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We consider the one- and three-dimensional problems of plasma heating taking nonlinear effects into 
account. We study in the oned i i s iona l  cape the buildup of Langmuir solitons due to dissipative 
slowingdown, we obtain the way the spectrum develops in time in the constant pumping regime, and we 
investigate the self-similar electron heating regime. We consider in the three-dimensional case the effect of 
nonlinear conversion of the Langmuir oscillations into sound on the plasma heating when acoustic collapse 
takes place. We estimate the maximum extent of the inertial range corresponding to such a regime. We 
obtain the self-similar electron distribution for heating due to nonlinear conversion. 

PACS numbers: 52.H).Gj, 52.35.M~ 

In connection with the problem of the heating of a 
plasma target by powerful beams of light or  of relativ- 
istic electrons, the heating of a plasma under strong 
Langmuir turbulence conditions has recently been 
studied intensively (see, for instance, Refs. 1 to 5). In 
those papers the main subject of the study was the res- 
onance mechanism for the formation of hot electron 
"tails" and the influence of non-linear effects was not 
taken into account, although the role of non-linear dis- 
sipation in the dynamics of Langmuir solitons had been 
studied earlier.c1*61 Only the recent paper by Galeev 
et a1 .C71 drew attention to the non-linear conversion pro- 
cess of Langmuir waves into sound which under condi- 
tions of constant pumping i s  generated when collapsing 
solitons are  This process is the main one 
in a typical three-dimensional problem; in the one-di- 
mensional case, and also under conditions of adiabati- 
cally slow damping of a collapsing soliton,[s1 the sound 
produced cannot guarantee conversion-in that case the 
process of the slowing-down of the solitons by trapped 
particlesc1] comes into play and it can, in particular, 
determine completely the structure of the wave spec- 
trum .C6 ] 

The aim of the present paper is the study of the de- 
tails of the heating of the particles under conditions 
when the dynamics of strong Langmuir turbulence is es- 
sentially determined by the non-linear dissipation, as 

1. STRONG ONE-DIMENSIONAL TURBULENCE. 
SOLITON BUILD-UP REGIME 

We consider a one-dimensional model of strong Lang- 
muir turbulence which i s  a set of Langmuir solitons- 
localized non-linear Langmuir waves JS1 The frequency 
of the oscillations of the solitons is close to (0,. 

Characteristic parameters are: amplitude E, recipro- 
cal of the width ko =eE/J6T, and velocity v, 0 g v <cS. 
The spectral expansion of the Langmuir soliton field has 
the form 

It is well known that an isolated Langmuir soliton is a 
stationary and stable structure. Therefore, the trans- 
fer of energy from large to small dimensions which is 
characteristic for the strong turbulence regime pro- 
ceeds in the case of not too powerful pumping through 
the fusion of solitons which a re  close in size>lol As 
solitons with appreciably different amplitudes do not 
interact, the transfer can only take place in relays. In 
the hydrodynamic approximation a steady-state soliton 
amplitude distribution is established 

well as  the determination of the conditions for the ex- and in the model with discrete levels E, =2E, we have 
istence of such regimes. We consider the one-dimen- accordingly for the occupation numbers N(E) 
sional case in the framework of the soliton-gas model, 
and the three-dimensional one in the acoustic collapse N(E)=const.E-',  
approximation, which to some extent distinguishes our 

(3) 

considerations from the ones in ref. 7. which gives the spectral energy density I E , ( ~ C  k'2. 
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The soliton-gas model with a relay transfer along the 
sizes is not unique. In particular, under the Cibnditions 
of a numerical experiment with simulation of plasma 
heating by an external oscillating field, two facts which 
distinguish the real regime from the model proposed in 
ref. 9 are very often encountered. 

a) Whereas we assume that in the above mentioned 
modelm1 that the phases of the solitons which constitute 

, the strong turbulence are random, in numerical experi- 
ments one sometimes observes a rigid phase correla- 
tion which leads to a more or  less regular structure of 
the turbulent pulsations (this regime was called in Ref. 
11 "dynamic turbulence"). Such a situation can indeed 
arise if during the pumping time dissipative effects do 
not succeed in developing; such effects are  weak plas- 
ma inhomogeneities or  other mechanisms which are suf- 
ficiently weak not to destroy the internal soliton struc- 
ture, but lead to a phase mismatch. Clearly, in the 
problem of phasma heating this regime, if it is realized 
at all, characterizes only the initial stage when one can 
neglect the interaction of the waves with the plasma par- 
ticles. 

