
region of the resultant degeneracy of the conical point 
contacts, magnetic breakdown can account for both the 
behavior of the magnetoresistance and of the thermo- 
electric power. If this explanation is valid, then the 
results above a re  the f i rs t  observation of magnetic 
breakdown of this type. 
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The density comelator, the conductivity, and the dielectric constants are calculated for an impurity- 
containing one-dimensional metal with half-tilled band. If the Fermi level coincides exactly with the center 
of the band, and the amplitude for forward scattering by an individual impurity is equal to zero, then at 
zero temperature the localization length is infmite. In the frequency region T<o <1/r (T is the 
temperature and T is the free-path time) the conductivity is constant and the dielectric constant increases 
with decreasing frequency like ao(l n w-'. When the Fenni level does not coincide with the center 
of the band, the static conductivity is equal to zero and the dielectric constant increases in the region 
~ < 1 / r  in proportion to H-', where e is the distance from the Fermi level to the center of the band. 

PACS numbers: 72.15.Nj 

1. INTRODUCTION 

Theoretical investigations of disordered one-dimen- 
sional systems have by now reached a level such that 
many properties of real  crystals with one dimensional 
spectra can be explained."l We point out, in particular, 
the electronic-state localization that leads to  the van- 
ishing of static c o n d u c t i ~ i t y , ~ * ~ ~  and to the change in the 
character of this localization when account is taken of 
the interaction with the phonons.L4*51 These studies make 
use of continual models that do not take into account the 
periodicity of real  crystals.  son'^^ has shown that 
such a characteristic as the density of states in a one- 
dimensional disordered harmonic chain has singularities 
in special points of the Brillouin zone. Analogous singu- 
larities should take place also in the electron spectrum. 
The appearance of a singularity in the state density near 
the center of the zone was observed by Weissman and 
 oha an,"^ who considered a model with nondiagonal dis- 

order. As shown by ~ u s h ~ ~ l  the localization length of 
such a model becomes infinite when the center of the 
band is approached. 

Gor'kov and ~ o r o k h o v ~ ~ l  considered a model in which 
impurities with fixed potential were randomly distributed 
over the sites of a one-dimensional lattice with a period 
a. In the Born approximation, the potential of an indi- 
vidual impurity is characterized by two amplitudes cor- 
responding to forward and backward scattering. It was 
shown that the electronic-state density becomes infinite 
a t  the center of the band only if the forward scattering 
amplitude is equal to zero. Gor'kov and Dorokhov had 
demonstrated the possibility of satisfying this condition 
using as examples TCNQ salts with asymmetric cat- 
ion~ . ' ' ~  

The appearance of singularities in the state density 
and in the localization length should lead to a nontrivial 
behavior of the kinetic characteristics near the center 
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of the band. In this paper, assuming vanishing of the 
forward scattering amplitude, we calculate the conduc- 
tivity u and the real part of the permittivity &' for elec - 
trons with onebdimensional disordered lattice as func- 
tions of the external frequency o and the distance E from 
the Fermi level to the center of the band. It is shown 
that in the limit (E, T, o )  << 1/r (T is the temperature and 
r is the free-path time) the conductivity and the dielec- 
tric constant behave differently, depending on the order 
in which E, T, and w tend to zero. 

We shall assume that the band i s  exactly half-filled 
if the limit is taken under conditions & << w and T<c w. 
In this case the conductivity has a finite value a(0) in the 
limit as o - 0, while the permittivity increases with de- 
creasing frequency. Namely 

where v i s  the Fermi velocity, I, is the mean free path 
with respect to backward scattering, and S is the cross 
section of the crystal area per filament. Formula (2) 
contains a constant B-1 ,  which we were unable to de- 
termine. 

If the band is not half-filled, i. e., in the limit c'>> w, 
there i s  no static conductivity: a(0) = O  and the static 
permittivity takes the form 

If the forward scattering amplitude differs from zero, 
then the conductivity always vanishes in the static limit, 
the localization becomes finite, and the singularities of 
the state density and of the permittivity become smoothed 
out. 

