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The amorphization of a crystalline ferromagnet with anisotropically distributed exchange parameters is 
investigated. The amorphous ferromagnet is treated in the framework of a lattice model with fluctuating 
exchange couplings. With the use of the single-site approximation in the coherent-potential method, 
equations are found for the parameters of the coherent exchange matrix by means of which the magnon 
states of the amorphized ferromagnet are described on the average. The case of the arnorphization of a 
quasi-two-dimensional ferromagnet with intraplanar (Jo) and interplanar (KO)  exchange parameters when 
the exchange interactions become isotropic is investigated. The coherent exchange parameter and the 
modified density of magnon states are found by using a distribution function corresponding to the mixing 
of the Jo and KO couplings on amorphization. It is shown that the Curie temperature increases 
substantially on amorphization of a quasi-two-dimensional crystal. 

PACS numbers: 75.5O.Kj, 75.30.Et 

1. INTRODUCTION 

The problem of magnetic order in amorphous mate- 
rials was raised by ~ubanovl'l and has undergone con- 
siderable development since then. Important results 
have been obtained in the papers of  andr rich,^'' Mont- 
gomery et ~ l . , ' ~ '  Foo and ~ose, '"  Gubernatis and Tay- 
lor,"] and others. A characteristic feature of these 
theoretical papers i s  that they treat magnetically and 
structurally stable systems of the cubic-ferromagnet 
type. In the crystalline state, such substances a re  char- 
acterized by only one exchange-coupling parameter, the 
magnitude of which is fixed over the whole crystal. The 
amorphization of such crystals is accompanied by the 
appearance of fluctuating exchange. Therefore, the re-  
sults of the aforementioned papers reduce principally to 
a decrease of the magnetization and Curie temperature 
T, of the ferromagnets as they become amorphous. An 
important aspect is that the ferromagnetism can disap- 
pear completely when the exchange fluctuations reach a 
certain critical size.'" For this class of substances the 
existing experiments basically confirm the theoretical 
ideas .'"'I 

It has been postulatedCQ1 that the strongest effects will 
arise in the amorphization of magnetic crystals whose 
magnetic structure is determined in an essential way by 
the geometry of the distribution of exchange couplings. 
Such a situation obtains, e. g., in quasi-low-dimensional 
magnets. The description of such magnets requires the 
introduction of at least two different exchange parame- 

ters. The type of magnetic order and the temperature 
of the magnetic phase transition in quasi-low-dimension- 
a1 magnets a re  determined by the weak exchange that 
couples the magnetic chains o r  At the same 
time, the same characteristics of the amorphized sub- 
stance are  more likely to be determined by a certain 
averaged exchange. Consequently, i t  is reasonable to 
expect that the amorphization of quasi-low-dimensional 
systems can lead to both a change in the type of magnet- 
ic order and a sharp increase in the temperature of the 
magnetic phase transition. Of course, the traditional 
effects of amorphization will remain,"' but in a number 
of cases their role becomes secondary. 

The most important consequence of the amorphization 
of a substance i s  the disappearance of the periodic crys- 
talline structure. This i s  the reason why the theoretical 
description of the magnets encounters great difficulties 
of a fundamental character. Because of the absence of 
translational invariance in the amorphous substance, 
the traditional methods developed in the theory of solids 
for perfect crystals do not work. 

For an approximate description of the properties of 
an amorphous substance we can start  from the assump- 
tion that, after averaging over all possible realizations, 
translational invariance is re-established on the aver- 
age. The substance can then be described in terms of a 
certain ideal crystal with certain effective parameters. 
The procedure for averaging over the realizations should, 
in the general case, take into account fluctuations of the 
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atomic positions and of the parameters describing the 
interaction in the system. in addition, it should take 
into account in a self-consistent manner the fluctuations 
of the thermodynamic quantities. However, because of 
the absence of sufficiently rigorously substantiated aver- 
aging methods, this problem is exceptionally difficult. 