We note also that the unavoidable idealization of the 
problem when we set up a numerical experiment is fre- 
quently connected with the introduction of additional 
regularizing mechanisms in consequence of which one 
must sometimes allow a re-evaluation of the universali- 
ty of the results. For instance, in the paper by Sudan 
et al.c'21 one finds a statement that for a not too strong 
pumping field E:<< 4rrnT the modulational instability 
leads to the formation of a system of standing and non- 
interacting solitons which is valid only for the case of a 
standing excitation wave and zero mismatch wo - o,, 
where wo is the pumping frequency. If, however, we 
consider the regime where weakly turbulent noise is ex- 
cited while later on solitons a re  formed from the plas- 
mon condensate and, in particular, pumping due to the 
beam instabilities, there is very little probability in 
that case for a regular structure of soliton turbulence. 

b) Another important difference from the model of 
Ref. 9 occurs in the problem of pumping with a rather 
strong external field so that the interaction with the lat- 
ter  directly leads to the appearance of solitons with an 
amplitude E - ( n ~ ) " ~  and, hence, resonance damping is 
switched on ("physical collapse"c131 or  "quasi-col- 
l i ~ s e " ~ l ~ 3 .  For weak pumping fields such an interaction 
leads merely to oscillations in the soliton amplitude, C4 

but in the opposite case of a large amplitude 

the solitons transfer, indeed, efficiently the energy to 
thermal particles. Condition (4) corresponds to a very 
considerable pumping power Q 

Even, if inequality (4) is not satisfied, a s  the elec- 
trons are heated the phase velocity corresponding to 
the dissipation region grows and "physical collapse" 
will be an efficient dissipation channel, at least in the 

final stage of the heating process. In the case of a 
beam instability the picture is somewhat different: when 
the soliton amplitude increases the pumping is auto- 
matically switched but We shall not make more 
precise in what follows the noise source, since we are 
interested in the case which is the opposite of (4')-the 
regime of slow pumping (see below). Since we consider 
moreover especially the heating process, effects con- 
nected with the correlations of soliton phases may also 
be neglected. Apparently, under such conditions the 
soliton-gas model with a relay transfer along the sizes 
is the best analytical description of strong Langmuir 
turbulence. 

If the non-linear kinetic effects are  taken into account 
in the framework of this model, the turbulence spectra 
can differ appreciably from (2),(3), as  was shown in 
Ref. 6. 

The main non-linear effect corresponds to the inter- 
action between a soliton and particles which are in 
resonance with the soliton velocity v, which leads to a 
slowing down of the soliton over a finite length.['] In 
particular, the interaction between ions and a soliton 
with a large amplitude (E2/8nnT>m/M) and a small 
velocity v <vT, leads to its slowing down over a length 
less than its width k:. Near the dissipation region 
(korD - 1, r, =v ,/o,) the Langmuir solitons can thus 
exist either with v = 0 or with v >> v ,, , which excludes 
the interaction with resonant ions. In the latter case 
the soliton velocity is clearly of the order of the ion 
sound speed c,. Just these fast moving solitons guaran- 
tee the energy flux along the spectrum. However, they 
also undergo a non-linear slowing down, but now due to 
resonance with the electrons; the characteristic mean 
free path is then 

If the average distance between solitons in the hydro- 
dynamic model is less than A,, the interaction is impos- 
sible. It was shown in Ref. 6 that such a situation 
arises for  a sufficiently weak specific pumping power 

In that case there occurs in the plasma, due to the 
pumping, a build-up of solitons with a given amplitude 
until their density exceeds Xi1 and only after this does 
the occupation of the next level in amplitude start. As 
a result we get the following stationary distribution of 
occupation numbers in the discrete level model: 

and a soliton-amplitude distribution function of the form 

which yields the following expression for the spectral 
density of the energy: 
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T ' A  gion-of the limit of the spectrum k,,. Hence it follows w.=~, ( 2 4 ~ ~ ~ 5 )  rD (k--k) : (') that the heating process can be described analytically. 