To calculate the kinetic Zoefficients we used the meth- 
od proposed by ~ e r e z i n s k i i ~ ~ ~  for the summation of inter- 
ference diagrams." A generalization of this method to 
the case of a metal with half-filled band will be carried 
out using as an example the calculation of the state den- 
sity for which an analytic expression can be obtained. 

2. DENSITY OF STATES ' 

We consider a system of electrons having a dispersion 
E (p) and interacting with randomly distributed impurities 

FIG. 2. Types of impurity vertices that enter in the essential 
diagrams. The prime denotes replacement of single lines by 
double lines. The vertices correspond to the factors: a) 
(-&)(l/l-+l/zJ, b) (- l / lJ ,  c) (- d) 
(- l/z,)e4i@*~)", e) (- 1/1+), where 1, is the mean free path for 
forward scattering. 

In contrast to the earlier s t ~ d i e s ~ ~ ~ ~ ~  we take into ac- 
count here the periodicity of the real crystal, assuming 
that the impurities can be located only at the lattice sites 
with a period a. As will be shown below, this limitation 
leads to the appearance of a new class of diagrams, the 
contribution of which increases as the electron energy 
approaches the center of the band. 

To calculate the state density we use the known formu- 
la 

where G*(nlnz I&) i s  the retarded Green's function of the 
electron, nl and nz are  the numbers of the sites, while 
the angle brackets denote averaging over the locations 
of the impurities. The diagram expansion for expres- 
sion (4) is constructed in analogy withcg*". The only 
difference is that the integration with respect to the 
coordinates i s  replaced by summation over the sites. 
The first significant diagram is shown in Fig. 1. This 
diagram corresponds to the expression 

where G:(OO I&) = - i/v(c) and p =p(&). It is seen that in 
the general case the relative increment to G* i s  small 
like (a /~ , )~  << 1. For this reason we can neglect in the 
continual model the change introduced in the Green's 
function by the interaction with the impurities.cs1 How- 
ever, as  p -po = n/2a the increment (5) increases like 
((p -pol l,)4. In other words, the vertex shown in Fig. 
2c oscillates more and more weakly as p -Po and there- 
fore must be taken into account when the significant 
diagrams are  selected. At I, >> a the sums over n cover 
the region n-Z,/a >> 1, so that we can change over from 
summation to integration, and simultaneously replace p 
by P -Po. 

All the essential types of impurity lines a r e  shown in 
Fig. 2. The lines a(a'), b(bl), and e(el) were introduced 
earlier,cs3 while the lines c(cl) and d(d') a re  significant 
if  the Fermi level i s  close to the center of the band. It 
i s  seen only when the lines c(cl) and d(dl) a re  taken into 
account can we construct diagrams of the type of Fig. 1 
which contribute to the Green's function. 

For the subsequent calculations it will be convenient 
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to cut the diagrams of Fig. 1 at the point x and consider 
separately the right- and left-hand sides of the diagram 
R,&) and fi,(x). The subscript m means that 4m lines 
pass through the point x. By shifting the point x, we 
obtain for the right-hand sides of R,(x) the equation 

Making the substitution R,&) =R,(- 1)' exp[4im ( p  -po)d,  
we obtain for R, after cancelling m the following equa- 
tion: 

The difference equation (7)  must be solved with the 
boundary condition R6 = 1. It i s  easily seen that the left- 
hand side is &(%) =&(- 1)" exp[- 4 i ( p  -po)mn]. We ob- 
tain therefore the state density p(&) the expression 

Here po(&) = l/lrv(c) i s  the state density in the pure crys- 
tal. The coefficient 2 in relation (8)  arises when ac- 
count is taken of diagrams that a r e  the mirror images 
of the diagrams of Fig. 1 relative to the dashed line. 

Equation (7) interrelates the quantities R ,  with m >O. 
We introduce quantities R,  with m <O by means of the 
relation R,  = ~ f , .  Then the recurrence relation (7)  is 
satisfied for all signs of m, and relation (8)  can be re- 
written in the form 

Multiplication of Eq. (7)  by meimP followed by surnma- 
tion with respect to m from -* to +- makes it  possible, 
in analogy withcs1, to transform (7) into a second-order 
differential equation for the function 

- 
R (rp) -- R, caw. 