An amorphous ferromagnet (FM) can be described by 
means of a simpler lattice model, in the framework of 
which the amorphous FM is described by a Heisenberg 
Hamiltonian on an ideal crystal lattice with fluctuating 
exchange parameters. This model has been used in a 
number of papers,cb51 and Foo and ~ o s e ~ "  have used 
the coherent-potential approximation (CPA) to investi- 
gate the ground state of an amorphous FM as a function 
of the magnitude of the exchange-parameter fluctuations. 

In the present work an attempt is made to describe 
some of the properties of an amorphous FM that has 
arisen from an FM with anisotropically distributed ex- 
change couplings. We consider, as  a general case, the 
amorphization of a cubic crystal with three different ex- 
change-coupling parameters. The results obtained are 
then applied to the more particular case of the amor- 
phization of a quasi-two-dimensional FM. The latter is 
described by two positive exchange parameters (for 
nearest neighbors), Jo and K, where Jo i s  the exchange 
parameter in the xy plane and KO is the exchange param- 
eter along the z axis, with Ko/Jo=Xo<< 1 for a quasi- 
two-dimensional crystal. Using the lattice model and 
the CPA, we show that on amorphization of a quasi-two- 
dimensional FM the Curie temperature can increase (in 
contrast to the case of the decrease of T, on amorphiza- 
tion of an isotropic FM), and that for small values of Xo 
this increase can be very large. Although there are no 
data on the amorphization of quasi-two-dimensional FMs 
at the present time, the experiment of Ref. 9 shows that 
on the amorphization of the planar antiferromagnet 
Bi2Fe40, the Nee1 temperature increases. The presence 
in an amorphized antiferromagnet of negative and fluc- 
tuating exchange parameters leads to certain difficulties 
even in the description of the ground state, and so the 
rather simpler problem of the amorphization of an FM 

where the h, are the vectors linking nearest neighbors 
in the directions i =x, y,z. In the case of a quasi-two- 
dimensional crystal, A: =A! = J, and A: = K,. We shall 
confine ourselves to treating the case when the fluctuat- 
ing exchange parameters 4, > 0, so that the FM criteri- 
on is  fulfilled. 

Since an exact solution of the problem is absent, even 
for an ideal isotropic FM with the Hamiltonian (I), we 
shall make use of the random-phase approximation (RPA) 
which corresponds to Tyablikods decouplingcl" in the 
linearization of the equations of motion for the spin- 
deviation operators. We represent the model Hamilto- 
nian that reproduces these equations of motidn in the 
form 

where bz and bf are  Pauli operators, and az =2 (Sf)  =1 
- 2( bibz). For an ideal FM, because of the translation-. 
a1 invariance, at = a  does not depend on the site label. 
In an amorphous FM this situation occurs strictly at T 
= O  only, when all az = 1. With increase of temperature, 
because of the fluctuations of the exchange parameters, 
the spin deviations that arise are distributed nonuni- 
formly, and at low temperatures the spin deviations will 
arise primarily in those regions in which the minimum 
A,, are realized. However, because of the exchange 
coupling and the random nature of the fluctuations, the 
spin deviations a re  spread over the whole substance. 
Bearing this spread of the spin deviations in mind, we 
can assume that az = a for an amorphous FM too, i. e., 
we can assume the relative magnetization o=a(T) to be 
a self-averaging thermodynamic quantity. 

We shall describe the amorphous substance as an ef- 
fective translationally invariant medium in which the 
exchange interactions between nearest neighbors are 
realized by a certain self-consistent (coherent) exchange 
matrix AC(f - m). A way of determining AC is given be- 
low. Introducing fluctuations away from the coherent 
matrix: 

is considered here. A,=Ac(f-m) + [Af,-A"(f-m) ] = A S ( f - m )  + E l m  (4) 

