0 a s  I r I- m. The sought solutions 
describe nonuniform, localized precession of the mag- 
netization with frequency o and a coordinate-dependent 
amplitude. We shall clarify the quantum meaning of the 
quantity w below. Equation (15) with allowance for (16) 
and (17) assumes the form 

0 
5 AO-sin 0 cos 0 +-sin O=0. 

0 0  

(1 8) 
B 

Returning to the one-dimensional problem, and intro- 
ducing the coordinate 5 along the chain, 3' we rewrite 
Eq. (18) in the form: 

a d20 0 
sin 0 cos 0 +-sin 0=0. 

B dS' 00 

The localized solution to Eq. (19) that decreases 
monotonically a s  [ - can be written in terms of ele- 
mentary functions, to  wit: 

We see  that the amplitude and frequency, w, of the self- 
localized oscillation a re  connected by a simple func- 
tional dependence. Substituting (20) into the expression 
(14), we find the energy of the self-localized oscilla- 
tion4' a s  a function of the frequency w: 

Using (20) and the condition (l3), we also find the num- 
ber, N, of spin deviations that corresponds to the self- 
localized oscillation of frequency w :  

N = N ,  arch (o,/o)'", (=a) 

The relations (22) establish a connection between the 
frequency w and the number of magnons forming the 
self -localized state. Now we can express the energy 
of a quasiclassical bound state of a large number of 
magnons in terms of the number of magnons: 

A plot of the dependence E =E(N) is shown in Fig. 1, 
while a schematic plot of 8 = 8([) for N>> N, is given in 
Fig. 2. 

For N>> N,, i t  follows from (23) that 

FIG. 1. The bound-state energy as a function of the magnon 
number N (the one-dimensional case): 1) the quasiclassical de- 
pendence E @ )  determined by the formula (23); 2) extrapolation 
of the dependence (11) to values of N -N1 .  
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FIG. 2. Schematic representation of the magnetization distri- 
bution in self-localized oscillations when w <<wo (the one-di- 
mensional case). 

It is easy to verify that (24) coincides with twice the en- 
ergy of a 180" domain wall (for an area  of d of the do- 
main boundary). This is an entirely natural result, 
since, for N>> N,, the whole inhomogeneity of the mag- 
netization distribution i s  practically concentrated in the 
transition regions for the magnetization (see Fig. 2). 
Outside the narrow regions of width A[ - ( c Y / / ~ ) ' / ~  each 
magnetization intensity corresponds to the nominal val- 
ue, and differs only in direction outside and inside the 
region of localization of the deviation of the magnetiza- 
tion from its value at infinity. 

For N << N, we have 

Comparing (25) with (l l) ,  we see  that the quasiclassical 
expression for the N-magnon bound state energy in the 
case when 1 << N << N, coincides with the corresponding 
quantum expression to within 1 / ~ ~ .  Notice that the 
classical analog of the bound state can be found directly 
by minimizing the energy functional, (14), of the mag- 
netic substance for a given value of the magnon-number 
functional (l3), namely, from the condition 

where Aw is a Lagrange multiplier. The Euler-La- 
grange equation arising from (26) coincides with Eq. 
(18), i. e., the magnetization distribution minimizing 
the energy of the magnetic substance for a given finite 
value of the total number of magnons is a self-localized 
solution of the nonlinear Landau-Lifshitz equation. 

Using (26), we can easily derive in a general form an 
important relation that uncovers the quantum meaning 
of the frequency of precession of the magnetization in 
the self-localized state: 

f i o = d ~  (N) / d ~ .  (27) 

This relation is equivalent to the assertion that, when 
the number of magnons in the bound state is increased 
by one, the energy of such a state increases by Ew.  
Consequently, the quantity ti w is the energy of excita- 
tion of one reversed spin in the ferromagnet containing 
the bound state of a large number, N, of magnons. 

$3. BOUND STATES OF A LARGE NUMBER OF 
MAGNONS I N  A THREE-DIMENSIONAL 
FERROMAGNET 

As was shown in the preceding section, bound states 
of a large number of magnons (N >> 1) can be obtained 

by means of a quasiclassical quantization of the self- 
localized solutions to the Landau-Lifshitz equation for 
the magnetization. Below we shall convince ourselves 
that, in a three-dimensional ferromagnet with an easy- 
axis type of anisotropy, N-magnon bound states can 
form only when N>> 1; therefore, we shall investigate 
them, using the quasiclassical method developed in the 
preceding section. 