-- 

Its first integral is8' 

The integration constant Dl must be chosen to satisfy the 
normalization condition 

We introduce a new variable x by the substitution 

Then Eq. (10) takes the form 

dR sin x + Dt 
2 x + ( 2 r + i + c o s x '  4 ~ y ( y + i ) 1 ~ ~ ) ~ ~ 4 ~ 7 ( y + i ) ] ~ ~ .  (12) 

This equation has a solution that satisfies the condition 
of periodicity R(0)  =R(2n) and the normalization condi- 
tion (11) is 

Ultimately we obtain for the density of states 

The function p(s, y) is illustrated in Fig. 3.  The in- 
crement to the state density is positive near the center 
of the band, reverses sign in the region s"1  and then 
decreases in absolute magnitude like 1s at 1s I>> 1. 
The total number of states remains unchanged: 

The maximum of p(s) is reached at s =O. The height 
of the peak does not depend on the potential of the im- 
purity and is determined by the parameter y, i. e., b y  
the ratio 1,/1+. From (13) and (14) with s = O  we.obtain 

where K is a complete elliptic integral of the first kind. 
With decreasing y, the value of p(0) increases like 

For impurities with an 6-function potential ( y =  1) the 
change of the state density at the center of the band i s  
1.5%. 

It is seen from (16) that at  y = 0 the state density as a 
function of s has a singularity at the center of the band. 
At y = 0 Eq. (7)  can be conveniently solved by making the 
substitution 

ass C t 
FIG. 3. Plotofp(s) atY=OandY=l (a) andof p(Y) ats=O(b). 
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We then obtain for w(6) the equation 

Allowance for the condition Ro = 1 yields next 

where KO is  a Bessel function. Substitutinge(18) in (8) we 
obtain at I s I<< 1 

We note that the form of the singularity in the density of 
the electronic states (19) coincides with the form of 
phonon state density singularity obtained by D y s ~ n . ' ~ ~  

The singularity in the density of the electron states 
should lead to a singularity in the temperature depen- 
dence of the magnetic susceptibility: 

where pg i s  the Bohr magneton. 

Using expression (lga), we can explain the tempera- 
ture dependence of the magnetic susceptibility of NMP- 
TCNQ in the interval 0.1-7 K.'"' The best agreement 
between the theoretical curve and the experimental data 
is reached at l/ri =I40 K and po =2 states/eV-molecule. 
It should be noted that this estimate for the free-path 
time in TCNQ salts with asymmetric cations agrees 
well with an analogous estimate based on the permit- 
ti~ity.'~' The need to take the disorder into account in 
order to explain the x(T) depenience in thesye substances 
was already noted by Bulaevskii, Lyubovskii, and 
~ h c h e ~ o l e v . ' ~ ~  

Our calculations were made in the Born approxima- 
tion in the interaction of the electrons with the impuri- 
ties. As a result, the formal criteria for the applica- 
bility of Eq. (7) and of formulas (16) and (19) should be 
Is I>> r a  and y>> CY, where CY is the Born parameter. 
We point out, however, that for two particular forms of 
the potentials it is possible to take into account also the 
next term of the expansion in the Born parameter in 
Eq. (7) and to verify that the singularity of p(s, y) re-  
mains of the same form. The relative corrections to 
p(s, y) are in this case of the order of cue<< 1. 
3. CORRELATION FUNCTION OF ELECTRON 
DENSITY 

To clarify the character of the localization of the elec- 
trons having an energy close to the center of the band, 
we calculated the electron-density correlator. As seen 
from the preceding section, greatest interest attaches 
to the case y =0, when a singularity of the electron 
spectrum appears at the center of the band. 