2. THE EFFECTIVE HAMILTONIAN. THE COHERENT- and using (3)7 we find 

POTENTIAL APPROXIMATION H f m = o [ P ( f - m )  +V1,], 

In accordance with the lattice model, we shalldescribe ~ ( f - m )  = 8 , x  Ac( f -n)  -Ac-(f-m), ~ 1 ~ = 6 f ~ x  S I . - S I ~ .  (5) 
an amorphous FM by a Hamiltonian with fluctuating ex- 
change parameters 4, that are  nonzero for nearest We shall define the two-time temperature Green 
neighbors only: function and its Fourier transform by the relations 

(1 
+- 

~ , . ( t )  =-ie( t )  < [ b , ( t ) ,  b.+(O) I ) , ,  Gm.(E) = I dt e'"G-(t), (6) 
-- 

For simplicity we consider a simple cubic lattice with where (. . denotes statistical averaging with the Ham- 
z =6 and s=+. iltonian (3) in the approximation (5). From (3) and (5) 

With an ideal crystal, in the general case, we can follows the equation 
associate a translationally invariant exchange matrix 

I AQ, if h-B, 
Ao(f-m) =Ao(h) - A:, if hsh, ,  

A;, if h-h., 

(2) 
I 

which has the matrix form (a= E/a, i is the unit matrix) 
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The zeroth approximatizn corresponds to the trans la- 
tionally invariant matrix HC and is  described by the 
Green function 

which, in the site representation, has the form 

where the dispersion law of the spin waves is expressed 
in terms of the coherent matrix AC: 

The solution of (8) can be represented in the form 

A 

where the scattering matrix T obeys the equation 

In the description of the amorphous substance we can 
use only averaged characteristics. We denote averaging 
over realizations (configurational averaging) by the sym- 
bol (. a). Averaging (12), we obtain 

where (c) describes the single-particle properties of 
the effective translationally invariant crystal which, on 
the average, reproduces the amorphous substance. The 
value of the T-matrix (iis ~ a t r i x  eleeenis) depends on 
the choice of AC, i. e., T = T [AC], or  T = T [GC]. In ac- 
cordance with the ideas of the CPA, the coherent ma- 
trix AC can be found from the condition 

Thus, in this approximation the amorphous substance is 
modeled by an ideal cryztal whose properties a re  de- 
scribed by the function Gc. The physical meaning of 
Ac(h, 62) is that it is the self-consistent exchange matrix 
that ensures, on the average, zero scattering of spin 
waves with the dispersion law (11) by fluctuations. 

If the coherent matrix AC has been found, the spin- 
wave density of states gc(62) corresponding to the dis- 
persion law w c k ,  a) can be expressed in terms of the 
imaginary part of the Green function: 

To investigate the self-consistent equation for u = u(T) 
it is convenient to return to the previous variable E =an. 
Then, 

The equation for a has the formcfi1 

l/a=1+2P.(o), 

where 

+c 

P,(o) = J ~ E  f ( E ) ~ ~ ( E ;  o )  f (E)  = (eEIT-l)-L,  
-- 

and makes it possible both to investigate the low-tem- 
perature behavior of a and to estimate the Curie temper- 
ature. 

3. THE T-MATRIX AND THE APPROXIMATION OF 
INDEPENDENT PAIR FLUCTUATIONS 

Because of the absence of translational invariance, 
we cannot write the solution of Eq. (13) for a T-matrix 
with dimensions NXN in explicit form (because of the 
enormo,us :ipe?si;ons of the matrices, the symbolic so- 
lution T = V(I - G'v)" is not visualizable and is useless 
for practical calculations). To elucidate the structure 
of the T-matrix, using the definition (5) we write the 
fluctuation matrix V in the form 

where the summation is taken over all pairs a of near- 
est neighbors. The partial fluctuation matrix 6,, cor- 
responding, e. g., to the nearest-%eighbor p$r a = (f,m), 
is represented in the form 6, = [,I,, where I, is a ma- 
trix of dimensions NX N in which only the followi'ng four 
matrix elements are nonzero: 

( i r ) m m = ( L ) ~ f ~ - c i , ) t m = - ( f ) m t = ~ ,  a=(f, m). (18) 

Using (17), we write (13) in the formcu1 

A 

For Q ,  it is easy to obtain the representation 

where fa is the partial scattering matrix for scattering 
by fluctuations of the exchange parameter for the near- 
estneighbor pair a: 

&=v,(1-&0;~) - I ,  (21) 

and the sum in (20) takes multiple-scattering effects into 
account. 