It is to be expected that, without allowance for the 
magnetic-dipole interaction, the lowest energy i s  pos- 
sessed in a three-dimensional ferromagnet by the cen- 
trally symmetric solution 8 = 8(r). The equation for 
8(r) is obtained directly from (18): 

Although we can integrate Eq. (28) only numerically, the 
question of the existence of self-localized solutions of 
this equation can be qualitatively analyzed virtually to 
the end without recourse to the explicit form of the solu- 
tions. This can be done, using the phase-plane method. 

Let us introduce the notation 8' =d8/dr and consider 
the phase plane (8, 8'). It is convenient to study the be- 
havior of the integral curves (trajectories) in this plane 
by the standard method, introducing the function 
C(r), which is the first  integral of motion for the "re- 
duced" equation, obtained from (28) by eliminating the 
term with the f i rs t  derivative. This "reduced" equation 
coincides with (19) if we set  6 =r. The function C(r) has 
the form 

It is easy to verify that C(r) is a monotonically decreas- 
ing function of the coordinate r: 

i. e., decreases with increasing r .  

To carry out a qualitative analysis of the solutions to 
Eq. (28), let us depict in the phase plane curves of con- 
stant level of the quantity C, conditionally calling them 
constant-energy curves. 5, Typical constant-energy 
curves for w < w, a r e  shown in Fig. 3. It should only be 
kept in mind that, by definition, the polar angle 8 varies 

FIG. 3. Schematic drawing of the phase trajectories in the 
(Or, 0) plane. The points * G o  a re  foci; the curves A and B are 
the separatrices for the integral curves of the "reduced" equa- 
tion. 
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in the interval 0 8< n. In allowing negative values of 
8 in the phase plane, we should remember that the tran- 
sition from the positive semiaxis (8>0) to the negative 
semiaxis ( 8 ~ 0 )  is connected with a change in the phase 
of the precession by a half-period (by the quantity n/o). 
The points ( i  Oo, 0), where cos8, = w/w,, a r e  foci cor- 
responding to C = - w2/24 and describing the state of 
uniform precession of the magnetic substance with fre- 
quency w. The passage to these limiting states cannot 
be of interest to us for two reasons: first, they a re  
not localized (8 = O0 = const f 0 )  and, secondly, they a r e  
mechanically unstable. The curve A corresponds to  
C = C, = 5 - w/w, and passes through the coordinate 
origin and the points (& 8,, 0), where cos8, =2w/wo - 1. 
The curve B corresponds to the value C =C,=$ + o / w o  
and passes through the point 8 = n on the abscissa axis 
a d  the points 8' = 8; =* 2(w/wo)"' on the ordinate axis. 
The curves A and B are, in fact, separatrices, dividing 
the phase plane into three regions. In the f i rs t  region 
(C < C,), i. e., inside the separatrices, a r e  located 
curves that close round one of the foci. In the second re- 
gion (C, < C < C,), i. e., between the separatrices, pass  
constant-energy curves enclosing both foci. To the third 
region (C> c,) belong constant-energy curves that do 
not intersect the 8' = O  axis-they will not be investi- 
gated below. 

The phase trajectories of Eq. (28) intersect the con- 
stant-energy curves, since along them the quantity C 
decreases with increasing r. 

We shall seek the self-localized solutions of Eq. (28) 
that a r e  bounded a t  r =O. These solutions automatically 
satisfy the condition dO/dr = 0 at  r = O  (the starting point 
of the integral curve lies on the 8' = 0 axis). For def - 
niteness, let us assume that O>0 at  r = O .  