The general procedure for calculating the density cor- 
relator was described in detail In our case, 

besides the impurity vertices that were taken into ac- 
count there a r e  also the essential vertices e ( ~ ' )  
and d(dt) of Fig. 2 as well a s  c and d of Fig. 4. The 
change in the number of single lines in the vertices 
a(al), b(bt), and e(el) of Fig. 2 and of a and b of Fig. 4, 
considered inES'", is accompanied by exactly the same 
change in the number of the double lines. The new im- 
purity vertices c(ct) and d(dt) of Fig. 2 and c and d of 
Fig. 4 can have separately different numbers of the 
single and double lines. The bisection of the diagram 
must therefore now be characterized not by a single in- 
teger but by two integers ml and mz, which denote re -  
spectively the numbers of the pairs of single and double 
lines. 

Just a s  before, we break up the diagram for the den- 
siQ correlator into right-hand Rmlmz(x) on the central 
Z:h'&(xt, x), and left-hand Rmf4(d) parts. In analogy 
withls'41, we separate explicitly the coordinate depen- 
dence of the right-hand side: 

Here and below we use the dimensionless variables u 
= 2w T and s = 48 T, and x i s  measured in units of I , .  We 
assume y=O, i.e., Z+=w , and therefore omit the verti- 
ces e(et) of Fig. 2. Taking into account the remaining 
vertices, the equations for RmlmZ take the form 

We now introduce the quantities 

x 2,":: (d, z)P:,.,. (-l)'"*'-"."/Z 

x exp['/,i((v+s) (m,r-m,'zl) + (v-s) (ma=-m,'zl) ) 1. (22) 

The index a takes on the values 0 and 1. The correla- 
tors of the density (a =0) and of the currents (a = 1) a re  
expressed in terms of the quantities 

and 

by a single formula 

FIG. 4. Types of impurity vertices that enter in the essential 
diagrams. The vertices correspond to the following factors: 
a) J : ' ~ ~ ~ W Y / V  9 b) J - I~~~WY/~ ,  - C )  ~11~4i@40hr, d) ,lSte4f b40k. 
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The equations for Q:,,, take the form 

-'/,i (m, (v+s) +m, ( v - s )  +v) Q m , , , = ~ ~ , , - i x Q ~ , m 2  

+ L/2m2(m2-l)Q~,,m,-~-(ml+l)m2~m~+l,m,-l-~~(~~+i)Q~t-i,mr+~. 
(24) 

Expression (23) takes into account the contribution of 
diagrams of the type 5a. Near the middle of the band, a 
comparable contribution is made by the diagrams of the 
type 5b, the calculation of which will be  discussed later 
on. 

At mz = O  o r  ml =0, Eq. (21) admits of the exact solu- 
tion 

where R,(s) a r e  defined in (18). 

We now investigate the solutions of (21) and (24) in the 
limit when v << 1 and s << 1. In this limit, the essential 
values a r e  ml >> 1 and m, >> 1, s o  that in (21) and (24) we 
can change over from difference equations to differential 
equations. We introduce new variables: 

Equations (21) and (24) then take the form 

Equation (26) has a general solution that decreases at 
infinity in the form 

where cP is an unknown function. The appearance of this 
function is due to the degeneracy of the differential op- 
erator (26). This operator vanishes on any function of 
p / t .  The degeneracy takes place in the transition from 
the difference equation to the differential equation, and 
therefore the actual form of the function p should be de- 
termined from the solution of Eq. (21) a t  ml, m2"1. We 
were unable to obtain such a solution. However, as 
shown below, to calculate a number of physical charac- 

E + w/z E + w/z 

Z f O Z  FIG. 5. 

E - w/2 E - W/2 

a b 

terist ics it suffices to use those properties of the func- 
tion (P which follow from identical relations. Compari- 
son of (28) with the asymptotic forms of the exact solu- 
tions (25) yields the boundary conditions 

The solution of (27) with allowance for (28) is 

- 
G(z)=In(z )  J ~ ~ E L ( E ) K ~ ( E ) + K A ( Z )  J E d f l l ( E ) K 0 ( 6 ) ,  A=&. (31) 

0 

The solution (30) of the inhomogeneous equation (27) is 
chosen to satisfy the condition 

The last relation follows from the definition (22) of 
Qd,,,, and from the boundary condition 

Formulas (28) and (30) a r e  sufficient for the determi- 
nation of the density correlator, but contain an unknown 
function (P. From the course of the solution i t  is seen 
that (P does not depend on x ,  s o  that the properties of (P 

which we need can be obtained from the identity that 
holds at x = 0. 