Iterating (20), we obtain the following representation 
for the T-matrix: 

To find (?) we average the expression (20); we then ob- 
tain 
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A radical simplification of the problem of calculating 
(!?) is achieved by assuming that each fluctuating cou- 
pling between nearest neighbors can be regarded as in- 
dependent of all the others. Neglecting, in this approxi- 
mation, the second term in (23), which takes into ac- 
count the effects of multiple scattering and correlations 
of flu~tuations,'"~ we obtain 

Because of the statistical independence of the individual 
scatterers the r\equirement (14) is satisfied when 

for all pairs cr, and corresponds to the single-site ap- 
proximation in the coherent-potential m e t h ~ d . ~ ~ ~ ' ~ * ~  

A 

,Using the explicit formA of the matrix 6, = 5 ,  l,, from 
the relation (21) we find t ,  for any pair of nearest neigh- 
bors (a = (I, m)): 

where G& = G&, = Gi and. t fm =4, -AC(f - m), in accor- 
dance with (4). 

The structure of the coherent matrix is not given a 
Primi and should be found self-consistently as a function 
of the degree of amorphization of the substance from 
the conditions (tnwbm) = O .  Since the configurational 
averaging restores the translational invariance, 

1 
(t.+.-) =- 

N C tl+h..=f (h) ( 

i. e., in the general case, the average can depend only 
on the direction of the vector h linking the pair of near- 
est neighbors. The summation in (27) means, in effect, 
summation over all fluctuations of the exchange parame- 
ter  in the direction specified by the vector h. 

To perform the configurational averaging explicitly we 
introduce the distribution functions p. (A) of thefluctua- 
tions of the exchange parameters in the directions i 
=x, y, z. When all three distributions a re  different, 
which corresponds to inequivalence of the distributions 
of exchange couplings along x, y, and z, it is reasonable 
to assume the existence of three coherent parameters 
Af =AC&). In this case, from (25) and (26) we obtain 
three equations for the self-consistent determination of 
Af: 

When a quasi-two-dimensional crystal becomes amor- 
phous the equivalence of the distributions of the exchange 
couplings along x and y is preserved, i. e., & = p Y = PL. 
From symmetry considerations it follows that G g  =GG, 
and we have two equations: 

for the determination of two coherent-matrix parameters: 
A: &A: B J, and = K c .  Here, 

The characteristics of the original quasi-two-dimen- 
sional crystal can be obtained from (29) using the dis- 
tribution functions corresponding to zero degree of 
amorphization: 

pLO ( A )  =G (A-lo), p,O ( A )  =G (A-KO) . (30) 

If the amorphization of the quasi-two-dimensional 
crystal leads to the result that its exchange properties 
become isotropic, i. e., pl =p ,=p  and GiX=Ggy =Gg, we 
have the equation 

A-I. 
1-2 (A-I.) (Goc-GiC) 

dA=O 

for the determination of the one coherent parameter J,  
=Kc =Ic .  Here, 

The equation (31) coincides with the result of Foo and 
~ o s e . " ~  

4. THE ISOTROPIC SOLUTION FOR FLUCTUATIONS 
WITH A 6-FUNCTION DISTRIBUTION 

It is obvious that the average characteristics of an 
amorphous substance modeled by an ideal crystal will 
depend in an essential way on the distribution functions 
pi of the exchange-parameter fluctuations. 