We denote by v, = o,,/k, the lower limit of the reso- while the total energy built-up in the standing solitons 
nance region in velocity space. From the equation equals 

Here and henceforth we omit the numerical coefficient and Eqs. (7), (8) we get 
8 - 1 which i s  unimportant for our estimates and we also 
assume that T,<< T,, which is quite natural in the strong ---- n u ,  f - f (u)dv a I 
Langmuir turbulence regime. at  voa 2 va . 

As we have already mentioned above, under weak 
pumping conditions [inequality (511 the transfer of ener- The second equation which we shall use is the equation 

of quasi-linear diffusion, which can, a s  the result of gy to the small-size region is possible only when the 
substituting in it the spectral density of the energy (7), 

levels with a given amplitude are  saturated. Hence it 
follows that the noise spectrum at each time will have be reduced to the form 

the form (7) and the rate at which the boundary of the a f - V A  a U-V,  af 
spectrum moves can be found from Eq. (8): --- 4nz)'6upi---- 

d t  v. a .  v2 a v '  
k,,,=r,-' ( Q ~ ! ? z ~ T Y ~  'Iz. (9) 

The set of Eqs. (11),(12) allows a self-similar separ- 
When, finally, the spectrum shifts into the small-di- ation of variables: 

mensions region to such an extent that an efficient par- 
f (u, t )  =@ ( f ) / V o ~ ,  7=41iZ&lpi t ,  

ticle acceleration starts, the build-up of a large quan- 
E=vlv., vo-v,.(&T) ". (13) 

tity of standing solitons in the plasma will cause the 
rate at which energy is acquired by the electron "tail" 
to be much larger than the one which might be guaran- In these variables Eqs. ( l l ) ,  (12) have the form 
teed by the pumping power Q. 

We trace how the noise spectrum in that case will 
evolve. For the sake of clarity we give the discussion 
in the framework of the discrete level model, a s  we 
have already d ~ n e . ~ ' ~ * ~ '  The generalization to the cause 
of a continuous soliton distribution F(E) does not pre- 
sent any particular difficulties. 

Let, thus, the maximum amplitude of the solitons at 
a given time equal Em,, let there further occur the 
levels $Em,, iE,, and so on. The damping of Lang- 
muir solitons when they interact with resonant particles 
corresponds to their "shifting" to a lower amplitude. 

Let, after some characteristic damping time, the 
solitons move from the level E, to the level +Em,, 
and next in turn to the level +Em,, and so on. One can 
see from Eq. (6) that there occurs then a two-fold 
supersaturation of each level and as  a result the inter- 
action between solitons is switched on and there occurs 
a fast "shedding" of the solitons-already in a smaller 
amount-back to the level Em,. If we moreover take it 
into account that for a monotonically decreasing elec- 
tron distribution function f (v) the characteristic damp- 
ing time decreases with increasing soliton amplitude, 
this gives additional arguments in favor of the above- 
described picture of the effect. 

In the heating process there occurs thus a continuous 
redistribution of energy between the levels so  that the 
distribution described by Eqs. (6), (69, and (7) is pre- 
served also in that case. The particle heating proceeds 
exclusively via a decrease with time of the number of 
solitons with maximum amplitude or, what i s  the same, 
via the motion-now already in the long-wavelength re- 

The number of resonant particles decreases with time 
like n, a?". In the region v <v0(7) the distribution func- 
tion must be stationary and at the same time satisfy the 
self-similar separation (13). A similar situation is de- 
scribed in Refs. 1,3. The only function of this kind 
which satisfies the joining condition at v =vo is 

w v t .  
f - ( ~ ) = @ ( l ) ~ .  

If we let in Eqs. ( l l ) ,  (12) formally the time tend to in- 
finity the solution (16) is established in the whole of 
velocity space. From the particle-number conservation 
law 

we get yet another normalization condition: 

f@ ( 5 )  d&='l.0 ( I )  . (17) 
1 

The solution of Eq. (14) for large 5 has the form 
9 - exp(-XS3/3), and for (5 - I)<< 1 we can get 

whence, using (17), the estimate X =  4 follows. Further, 
from condition (15) we find @(I)  =24n(6m/~) ' l~ .  We can 
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write the particle distribution function in the whole of 
velocity space as follows 

f (v ,  t)=64n.6)(6LcI.((rn/~) 

v-5, v c v ,  

exp [ -'/, (v/v0) > I r  vwv0, 
vo-5 exp[ -4 (u-u0) /volt  v - v , a ~ .  

where 

We note that the soliton build-up regime can be realized 
only whenCB1 

On the other hand, when constructing the solution we 
used the approximation dW/dt >Q, which gives 

If condition (19) is satisfied, inequality (20) adds a very 
weak restriction so that we may assume that the ap- 
proximation used by us is rather good under conditions 
when non-linear effects are  important. 