It is clear that the phase trajectories that start  from 
inside the separatrix A terminate, for r - a, at  the 
focus 8 = + $ and describe nonlocalized, unstable states. 
Consequently, the beginning, 8 = 8(0), of a phase t ra-  
jectory describing a localized state should lie at least 
in the interval 8, < 8(0) < n on the abscissa axis. As a 
rule, the 'phase trajectories that have their origins in 
this interval intersect the separatrix A, and therefore 
"drop out of the game, " terminating a t  one of the foci 
8 = i  $ (the dashed curves 1, 3, and 5 in Fig. 3). How- 
ever, there exist, besides this manifold of phase t ra-  
jectories, curves which correspond to a discrete set  of 
8(0) .values and which terminate at the coordinate origin 
as r- (the curves 2 and 4 in Fig. 3). These selected 
trajectories depict the solutions to Eq. (28) that vanish 
a t  infinity, i. e., the localized states of interest to us. 

The asymptotic behavior of the function 8 = 8(r) for 
the localized states is easily obtained by linearizing 
Eq. (28) for 8<< 1. It turns out that for these solutions 
we have for r - 

It is natural to classify the localized solutions accord- 
ing to the number of zeroes (nodes), i. e., according to 
the number of intersections of the 8' = O  axis by the 

phase trajectory. To the "ground" state corresponds 
the monotonically decreasing functidn B(Y) whose phase 
trajectory is represented by the curve 2 in Fig. 3. The 
subsequent analysis will be devoted to the elucidation 
of the characteristic features of the "ground" state. 

We shall first  of all study the self-localized ground 
state for w << w,. For w << w, the values of C, and C, 
differ little: C, - CA = 2w/wo << CA, and the separatrices 
A and B almost coincide (in Fig. 3 the extreme points 
of the separatrices a r e  characterized by the quantities 
8, = a - 2~x and 8; = 2 . J G  ) Consequently, 8(0) lies 
in a narrow interval A@- Z!-,l& near 8 =  n. Since the 
derivative d8/dr near the point 8 = n i s  small, there 
exists a sufficiently wide range of variation of the vari- 
able y in which B(r) virtually does not differ from n: 

Since .rr - 8(0) < ~JG, i t  follows from 32) that we can 
assume 8(r) = 8(0) = R right up to r - 1 = J k P (as we shall 
verify below, this estimate significantly reduces the di- 
mension of the region in which I 8(r) - n/<< 1). The be- 
havior of the function e ( ~ )  for r > > J a  in the o << w, case 
is also easy to establish. Indeed, in this case the char- 
acteristic length parameter, I ,  determining the order 
of magnitude of the derivatives of the function 8(r) (P 
= o/P) is small compared to Y. Therefore, the term 
with the f i rs t  derivative in (28) is small compared to  
the second derivative, and Eq. (28) for r >> I and w << wo 
reduces to the one-dimensional equation: 

a d2R -- = sin 8 cos 8. 
B d? 

The solution to Eq. (33) that vanishes a t  infinity (r- a )  
is known: 

cos O ( r )  =th [ (B/a) '"(r-R) 1, R=const. (34) 

Notice that this solution describes the magnetization dis- 
tribution in the plane of a domain wall in the ferromag- 
net. Thus, for w << wo the localized solution describes 
the following state of the magnetic substance. In the 
macroscopic region of the radius R >> I ,  the magnetiza- 
tion corresponds to the nominal magnetization, but with 
a direction opposite to that of the vector M (8* n). This 
region is separated from the remaining magnetic sub- 
stance by a spherical "domain boundary" of radius R 
and thickness 1, in which the magnetization executes 
precession with frequency w and angle B that depends 
on the coordinate r. Virtually a l l  the energy of such a 
state is concentrated in a transition region of thickness 
1, and coincides with the energy of the spherical domain 
boundary: 

The number of reversed spins in such a state is just as 
easy to determine if we consider only the volume part 
of it: 
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Using (35a) and (35b), as well as the condition (26), 
we can connect the radius of the self-localized solution 
with the quantity w: 

It is now easy to derive for w- 0 the following asymp- 
totically exact expressions connecting the energy, E, 
of the self-localized oscillation with the number, N, of 
spin deviations: 

as well as the precession frequency with the number N: 

where 

(Running ahead, let us note that the numerical analysis 
confirmed the validity of the relations (36) and (37) for 
w <<w,.) 