Foo and ~ose ' "  considered the isotropic case with the 
fluctuation distribution function 

where I. is the exchange parameter of the ideal isotropic 
FM and A is  the range of its fluctuations. As an exam- 
ple, we shall consider another ideal case for the distri- 
bution function and assume that the fluctuating exchange 
parameter can take only the two values Jo and KO corre- 
sponding to the original quasi-two-dimensional ideal 
crystal: 

Here; PL(Jo) and P,( Jo) are  the possibilities of the ap- 
pearance of a Jo coupling in the plane and along the z- 
axis, PL(Ko) and P,(Ko) a re  the corresponding probabili- 
ties of the appearance of a KO coupling, and Pi  (Jo) +P i  (K,,) 
= 1. Thus, we consider a model in which the amorphiza- 
tion of the quasi-two-dimensional FM leads only to mix- 
ing of the exchange couplings KO and Jo, without any 
change in their values. Taking the latter into account 
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does not lead to fundamental changes in the results, so 
long as the changes in the values are not too great. 

In the framework of the given model, the degree of 
amorphization of the substance can be characterized, 
e. g., by the ratio P,(Ko)/P,(Jo) = 7. Since the total 
number of both the Jo and the KO couplings is conserved, 
the parameter q will define the degree of amorphization 
uniquely. Thus, for 9=0  we obtain the distribution (30). 

In the isotropic case we have the distribution function 

p (A )  ='Is8 (A-lo) +'/&(A-Ka), (33) 

since there are twice as many Jo couplings as KO cou- 
plings for the crystal under consideration. The follow- 
ing analysis will be devoted to precisely this case. Us- 
ing (31) and (33), we obtain 

where 

We shall characterize the degree of quasi-two-dimen- 
sionality of the original ideal crystal by the ratio Ko/Jo 

, =Ao. For Xo = 1 we have an ideal isotropic crystal with 
the spin-wave dispersion law wo@) =6 Jo(l - y3. The 
properties of a ferromagnetic crystal describable by the 
coherent exchange parameter I,(n) will be considered 
in relation to those of an FM with exchange parameter 
Jo. We note that, in the framework of the model used, 
the amorphized isotropic FM could be characterized by 
an average exchange parameter T = 2 Jo /3 +KO /3. How- 
ever, such a description is crude, although it does take 
into account the tendency of the Curie temperature to 
increase on amorphization of the quasi-two-domensional 
FM. 

We introduce some notation: Wo = 6 Jo is the half-width 
of the spin-wave band of the ideal isotropic FM, w =a/ 
Wo, I, /Jo = x is the dimensionless coherent exchange pa- 
rameter, and ck = l - yk. In these variables, Eq. (34) 
for x becomes 

If go(&) is the density of states corresponding to the dis- 
persion law ck for the ideal FM, the left-hand side of 
Eq. (35) can be written .b the form 

where z(o) =w/x(o) and Go(z) is the Green function of 
the ideal FM: 

It is convenient to choose x as the independent vari- 
able, i.e., toassumethat w=wCx) andz=zCz)=wQ/x. 
In the new variables, Eq. (35) takes the form 

Having determined the dependence z =zQ from (36) we 
can find w (x) =xz 0; the coherent potential as a function 
of w is  the inversion of w(x). 

In the general case we can assume that the coherent 
parameter has real and imaginary parts, i. e., x(w +iO) 
=xl(w) -ix,(o). Then the density of states is equal to 

We shall start by imagining that the imaginary part 
of x(w), responsible for the damping of the spin waves, 
goes to zero. Indeed, the CPA corresponds to the ap- 
proximation of an ideal crystal with a self-consistent 
exchange parameter that ensures zero scattering on the 
average. In this case 

where the modulus sign can be omitted, since x(w) 
E LAO, 11. 