We note yet another characteristic property of the so- 
lution obtained. Although the distribution (18) contains 
a non-Maxwellian energy "tail," the total energy in- 
cluded in it is determined by small velocities and, 
hence, under slow pumping conditions, one can obtain 
an efficient energy contribution to thermal particles. 

2. PLASMA PARTICLE HEATING DURING LANGMUIR 
COLLAPSE IN THE NON-LINEAR DISSIPATION REGIME 

We consider the problem of plasma heating during 
Langmuir collapse. Let the pumping power be constant 
and equal to Q and let the modulational instability gen- 
erate N collapsing solitons per unit time: 

where 6, is the initial energy of a soliton and Q, the 
power dissipated through collapse, Q, c Q . The prob- 
lem of the quasi-linear dissipation of collapsing solitons 
and plasma heating during collapse has been considered 
before in the approximation of a constant particle flux 
in the generation regionc4] and in the self-similar re- 
gime>3s181 Characteristic for the latter case is the 
formation of an electron "tail" with a constant total 
number of particles, a number of resonant particles 
which decreases with time, and the tendency of the 
characteristic velocity vo(t) - oo. When v<< vo(t) the dis- 
tribution function has in that case a power-law charac- 
ter and is constant in time. The resonant particles 
carry at v 3 vo(t) about half the energy and guarantee 
completely the whole of the energy dissipation at a 
given time, that is, when their total number n,(t) tends 
to zero the quantity 

is c o n s e ~ e d ,  where y(t) is the damping rate and +(6) 
the collapse time for a given size 7 .  These results 
were obtained for subsonic supersonic, and sonicL161 
collapse modes. In our opinion, the latter is the best 
analytical model of the collapse when dissipation is pre- 
sent. 

In the hydrodynamic approximation the dynamics of 
the collapse is described by the set of Zakharov equa- 
tions: C'7 1 

aE + i ~ p ' D a ~ ~ )  3 - - 0.. div bd3, 
2% 

I 
" e.V2 6n = -V21El', ( -  i6nM 

where r = t - to, to is formally the time of collapse. 

It follows from the set (23) that for large amplitudes 
E2/8rnT >> m/M the collapse goes into the supersonic 
regime, when E2/8rnT >> 6n/%. A collapsing soliton is 
then characterized by a single size 6, and its main 
parameters a re  related through the following self-simi- 
lar 

This character of the collapse is on the whole con- 
firmed by numerical experiments, but it turned out that 
when dissipation is included the picture changes. It was 
shown in a numerical experimentc8] that a collapsing 
soliton, losing altogether 5 to 10% of its total energy, 
leaves the supersonic regime and its further evolution 
proceeds in such a way that &/no-E2/8mT. A correct 
mathematical description of the dynamics of the col- 
lapse in the dissipative regime is of considerable diffi- 
culty-there exists only the modification of the self- 
similar description proposed by ZakharovLB1 constructed 
for a power-law function y ( k ) .  Even for this particular 
case the separation of variables has a rather compli- 
cated form which makes it impossible to solve the prob- 
lem of plasma heating analytically. In the last case one 
is obliged to adopt simpler models. We consider two of 
those. 

a) One can simply neglect the effect of damping on 
the dynamics of the collapse-in this way the heating 
problem was solved in Ref. 4, and in Ref. 16 this model 
was considered together with the acoustic model in the 
framework of the time-dependent problem. In any case 
the model has a region of applicability for adiabatically 
slow damping of a collapsing soliton and this allows us 
to describe the asymptotic behavior of the electron 
"tails" as  v - oo . 