Comparing the expressions (36) and (37), and taking 
(27) into account, we can see that the energy of excita- 
tion of one spin deviation going over into the "ground" 
bound state of N magnons is smaller than the energy 
per magnon: 

The condition w << wo corresponds to the requirement 
that N >> N,,  under which E <<EON. 

It is also possible to analyze the properties of the 
self-localized solution in another limiting case, namely, 
in the case when w, - w << w,. If the frequency w is very 
close to wo, then the separatrix A presses itself to- 
ward the coordinate origin (el << 1). But the 'ground" 
state's trajectory, which does not intersect the 8' = 0 
axis, should have i ts  origin near the separatrix A, and 
therefore we should expect that, for it, B(Y) << 1. 

Assuming that the angle 0 is small, we can easily 
derive for i t  the equation 

Let us introduce a new scale for the space coordi- 
nates, introducing the dimensionless variable 

and let us define a new sought function Q(x): 

e = [ 2 ( 1 - ~ / ~ , )  I'"Y ( 2 ) .  (40) 

Then for Q we obtain the nonlinear equation 
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the properties of which have been well studied. C13-151 

The fundamental self-localized solution of Eq. (41) 
possesses an "amplitude" *(O) 4.34, and falls off 
over distances Ax-1. Consequently, 

which justifies the initial assumption that B(Y) << 1. Fur- 
ther, the the scaling transformation (39) shows that the 
self-localized state has a region of localization 

i. e., is very highly "smeared out" in space. 

Let us now write down in that approximation in which 
(38) for w - wo is valid the bound-state energy 

and the number of bound magnons 

Comparing (42) and (43), and also taking into considera- 
tion (39) and (40), we obtain 

where the constant J2 is equal to 

while N, is determined a s  before by the formula (38), 
and, similarly, 

where the constant J1 is equal to 

Combining (44) and (45), we can derive the asymptotic 
dependence of the bound-state energy on N for  w - oo: 

Thus, the asymptotic formulas for the bound-state 
energy and the magnon number N a re  expressible in 
terms of the constants J1 and J2-certain integrals of 
the function *(x) determined by Eq. (41). In this case 
i t  turns out that there exists between the constants J1 
and J2 a relation that allows us, in computing E and N, 
to find by numerical methods only one of these con- 
stants. 

To obtain the relation between Jl and J2, i t  is suf- 
ficient to use the relation (27). Using the formulas (44) 
and (45), we obtain that Jl = J,. Taking this circum- 
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stance into account, we arrive a t  the conclusion that 
the localized state for w, - w << w, possesses the follow- 
ing characteristics: 

The condition W, - w << wo corresponds to the require- 
ment that N >> N,. Thus, there exist two types of local- 
ized states corresponding to N >> N,: the "hard" state 
(w <<wo) considered by us above, in which there exists 
the region O(r) =a and the magnetization varies in a 
narrow interval of variation of the variable r(Ar" 1)  and 
a "smeared-out" state: wo - w << w, (see Fig. 4). 

To elucidate the character of the self-localized solu- 
tions to Eq. (28) and analyze the dependence E(N) for 
arbitrary values of the parameter w, we carried out a 
numerical integration of this equation. '' The plots in 
Fig. 4 give an idea of the magnetization distribution in 
the bound state a t  high w.  This same figure demon- 
strates the validity of our analysis of the self-localized 
solution for w << w, and the spatially "smeared out" na- 
ture of the solution in the case when wo - w << w. 

The results of the numerical computation of the de- 
pendences w = w(N) and E = E(N) a re  presented in Figs. 
5 and 6. It turned out that w and E a re  two-valued func- 
tions of N. This indicates the existence of two bound- 
state branches. The physical meaning of this result 
amounts to the assertion that in the three-dimensional 
case N magnons can form bound states of two types that 
differ in, besides the precession frequency and the en- 
ergy, the nature of the spatial distribution of the mag- 
netization. 