To calculate x(w) we shall use the approximation of 
an elliptical band for the density of states, correspond- 
ing to the dispersion law wo@) =6 J&k =  WOE^: 

7 [9(2W0 - Q)1'", Od 9 < 2Wo 

0 outside this interval 

This approximation correctly reflects the character of 
the behavior of the true density of states at the bottom 
and top of the band but does not take into account the 
van Hove singularity. In dimensionless variables, on 
the basis of (38) we obtain the following expression for 
Go(z) in the interval 0 Gz c 2: 

Treating the left-hand side of Eq. 436) in the princi- 
pal-value sense and using the expressions (35) and (391, 
we find the solutions of (36): 

Real solutions correspond to the region xl cx  1 (the 
physically accessible range of variation of the coherent 
parameter is  [ A. , 1] ), where xi-the positive root of the 
equation C(x) =0-is the minimum value of x: 

The value of the coherent parameter at w = O  i s  easily 
found from (35) and corresponds to z = 0: 
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1 FIG. 1. Behavior of the di- 
I mensionless coherent param- 
I eter x=ZJJo as a function of 
I w = n/wo. 
1 
I 

The solutions x(o) for different values of the parameter 
Xo are  presented in Fig. 1. 

The densities of the spin-wave states are  depicted in 
Fig. 2. The boundary point of the spectrum for an FM 
with a coherent parameter is determined by the relation 
z (x,,,,) = 2 or 2 Wc /x(2 w,) = 2. 

The equation (16) for u(T) is conveniently rewritten in 
terms of the dimensionless variables 

v=E/W,, o=BIW,=v/o, r=TIWo.  

We have 

1 
- =1+2 j 8. (v)  f (v )  dv, 

where 

1 
&(v)= - 

Regarding z = v/ux as the independent variable (x  =x(z), 
v =azx(z)), we bring the equation to the form 

1 
-= i+2~g , ( z ) f ( axz )  1+-x dz. ( 3 (40) 

In the low-temperature case, when u is close to unity, 
Eq. (40) can be solved by iterations, by substituting the 
value u = l  into the right-hand side of the equation in the 
first step. Taking into account that only the low-energy 
part of the spin-wave spectrum is important in this tem- 
perature region, we can put gob)"  (2s18/r)z112; then, 

1 u'" du m - 7'/~ - - 
jgo(z),(axz) ( I  +$)dz  n j [ x ( T u ) I ~ ~  e"-I ' (41) 

From (41) and (40) there follow the Bloch r3Ie law for 
the low-temperature magnetization of an ideal FM (XO 
= 1, x = 1) and the small corrections (a r5Ie) to it that 
arise from the frequency dependence of the coherent 
parameter for Xo< 1. 

To estimate the Curie temperature it is convenient to 
represent Eq. (40) in the form 

Inasmuch as q- 0 as r- rc = Tc / Wo, and 

02.2 2r cth- m - 2r , 2f(axz) = - 
27 azz axz 

for mz/2<<<1, from (42) we find 

Thus, the expression (43) gives an estimate of the 
Curie temperature T ?(Ao) = rC(XO) Wo of the isotropic 
FM obtained as a result of amorphization of an ideal 
quasi-two-dimensional ferromagnetic crystal with ex- 
change parameters KO and Jo with ratio A,. In the limit- 
ing case Xo = 1 (the original crystal is an isotropic FM 
with exchange parameter Jo), in the framework of our 
model the crystal does not change its properties (x = 1) 
and (43) goes over into the well-known expression for 
the Curie temperature of an ideal isotropic FM: 

Tco-~c%'o, 

where 

For the density of states (38) that we have used, the 
integral is equal to 2 (for the true density of states, the 
value of the integral is 1.51 'll'). The ratio of the Curie 
temperatures of the'amorphous and ideal FMs is equal 