b) The *'sonic9' model, proposed by Rudakov (see, for 
instance, Ref. 2) explicitly takes into account the fact 
that 6na  E2 when there is damping. The separation of 
variables in the set (23) leads exactly to the same a s  in 
the supersonic regime, but in the second equation all 
terms are  of the same order, which leads to the follow- 
ing dependence for the modulation scale: 

The additional condition corresponding to taking all 
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terms into account in the equation for 6n leads to the 
fact that a collapsing soliton turns out to have two 
scales. The large scale is determined by the time-de- 
pendence of the number of quanta I E(r) 1 2dr. When 
there is no dissipation two-scale solitons are unstable 
with respect to division into single-scale ones that col- 
lapse according to the supersonic law.c181 However, 
damping inhibits also the development of this instability 
mode, as  it tightens the collapse regime; in any case 
the time of its development is not less than the collapse 
time itself. 

When solving the problem of plasma heating in the 
presence of collapse condition (22) plays an important 
role. It just determines the total number of accelerated 
particles and the function v,(t). Hence it follows that 
just the sonic model of the collapse gives a more cor- 
rect estimate for these quantities, since a collapsing 
soliton, according to that condition, is damped in a 
time of the order of collapse in such a way that i t  is im- 
possible to neglect the effect of damping on the dynam- 
ics. However, even before strong resonance damping is 
switched on, the soliton can collapse according to the 
sonic law if we take into account the non-linear dissipa- 
tion effect considered in Ref. 7 and the present paper. 

We shall use the sonic model of collapse, but for a 
comparison we give the results obtained in the frame- 
work of the supersonic model; it turns out that the basic 
qualitative results of that part of the paper are indepen- 
dent of the model of the collapse. 

It was shown in Ref. 8. that when strong damping of a 
collapsing soliton [in the heating problem this corre- 
sponds to collapse up to a scale 6 -v,(t)/w,] is switched 
on, the dissipation of the Langmuir waves is not accom- 
panied by the dissipation of their sonic envelopes-the 
density well in which the plasmons were trapped is pre- 
served and evolves further a s  a free sonic perturbation. 
Ref. 5 also drew attention to the formation of sound 
when collapsing cavitons are damped. The character- 
istic wavenumber of such sound corresponds to the final 
size of the caviton: 

meaning that the beats of the Langmuir and sound waves 
have a phase velocity close to v,(t), i.e., induced scat- 
tering of Langmuir waves into sound wavesc1g1 by elec- 
trons from the resonance "tailJ' is possible. This pro- 
cess was considered in Ref. 7 in the supersonic collapse 
approximation. We consider the problem in the frame- 
work of the sonic model, and in contrast to Ref. 7 we 
take into account the possibility that the collapsing soli- 
ton itself may be damped, and we establish the limits 
for the efficiency of the process and describe the non- 
linear heating of the electron "tail". 

Since sound waves in k-space are concentrated in a 
drop in scales of the order of unity we shall, as a rule, 
use not the spectral density W;, but the total energy 
density of the sound Wa. We note that the non-linear 
conversion process includes not only the re-emission 
of Langmuir waves into ion-sound waves, but also pair 
production and absorption of I- and s-waves. Using the 

standard methods of weak-turbulence theoryclgl we can 
confirm that these processes practically balance one 
another for sound which allows us to take only the pro- 
duction of sound by damped solitons into account: 

(dW8/dt)  + =N&, (k l rD)  ' 

and the linear damping ya = - k , ~ ~ ( r n / ~ ) ' / ~ .  Here 6, is 
the energy with which a collapsing soliton begins to get 
Landau-damped (owing to the same process of non-lin- 
ear conversion, 6, may be smaller than 6,). Using also 
(21) we get . 

The non-linear damping rate of Langmuir waves is 
(see,e.g.,Ref. 7) 

From (22) and (24) it follows that y(kf) =- kfca. The 
final expression for the non-linear damping rate takes 
the form 

One can easily write down an equation for the quantity E: 

where we have introduced the initial collapse scale 6, 
= kil and taken into account that the collapse time ~(6,) 
= (k,~,)". 

Finally we get 

We further consider the energy balance. Using the 
fact that the energy density of the Langmuir condensate 
is 

we can obtain the following relation between the power 
dissipated by collapsing solitons and the total pumping 
power: 

We first of all consider a regime when the whole of the 
pumping energy is dissipated by the collapsing solitons: 

In that case non-linear conversion may be appreciable, 
if E << 1. Using Eqs . (27),(29) we bring this condition to 
the form 

(30) 
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Substituting into (21) Q, = Q  we have 

Q-N8,-NnTrn2k,-'. 