The exact solutions of Eqs. (24) at x = 0 satisfy the 
relation 

To obtain this relation it is necessary to multiply (24) 
by el,, and sum over all ml and mz with allowance for 
(21). At a = O  the identity (34) takes the form 

(-2iv) 2 Q L P : , ~ , = ~ ( s .  v ) .  (35) 
",,,m,-O 

w 

f (s ,  V )  =I+ (Rmt(v+s) +Rma(v-$1). (36 
m-I 

From (28), (301, and (35) we obtain 

This turns out to  be sufficient for the calculation of the 
contribution made to  the density correlator by the dia- 
grams of Fig. 5a. The contribution from diagram of 
the type of Fig. 5b is calculated in perfect analogy. One 
of these diagrams is shown in Fig. 6. The solution of 
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the corresponding equations leads to expressions that 
differ from (28) and (30) is  that the function pfy)  is re- 
placed by the function pl(y) that satisfies the relation 

Ultimately we obtain for the asymptotic form of the cor- 
relation function as w - 0 

where 

The expression obtained by us differs from the results 
from the continual model in the appearance of the com- 
mon factor p(s)/po, which reflects the change in the 
stat? density near the center of the band, in the replace- 
ment of Kl and KO, and in the replacement of X = (1 

+4ix)l12 by X=(2ix)'I2. Just as  before, f ( x )  has a 
branch point, but its position has been shifted from x 
=i/4 C41 to x =O. This changes the exponential asymp- 
totic form of xO(w, x) into a power-law form. To cal- 
culate the form factor of the localization it is necessary 
as b e f ~ r e , ~ ~ * ' ~ '  to displace the contour of the integration 
with respect to x to the edges of the cut drawn from the 
branch point along the imaginary axis. This yields for 
the density distribution as t - m 

A plot of this function is shown in Fig. 7. We point out 
that p,(O) =1/3 and that at 1 the asymptotic form of 
P-b) is  

The function p,b) is normalized to unity. At large 
1, however, it decreases so slowly that all its mo- 

ments diverge. This means that the average electron 
displacements, and consequently the localization region, 
becomes infinite at the center of the band. 

Formulas (40) and (41) were obtained as a result of 
solving approximate equations which are exact only in 
the limit s, v- 0. Therefore, at small but finite s << 1 

FIG. 7. Asymptotic dis- 
tribution of the electron 
density. 

I 

the power-law asymptotic form (42) should go over at 
sufficiently large x into the exponential law p,(x) 
aexp(- Ixl/l(s)), where I(S)-- a s  S-0. 

4. CONDUCTIVITY AND PERMITTIVITY 

The calculation of the conductivity and of the permit- 
tivity is a more difficult problem than the calculation of 
the density c o r r e l a t ~ r . ~ ~ * ~ ~  In this problem the main 
difficulty is the absence of an explicit expression for 
the function p(y) from (28) and (30). In the preceding 
section this difficulty was overcome because the final 
answer contained only an integral of q2 [ E ~ .  (3711, 
which could be determined from the identity (34). In 
this section we shall use a similar device to calculate the 
the conductivity. We start from expression (23) for the 
current correlation function at x = 0. From the defini- 
tion of P',,,, and formula (28) it follows that at large 
ml , m2 >> 1 we have 

- a~ p-t K ,  ( I - 2 i ( p + t ) )  
P,:,,=-v-= zv) cp - 

ap - [ ( p + t )  ( - f i ( p + t j ) ' h  

p-t Ko(Y-2i(p+t))  
( )  - i (p+t)  (43) 

From (43) and (27) we obtain for ~ ' ( p ,  t) 

p-t G,(1'-Zi(p+t)) 
Q1(p.  t )  = ( - 4  [ P  (F) 

- i ( p + t )  

p-t G, (Y-2i (p+t)  ) 
- ( )  - i (p+t)  

where G1(z) and G2(z) are  given by 

" 1 " 1 G Z ( z )  =2Z0 ( z )  j dE - KoP(E) -2Ko(z) j dE--zo(E)Ko(E) +CzKo(z). (46) 
E E 

Introduction of the term rle" in the integrand of (45) is 
necessitated by the redefinition of the integration con- 
stant C1. 