In the low-frequency states the region of inhomogene- 
ity of the magnetization on the Y axis does not exceed in 
order of magnitude the thickness of the static domain 
wall. The high-frequency oscillations have a feebly 
marked localization, and the characteristic dimension 
of the region of localization increases in inverse pro- 
portion to the quantity a s  w- w,. As i t  turned 
out, the plot of the function w(N) has a vertical tangent 
a t  w = w,=O. 915, N=N*=9.08, and i t  is well approxi- 
mated near this point by a quadratic parabola. Using 
the latter fact and the relation (27), we can easily show 
that there obtains near the end point of the plot of E(N), 
i. e . ,  near the point N = N*, the expansion 

E (N) =E ( N . )  +AU. (N-N, )  * A  (N-A'.)", (48) 

in which E(N*) = 1. 034N*Eo and A = const. The plus and 

01% TE FIG. 5. Dependence of the 
precession frequency, w W), 
on the magnon number in the 

q5 10 bound state. The points rep- 
resent the results of the nu- 
merical calculation. 

100 200 300 N/N3 

minus signs in (48) pertain to  the upper and lower bound- 
state branches. 

The N-magnon bound states pertaining to the lower 
branch a r e  stable against small perturbations. It is 
clear that states for which decay into magnon states of 
the continuous spectrum is forbidden will be stable 
against arbitrary perturbations (let us recall that the 
Hamiltonian (14) commutes with the z component of the 
total spin and that the number of magnons is conserved). 
The states of the upper branch are,  a s  follows from 
Ref. 15, unstable, while the states of the lower branch 
a re  metastable when N <  No=  11. 3N3. Notice that both 
stable and metastable N-magnon bound states a re  pos- 
sible in a three-dimensional ferromagnet only when 
N 3 N* >> 1. The latter justifies the use of the quasi- 
classical approximation to describe the N-magnon bound 
states in a three-dimensional ferromagnet with a weak 
anisotropy (let us recall that the condition po/3Mo <<I 
corresponds to N, >> 1). 

It was shown in Ref. 7 that the bound states of two 
magnons with zero total quasimomentum are  formed 
when the condition p&Wo > qI ,  where 77 is a numerical 
parameter of the order of unity, is fulfilled. Under 
such a condition the characteristic number, N3, in- 
troduced by us i s  of the order of unity, and, therefore, 
our results a re  not a t  variance with the results of Ref. 7. 

In conclusion of the present section, let us note that 
we can easily take into account an external uniform mag- 
netic field H directed along the easy axis. Then to the 
energy of the ferromagnet must be added the usual Zee- 
man energy of magnetization in an external field : 

When written in such a way, the Zeeman energy is mea- 
sured from the energy of the homogeneous magnetized 
state of the ferromagnet. To the positive value of H 
corresponds the parallel orientation of the magnetic 
field and the magnetization of the ground,state of the 
ferromagnet. It is not difficult to verify that the equa- 

FIG. 4. Dependence of the pre- (05 FIG. 6. Dependence of the 
cession angle 9 on r in a three- energy per magnon in the 
dimensional ferromagnetic sub- 

I bound state on the number, 
stance: a) w = 0. l w o ,  b) N,  of magnons (the three- 
w =0.5w0, C) w =  w,=0.915w0, dimensional case). 
d) w = O .  9 9 ~ 0 ;  l=m. 

o to 20 rlL 

1057 Sov. Phys. JETP 45(5), May 1977 B. A. lvanov and A. M. Kosevich 1057 



tions for the magnetization distribution in the presence 
of a magnetic field differ from the Eqs. ( 19) and (28) 
only by the fact that the quantity w is replaced by the 
quantity w = w - wo(H/HA), where HA = @lo is the field 
of the anisotropy. Taking this fact into account, we 
can easily picture the plots of the dependences w(N) and 
E(N) in the presence of an external magnetic field. The 
plot of the dependence w(N) for H f 0 is obtained by 
simply shifting the plot in Fig. 5 upward by the amount 
w,(H/H,), while the plot of the dependence E(N)/N for 
H# 0 is obtained by shifting the plot in Fig. 6 upward 
by ~ P P .  

It is interesting that for H< 0 there exist static equi- 
librium states of the ferromagnetic substance with a 
finite number of spin deviations. To elucidate the mean- 
ing of these states, it is necessary to note that there 
exist in an external field parallel to the anisotropy axis 
{HCH,) two homogeneous stable states of the ferromag- 
net: a stable state when H>O and a metastable state 
when H < 0, i. e., in the case of antiparallel orientation 
of the magnetic field and the magnetization. 