The maximum number of solitons is determined by the 
condition of "dense packing" 

N/k.c.<kia. 

It follows from (31) and (32) that 

that is, for weak pumping the quantity k ,  may be inde- 
pendent (for instance, be determined by the boundary of 
the differential-transfer region), but when the power Q 
increases the mddulational wavenumber starts to change 
accordingly. It is thus impossible to satisfy condition 
(30). If 

non-linear conversion dissipates the power directly 
from the condensate: 

and from the collapsing solitons: 

but the main dissipation channel is Landau damping. 

Let now the main dissipative process be the non-lin- 
ear conversion directly from the Langmuir condensate. 
We have from (28) 

Substituting (34) into (27) gives 

We emphasize that in that case Q  >> Q, so that the right- 
hand side of (35) can also be much larger than unity. 
The condition under which the predominantly non-linear 
dissipation is realized is the opposite of condition (29 
and can be written in the form 

Even for weak pumping when the exponential on the 
right-hand side of (36) can be neglected, the inertial 
range turns out to be rather narrow. One can obtain the 
same result qualitatively also in the framework of the 
supersonic model of the collapse. Of course, it can be 
used only when t w 1. One can show that also in the 
supersonic case Eq. (35) remains valid. Using the con- 
ditions for the realization of the supersonic regime the 
calculations yield 

k ,  218 a Q 11, ->- 
k ,  (k,rD)'lv (El ( X I  

AS in the time-dependent problem of plasma heating 
during collapse the reaching of even relativistic veloci- 
ties is c o ~ e c t e d  with a relatively small total energy 
contribution, one can state that, starting with the 
quasi-linear regime, the heating process ultimately 
necessarily proceeds when v,(t) increases into the non- 
linear conversion regime. In this connection it is of in- 
terest to see how the "tail" parameters change in that 
case and, in particular, whether the number of accel- 
erated particles remains constant. 

One can write the non-linear diffusion tensor for our 
process as follows: 

In the same notation, the non-linear damping rate has 
the form 

We now use the fact that W 1 = ~ / y , , .  Substituting (38) in- 
to (37) we get the diffusion equation in a very simple 
f o m :  

a j  i a a f  
----u'D(u)-, at U I  a~ a~ 

$ u,u,' ( t )  

In the derivation of the diffusion coefficient (39) we used 
the fact that in the consistent problem the condition 
Y = - k f c ,  must be satisfied and the self-similar solution 
obtained must conserve this quantity. 

Strictly speaking, there still occurs in the diffusion 
coefficient the ratio 

which in the self-similar regime is a constant of the or- 
der of unity. 

Introducing the scaling variables 

and using the fact that 
8 

Q - zj fu'h-nr. 

we arrive at the following result: 
p-1, a=-4, 

56 Sov. Phys. JETP 47(1), Jan. 1978 A. S. Kingsep 58 



which corresponds exactly to the self-similar regime of 
resonance heating in sonic collapse .[I6 Such self - simi- 
larity, indeed, retains the condition y = -kfc,  which de- 
termines the total number of accelerated particles. The 
function vo(t)  is determined by the conservation law for 
energy and, hence, also is the same a s  the result of 
~ e f .  16. Only the asymptotic behavior of the solution 
for v>vo( t )  changes because of the fast decrease of D(v) 
with velocity: 

0 (',) aexp (-5')  when 5>1. (41)  

Other characteristics of the solution a r e  directly taken 
over from the quasi-linear problem: 

f, (u) =c,/vi, v<v,(t), 

The transition from the quasi-linear to the non-linear 
heating regime is t h s  a smooth one without .changes in 
the self-similarity law and retaining all  main parame- 
t e r s  of the electron "tail". 

It is interesting to note that this result is also con- 
served when one goes over to the supersonic collapse 
model. In particular, the results obtained in the quasi- 
linear approximation a r e  retained for the number of 
resonant particles and their characteristic velocities: 

The author thanks L. I. Rudakov for his interest in 
this work and for useful discussions. 
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