In contrast to the density correlator, integrals of the 
type (40) with respect to z will now diverge logarith- 
mically at small z, because of the additional differentia- 
tion in (43). We therefore cut off the integration at a 
small zo-max(s, V) and carry out all the subsequent cal- 
culations with logarithmic accuracy. We must next 
multiply expressions (44) and (43) and integrate with re- 
spect to the variables p and t. With the aid of (29) and 
by integrating by parts we can verify that 

Thus, it remains to determine the constants C, and C2 
as well as the functiong(s, v), defined by the expression 
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To determine the constant C1 we use the identity 

which can be easily obtained by multiplying the equations 
for Q:,,, by Qf;, and summing over mi and ma. Sub- 
stituting (28), &$, (43), and, (44) in (49) we obtain with 
logarithmic accuracy 

It is natural to estimate the constant C, by using the 
condition that all of the terms in the right-hand side of 
(46) have at z "z,, the same order of magnitude. Then 

As will be shown below, in the principal logarithmic ap- 
proximation the term with G, in (44) makes no contribu- 
tion to the final results, so that the absence of an exact 
expression for C, does not influence the final formulas. 

Substituting (43)-(46) in the identity (34) at a =1, we 
obtain in the principal logarithmic approximation 

Thus, g i s  small in comparison with f and this small- 
ness is not offset by the integral with respect to z in 
the final expression. Therefore in the principal loga- 
rithmic approximation it suffices to retain the first term 
in (44). Substituting (44) in (23), we get 

This formula gives the contribution of the diagrams of 
type 5a. Taking into account the diagrams of type 5b, 
we get 

To calculate the conductivity we use the Kubo-Green- 
wood for mulascs3 

We are  interested in two limiting cases. In the first 
case the Fermi level is close to the center of the band, 
but does not coincide with it (Is 1 - 1 ~ ~  -Po IZ- << I), and the 
frequency v << S. We can then neglect the dependence of 
X' on c in the region & " w' << c and calculate the inte- 
gral (55) with allowance for the analyticity of ~ ' ( o ' )  in 
the upper half -plane. A s  a result u(o) is proportional 
to X1(c, o )  of (45), and the cutoff i s  carried out at zo 
= 1s 1. Separating the real and imaginary parts of this 
expression, we get 

where c i s  the distance from the Fermi level to the 

center of the band. 

In the second case the Fermi level coincides with the 
center of the band. Then the cutoff in (54) must be car- 
ried out at zo = - i v, and for Reu(0) we obtain the final 
expression: 

This formula differs by a factor 2n8 from the results of 
the solution of the kinetic equation. The dielectric con- 
stant in this case is determined by the next term in the 
expansion of (53) in powers of lnzo and increases with 
decreasing frequency like 

where B is an unknown constant of the order of unity. 

The finite conductivity agrees with the statement made 
above that the electronic states near the center of the 
band a re  not localized. 

All the calculations were performed for zero temper- 
ature. At finite temperature, formulas (58) and (59) 
a re  suitable in the case when the temperature is less 
than the external frequency, and formula (57) is suit- 
able when the temperature i s  lower than the distance 
from the Fermi level to the center of the band. 

The influence of disorder on the characteristics of 
one-dimensional systems, which was first considered by 
Dyson,"' has by now become the subject of intensive 
theoretical and experimental investigations in view of the 
increase in interest in the properties of quasi-one-di- 
mensional~conductors. Bulaevskii, Zvarykina, Karimov, 
Lyubovskii, and shchegolevc"' have investigated the tem- 
perature dependence of the magnetic susceptibility of the 
highly conducting TCNQ salts. An analysis of the experi- 
mental results has shown that the increase of the suscep- 
tibility at low temperatures must be attributed to a sin- 
gularity in the state density of the disordered one-dimen- 
sional systems. For a TCNQ salt with one unpaired 
electron per molecule (NMP-TCNQ) the singularity in 
the state density was interpretedc"' on the basis of the 
model of noninteracting electrons present in the disor- 
dered one-dimensional chain. 