It is  convenient to compare the expression obtained 
for T T h o )  with the result of ~ines ' '~ '  for the Curie tem- 
perature of an ideal quasi-two-dimensional ferromag- 
netic crystal, also obtained in the spin-wave approxima- 
tion: T'cd(Xo) =a(&) Wo. The function a(&) (we do not 
give its explicit form) vanishes as Xo- 0 in agreement 
with the theorem of Mermin and wagner'15' on the ab- 
sence of magnetic order in one- and two-dimensional 
spin systems, and = 1) = r:. In Fig. 3 we give Lines' 
result for T Ld(Xo)/~ O, (curve 1) and our result (44) (curve 
2). The relative increase T P(A,)/T Ld(Xo) of the Curie 
temperature on amorphization of a quasi-two-dimension- 
a1 ferromagnetic crystal is depicted as a function of Xo 
by the curve 4. If we uscthe approximation of an aver- 
age exchange parameter I =KO /3 + 2 Jo/3, the corre- 
sponding C g i e  temperature of the amorphized FM will 
be equal to TC(Xo); the ratio Tc(X0) /TO, = 2(1 +iX0)/3 
corresponds to the curve 3. 

5. CONCLUSIONS 

Thus, the CPA method can be used rather effectively 
in the analysis of the problem of the amorphization of 

FIG. 2. The density of spin-wave !::h states: 1) the true density of 
states for the dispersion law %; 

* .a 2) approximation of the density of 
44 states by the function go(w); 3) the 

density of states gJw) =go[o/lc(w)l/ 
42 dw) .  

a 1 ro 2 
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0 Q2 O$ fl6 &8 1 Lo 

FIG. 3. Curve 1) the ratio T ~ ( % ) / T $  of the Curie tempera- 
tures of ideal quasi-two-dimensional and isotropic ferromag- 
netic crystals according to ~ i n e s [ ' ~ ] ;  2) the ratio T F ( ~ ~ ) / @ ~  
of the Curie temperatures of the amorphous isotropic and ideal 
isotropic ferromagnets; 3) the ratio Tc(ho)/T$of the Curie 
temperatures of the amorphous isotropic FM (in the approxi- 
mation of an average a and the ideal isotropic FM; 4) relative 
increase T c ~ ~ ) / T $ ( ~ )  of the Curie temperature on amor- 
phization of a quasi-two-dimensional FM. 

ferromagnets with anisotropically distributed exchange 
couplings, such as  quasi-two-dimensional magnets. 
We have shown, e. g., that the amorphization of a quasi- 
two-dimensional FM leads to a substantial increase of 
Tc, especially for small values of the i n t e r p h a r  ex- 
change. In real substances we must, of course, also 
take into account the decrease of the quantities KO and 
Jo themselves, which leads to a certain lowering of the 
curve 2 in Fig. 3. F01" example, for Xo =l  the ratio 
T ?/T will be less than unity. However, the results 
are  not qualitatively changed. A similar remark can 
also be made concerning the magnetization of an amor- 
phous FM. It is clear, of course, that the amorphiza- 
tion of a quasi-one-dimensional FM is not qualitatively 
different from the case considered. As already stated, 
the situation is considerably more complicated in the 
case of amorphization of quasi-two-dimensional anti- 

ferromagnets. However, we may expect that for small 
values of IX,I the amorphization of systems with Jo>O 
and Ko<O can lead to ferromagnetism with a relatively 
high Tc. In view of the fact that quasi-low-dimensional 
magnets constitute a broad class of magnets, we may 
suppose that their amorphization could turn out to be an 
important way of obtaining new magnetically ordered 
substances. 
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Contribution to the theory of electromechanical forces in 
metals 

M. I. Kaganov and V. B. Fiks 
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Zh. Eksp. Teor. Fiz. 73, 753-760 (August 1977) 

A mechanism is considered for production of electromechanical forces caused by electric current and 
concentrated near crystallite interfaces. The order of magnitude of the forces is ascertained for simple 
models of the interface and of the dispersion law. 

PACS numbers: 73.40.Jn 

An electric field E applied to a metal produces an the external field, acting on the ions of the "skeleton" 
electron current and motion of lattice defects: atoms, of the metal, a r e  exactly compensated by the forces 
dislocations, inclusions, grain boundaries. It does not produced on scattering of the electrons in the lattice 
disturb the mechanical equilibrium of an ideal crystal (the electronic windc"). The observable manifestations 
lattice. This is a dynamic equilibrium: the forces of of the force of the electronic wind depend on the mech- 
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