
magnetic field. The relaxation of the modulus to the 
equilibrium value occurs very slowly, with a charac- 
teristic frequency w N h / T r , .  Therefore, a sharp peak 
appears at this frequency in the imaginary part of the 
kernel describing the coupling of the current with the 
potential. At a current of the order of the critical val- 
ue, the imaginary part becomes of the same order a s  
the real one. Upon further increase in the frequency, 
dispersion develops in the kernel at wr,- 1, because the 
excitation distribution function relaxes to equilibrium 
with a characteristic frequency w - 72. 

There is a kink in the absorption of the high frequen- 
cy field at a frequency of w = 2 A. When the static cur- 
rent is turned on, a maximum is produced if the cur- 
rent i s  directed along the magnetic field of the wave. 
The maximum in the absorption near the frequency 
w = 2 A i s  connected with the large density of states near 

the threshold of single-particle excitations. The width 
of the peak in the absorption at low current density i s  
proportional to A( j/j,)413. 

'YU. N. Ovchinnikw, Zh. Eksp. Teor. Fiz. 59, 128 (1970) [Sov. 
Phys. JETP 32, 72 (1971)l. 

'A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 73, 
299 (1977) [Sov. Phy8. JETP 46, 155 (1977)l. 

'YU. N. Ovchinnikov, J. Low Temp. Phys. 28, 43 (1977). 
4 ~ .  Schmid and G. Schiin, J. Low Temp. Phys. 20, 207 (1975). 
%I. L. Yu and J. E. Mercereau, Phys. Rev. B12, 4909 (1975). 
'J. Clarke, Phys. Rev. Lett. 28, 1363 (1972). 
'B. Keck, and A. Schmid, Preprint, 1976. Institut fiir Physik 

der Univ. Dorhnund. 
'w. V. Budzinski and M. P. Garfunkel, Phys. Rev. Lett. 17, 24 

(1966). W. V. Ehdzinski, M. P. Garfunkel and R.  W. Marke- 
ley, Phys. Rev. B7, 1001 (1973). 

Translated by R.  T Beyer. 

Echo effect in metallic powders at low temperatures 
B. P. Vodop'yanov, V. A. Zhikharev, and A. R. Kessel' 
Kazan' Physicotechnical Institute, USSR Academy of Sciences 
(Submitted 20 June 1977) 
Zh. Eksp. Teor. Fiz. 74, 185-194 (January 1978) 

The response of metallic powder to two-pulse excitation by an RF field at low temperatures is investigated 
theoretically. The mechanism that produces the echo signals is assumed to be the anhannonicity of the 
sound oscillations generated by the electromagnetic field in the metal. The theoretical expressions derived 
for the echo-signal parameters are in good agreement with the experimental data of Kupca and Searle 
[Can J. Phys. 53, 2622 (197511. 

PACS numbers: 76.60.L.z 

Experimental observation of echo signals induced by 
a sequence of electromagnetic field pulses in powdered 
metallic samples in the presence of a constant external 
magnetic field has been reported in a number of 

A number of the properties of the observed 
signals (the presence of the effect only in a narrow in- 
terval of powder-particle dimensions, vanishing of the 
echo when the powder is placed in a viscous dielectric 
medium etc.) have made it possible for the authors of 
these papers to state that the echo is due to resonant 
excitation of acoustic oscillations in the metallic par- 
ticles. However, no theoretical calculation was made 
of the echo response for such systems. 

In the present paper we calculate theoretically the 
echo signals in powders of normal metals at low temp- 
eratures, i.e., in the case when w,T >> 1, where o, is 
the electron cyclotron frequency and r is the electron 
free path time. The onset of the echo is attributed to 
nonlinearity of the acoustic oscillations generated in the 
metal by the external RF fields. This nonlinearity i s  
assumed to be due to the lattice-vibration anharmoni- 
city, which is described by the fourth-order terms of 
the expansion of the free energy in the ion displace- 
ments [. The calculations a re  performed in the "local" 
limit qv,/w,<< 1, where q is the wave vector of the 
sound wave and v, is the Fermi velocity. 

The metallic powder i s  a set of particles of irregular 
shape passed through a sieve to make their linear di- 
mensions distributed, about a certain characteristic I , .  
The spectrum of the natural frequencies of the acoustic 
oscillations of each particles cannot be analytically pre- 
dicted, since the particles a re  of irregular shape. For 
an aggregate of such particles, however, it can be 
assumed that the set of powder frequencies covers in 
continuous fashion an interval O W ,  near some frequency 
I ,  which is connected with the dimension I , .  The elec- 
tromagnetic field of the pulse, if its carrier frequency 
w falls in the interval Aw,, excites inteqse oscillations 
of those particles whose natural frequency coincides 
with w. The echo response produced in the powder by 
the natural vibrations of the particles after turning on 
the external RF pulse is therefore also concentrated 
near the frequency o. 

The irregularity of the particle shapes makes it 
impossible to determine the analytic form of the vibra- 
tional modes, which is needed for the description of the 
echo. This makes it necessary to use a simple geo- 
metrical approximation of the powder particles. The 
metal powder will hereafter be regarded a s  an aggre- 
gate of parallelepipeds whose dimensions a re  randomly 
distributed about a characteristic dimension I , .  
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The approximation of the vibrational modes of a real  
powder by the simplest modes of a se t  of parallelepi- 
peds leads to numerical e r r o r s  in the echo-signal 
amplitude. Fortunately, such e r r o r s  a re  not substan- . 
tial, since in echo experiments one does not determine 
the absolute magnitude of the signal, but only i ts  func- 
tional dependence on the external parameters. An e r r o r  
of the same type is introduced also by the fact that no 
account is taken below of the dependence of the vibra- 
tional modes on the coordinates perpendicular to the 
wave vector. 