The static inhomogeneous solution with a finite num- 
ber of spin deviations found by us to exist in the case 
when H< 0 is, in fact, the nucleus of a region with op- 
posite magnetization direction in an unbounded single- 
domain ferromagnet in a metastable state (H <O), i. e., 
the usual critical nucleus of the stable phase in a meta- 
stable phase. '' 

Turning to the interpretation of the macroscopic 
meaning of the investigated self-localized states with 
w + 0, let u s  note the following. First, if the ensemble 
of 'Tree" magnons can be treated a s  a gas of quasipar- 
ticles with a weak attractive interaction (the energy of 
the magnetic anisotropy of the easy-axis type corre- 
sponds to a two-body attractive interaction between long- 
wave magnons), then the bound state of a large number 
of magnons is a "magnon drop." It is clear that, when 
the relaxation processes a re  taken into account, such a 
state of the magnetic substance can exist only under the 
conditions of an external influence that guarantees the 
prescribed number, N, of spin deviations. Secondly, 
for the existence of the magnon drop, i t  is necessary 
that the.mean lifetime of the magnons be longer than the 
time required for their condensation into a drop and 
that the resorption of the drop on account of the relaxa- 
tion mechanisms in the magnetic substance be compen- 
sated by the excitation of magnons by the external in- 
fluence. 

CONCLUSION 

While analyzing the question of the existence of mag- 
non bound states in a three-dimensional ferromagnetic 
substance, we showed that, even if two-magnon bound 
states cannot be formed in the ferromagnet, the forma- 
tion of bound states of a large number of magnons is 
always possible. It seems to us that i t  i s  useful to for- 
mulate this result in a more general form. 

The amplitude, U, of the interaction of the long-wave 
magnons is determined by the magnetic-anisotropy en- 
ergy, and the condition PMo <<I can be qualitatively 

interpreted a s  the condition for the smallness of the 
magnon-interaction energy a s  compared to the energy 
band width, 6s-I, of the free magnon. It is well known 
that quasiparticle bound states a r e  formed only in the 
case when the amplitude, U, of their attractive inter- 
action exceeds some critical value U,, where UCM6&. 
The inequality g o  No <<I for magnons in a ferromagnet 
of the easy-axis type implies that U<< U,, and, there- 
fore, the absence of two-magnon bound states is not 
surprising. 

However, a s  we have shown, there exist in a ferro- 
magnet with a small anisotropy N-magnon bound states 
with N 3 N,-(I/2g0 j3Mo)312, which can be rewritten a s  
N 3  N*"(U,/U)~/~. 

Therefore, we can apparently make the following gen- 
eral  assertion concerning any Bose quasiparticles in a 
three-dimensional crystal: if the magnitude of the at- 
tractive-interaction potential, U, of the bosom is not 
sufficient for the formation of bound pairs (U< U,), then 
N-particle bound states can be formed when N >  Nc - ( U , / U ) ~ ~ ~ .  

The authors a re  profoundly grateful to K. V. Maslov 
for a discussion of a number of mathematical aspects 
of the problem and for his help in the formulation of 
the numerical computations, a s  well a s  to A. A. 
Motorna and V. I. Khatuntsev for carrying out the com- 
puter calculation. 

Note added in proof (March 28, 1977). Recently, 
V. I. Petviashvili drew our attention to a paper by N. G. 
Vakhilov and A. A. Kolokolov (Izv. Vyssh. Uchebn. 
Zaved. Radiofiz. 16, 1020 (1973)), in which it is shown 
that a necessary condition for the stability of a localized 
solution of an equation of the type (41) is the fulfillment 
of the inequality dw/dN< 0 (in our notation). On this 
basis we draw the conclusion that the states corre- 
sponding to the upper branches in Figs. 4 and 5 a re  un- 
stable. We a re  grateful to V. I. Petviashvili for the 
very useful remark. 

')1t should be noted that the single-ion anisotropy energy (1) 
does not make any contribution to the amplitudes of the inter- 
action of more than two magnons, and f o r k  -4 the dominant 
term in the Hamiltonian is the magnon-magnon interaction(4). 