The disordered character of the well-conducting quasi- 
one-dimensional TCNQ salts i s  due predominantly to the 
random orientation of the asymmetric cations (the only 
exceptions are  salts with symmetrical cations TTF and 
TTT). For such an internal disorder, a s  shown by Gor' 
kov and ~ o r o k h o v , ~ ~ '  the condition that the amplitude for 
forward scattering by a random potential of an individual 
cell vanish is satisfied. In those compounds where there 
is one unpaired electron per molecule, the conduction 
band is half-filled, so that we must expect the disorder 
to lead to the appearance of singularities of both the 
thermodynamic and the kinetic characteristics of these 
conductors. 

In the present paper we investigated a metal model 
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that takes into account all the factors responsible for 
the peculiar temperature dependence of the magnetic 
susceptibility of NMP-TCNQ Namely the electrons 
were assumed to be non-interacting, the impurities dis- 
tributed over the lattice sites, the band half -filled, and 
the amplitude of forward scattering by an individual im- 
purity was assumed equal to zero in the principal part 
of the article. 

Within the framework of this model, it was shown that 
as the Fermi level approaches the center of the band, 
the interaction with the impurities alters significantly 
the state density and the kinetic characteristics of the 
electrons in comparison with the results obtained with 
the continuum model.tg1 The changes are particularly 
strong if the forward scattering amplitude by an individu-. 
al impurity vanishes. For this limiting case we calcu- 
lated the electron-density correlator, the conductivity, 
and the permittivity. From the form of the density 
correlator it follows that the mean squared displacement 
of the electron increases infinitely at large times if  the 
electron momentum coincides exactly with the center of 
the band. Thus, the localization length of the electron 
becomes infinite at the center of the band not only for a 
model with a strictly non-diagonal di~order,"*'~' but 
also in the case when the disorder is produced by im- 
purities for which the forward scattering amplitude is 
equal to zero. 

The static conductivity and the permittivity depend on 
the order in which the frequency and temperature tend to 
zero and the Fermi level tends to the center of the band. 
For a half-filled band, i. e., at E =0, the conductivity has 
a finite value in the low-temperature limit, and the per- 
mittivity increases infinitely with decreasing frequency. 
In the case when the Fermi level does not coincide with 
the center of the band, i. e., at c #0, the static conduc- 
tivity is equal to zero and the dielectric constant in- 
creases without limit a s  the center of the band is  ap- 
proached. 

If the forward scattering amplitude is finite, then the 
singularities become smoothed out, but in the case of a 
metal with a half-filled band, an anomalous temperature 
dependence of the thermodynamic and kinetic character- 
istics should be observed. In the model considered we 
have neglected the interelectron interaction, and there- 
fore the results obtained are valid for temperatures 
above the phase-transition temperature. Our analysis 
was carried out for a one-dimensional conductor. The 
growth of the localization lengths as the Fermi level 
approaches the center of the band should reinforce the 
three-dimensionality effects due, for example, to the 
finite amplitude of the jump of the electron from fila- 
ment to filament. Even i f  the indicated amplitude is 
small, one can expect that at sufficiently low tempera- 

tures a quasi-one-dimensional conductor with half-filled 
band will behave like an anisotropic metal. With in- 
creasing temperature, the localization length of the elec- 
trons participating in the conductivity will decrease be- 
cause of the deviation of the electron energy from the 
center of the band, as a result of which the conductivity 
of the metal will decrease. This influence can be re-  
garded as a particular case of Anderson localization of 
the electrons-the localization is the result of compe- 
tition between the amplitude of the jump from filament 
to filament and the amplitude of the random potential on 
the individual filaments. In this case all the electrons 
should be divided, in accordance with their energy, into 
delocalized (close to the center of the band) and localized 
ones. The energy width of the region of the delocalized 
states should be of the same order as the width of the 
electron band for motion in transverse directions. 

In conclusion, the authors thank L. P. Gor'kov,. 0. N. 
Dorokhov, and E. I. Rashba for very useful discussions. 
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