2 ) ~ h e  fact that the magnetic dipole interaction does not con- 
serve the magnon number is of little consequence. As fol- 
lows from the results of Ref. 9, the properties of the self- 
localized states and their classification should, in the first 
approximation in the small parameter 47r/P, not change. 

3 ) ~ e  intentionally denoted the coordinate along the chain by 
the Greek letter 5 ,  and not by the letter x ,  as was done in 
the preceding section, so  a s  not to create the impression 
that the anisotropy axis is necessarily perpendicular to the 
axis of the chain. 

4 ) ~ h e  energy of the self-localized oscillation is reckoned from 
the ground-state energy of the ferromagnetic substance. 

5 ) ~ f  we take r to be the time, then Eq. (19) coincides with the 
equation of motion of a.nonlinear conservative oscillator. In 
contrast to (19), Eq. (28) includes a frictional force pro- 
portional to the "velocity" 8' , and the relation (30) deter- 
mines the standard connection between the variation of the 
energy of the system and the dissipative function of the non- 
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conservative nonlinear oscillator. 
6 ) ~ h e  numerical computations were carr ied  out a t  the com- 

puting center of the Physicotechnical Low-Temperature In- 
stitute of the Academy of Sciences of the Ukrainian SSR by 
A. A. Motornaya and V. I. Khatuntsev. 

')Such a magnetization distribution resembles a "spheric'al 
domain." We should only bear in mind that, in contrast to 
the conventional theory of cylindrical domains in thin films, 
our analysis has been carr ied  out without allowance for the 
magnetic-dipole interaction. 
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We investigated the Mossbauer spectra of "'Sn in solid solution of diamondlike semiconductors 
(Cu,SnS3),<3ZnS),-, (x = 1/16 to 1) and (Cu2SnS3),-(3CdS),-, (x = 3/16 to 1). At values x<3/4, when 
the probability of the appearance of the tin atoms in the second coordination sphere of the Mossbauer 
atom is low, the spectra consist of one somewhat broadened line, the parameters of which are practically 
independent of x. At values x23/4, when a certain fraction of the Mossbauer atoms in the second 
coordination sphere acquire tin atoms, the line begins to broaden and is transformed into a doublet with 
further increase of x, while the isomeric shift increases. The results show that large displacements of the 
electron charges can be induced by the atoms of the second coordination sphere in valence bonds of the 
atoms situated at the sites of a diamondlike crystal. The observed maximal values of the quadrupole 
splitting connected with the induce displacement of the electron charges are equivalent to the value of the 
electric field intensity gradient produced at the nucleus by approximately V3 of the unbalanced sp" 
electron. The largest displacements, which lead to a measurable isomeric shift and to a quadrupole 
splitting of the Mossbauer spectrum line is to be expected in those cases when the second coordination 
sphere contains atoms elements from far removed groups of the periodic system. 

PACS numbers: 76.80. + y 

1. INTRODUCTION 

The influence exerted on the structure of the M8ss- 
bauer spectrum by atoms that a re  not directly con- 
nected with the Mksbauer  atom was observed in tin- 
organic compounds. C1*21 It was observed in those cases 
when anatom having large electronegativity or  a group 
of atoms having strongly polar properties is joined to 
a ligand connected with the ~ Z s s b a u e r  atom, and i t  was 
attributed to a displacement of the electronic charges 
of the molecule towards the electronegative center (to 
the induction effect). 

Highly suitable objects for the study of the redistri- 
butions of the electronic charges due to the appearance 

of a great variety of atoms near the ~ i j s s b a u e r  atom 
and a t  various distances from it, a r e  a complex dia-. 
mondlike semiconductors. C$41 I n  contrast to tin-organic 
compounds, where the interpretation of the results is 
frequently made difficult by the lack of structural data, 
the crystal structures of many diamondlike semicon- 
ductors a r e  well known; short-range order is char- - 
acterized by tetragonal symmetry, while in the case of 
long-range order the crystal lattices a r e  most fre- 
quently of the sphalerite, chalcopyrite, or  wurtzite 
type. In these cases when new complex compounds a r e  
synthesized o r  their solid solutions a re  produced, the 
crystal structure is easily obtained by x-ray diffrac- 
tion. An exceptionally favorable circumstance is the 
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