Another difference is that the natural frequencies of 
higher order in the parallelepiped a re  multiples of the 
fundamental frequency wo and excitation a t  the f requen- 
cies 2w0, 3w0, etc. is possible, whereas a particle of 
irregular shape cannot be resonantly excited a t  the 
multiple frequencies. This disparity does not influence 
the results of excitation if only the fundamental fre- 
quency i s  taken into account in the calculations. 

Thus, one can hope that the proposed model, in which 
the calculations can be carried through to  conclusion, 
yields a correct qualitative description of the echo phe- 
nomenon in metallic powder," notwithstanding i ts  crude 
character. 

The echo signals were excited with RF field pulses 
Hl(t) perpendicular to the constant magnetic field H,,. 
From among the considered aggregated of parallelepi- 
peds we separate those whose orientation corresponds 
to Fig. 1. In such a geometry there a re  excited in the 
metal transverse acoustic waves that propagate along 
the z axis and a re  due to the echo effect. 

2. The description of electromagnetic sound genera- 
tion in metals is  based on a simultaneous solution of 
 axw well's equations and the elasticity-theory equations 

here p i s  the density, t i  are  the components of the 
lattice-displacement vector, Ai,,,  is the elasticity 
tensor, f is the force exerted on the lattice by the . 

electrons, and j is the current density. Expressions 
for the force f were obtained in C4.51. In the "local" limit, 
for a sample whose orientation corresponds to Fig. 1, 
Eqa. (1) can be written in the formc6' 

Here Z e  and M a r e  the charge and mass of the ion, s 
is the speed of sound, T,, i s  the non-electronic damping 
of the sound, 9, is the cyclotron frequency of the ion, 
a, = uo/(l i iwcT), and a, = %e2?/nz is the conductivity of 

the metal. The quantity @ introduced in (2) is given by 

where D i s  the nonlinear modulus of elasticity and takes 
into account the anharmonicity of the lattice vibrations. 

It i s  required to obtain the solution of the system (2) 
in the region t > r,+ t, under zero initial conditions a t  the 
instant t = 0 and under boundary conditions correspond- 
ing to  a pulsed alternating field:" 

H"(0, t )  =H,(Z, t )  =O; 

H,(O, t )  =H.(L, t )  = H ,  cos ( o t + g )  ; 

at O G t G t , ,  ~ ~ G t < i ~ + t ~ .  (4) 

II.(O, t )  =H.(l, t )  =O at other instants of time. 

In the foregoing equation, T, is the interval between 
the pulses, t, and t, a r e  the pulse durations, and w is 
the frequency of the alternating field, with t,<< t ,  and 
t, << T ~ ,  where t ,=  l / s  is the time of passage of the wave 
through the sample. The system (2) will be solved by 
perturbation theory, with account taken of the smallness 
of the nonlinear terms @. 

3. We consider the linear approximation. The field 
Hl(t) incident on the surface z = 0 generates acoustic and 
helicon waves that propagate into the interior of the 
metal. The corresponding solutions of the system (2) 
will be obtained by the d'Alambert method. During the 
time intervals 0 6 t c t:, where t: i s  the minimal time 
of passage of the waves through the sample, the quan- 
tities [ ( z ,  t) and E(z, t) a r e  proportional to exp{i(wt 
+ kz)}. The resultant dispersion equation has eight roots 
k(w). Recognizing that the experimental external alter- 
nating-field frequency interval of interest to  us lies far  
from the region of the helicon-phonon resonance, and 
retaining only those roots which correspond to waves 
that attenuate and propagate into the interior of the 
metal, we have 

1 Q I s.' 2-1 - - + - 1 -  
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where s,= c(~,o)"~/w, and w, is the plasma frequency 
of the conduction electrons. 

The amplitudes of the acoustic (A) and helicon (B) 
waves are determined by the boundary conditions 

The first of the conditions (6) follows from the contin- - 

uity of the Maxwell stress tensor, while H,(O, t) is given 
by expression (4). Since the characteristic time inter- 
vals between the pulses in echo experiments (-lom5 sec) 
greatly exceed the helicon damping time (A*/s* -10-7, 
the contribution of the helicon waves to the effects 
generated by the joint action of the two pulses can be 
neglected. We shall consider hereafter only the acoustic 
oscillations: 

&* (z ,  t )  =A cos [o  (t-z/s)  f $]e-*", (7) 

where 

The wave excited by the field H(1, t) = H(0, t) incident 
on the surface z = 1 are described by the expression (7), 
taken with a minus sign, in which z is  replaced by 1 - z. 
Actually, the equality H(1, t) = H(0, t) is  approximate, 
since a phase difference -wl,/c should be present. How- 
ever, we neglect this difference, since wlo/c - 
Thus, in experiments on metallic powders the bilateral 
sound excitation in the particle corresponds to the solu- 
tion 

The superscript (0) indicates that the solution (8) per- 
tains to the time interval 0 6 t * t, = l/s. 

For times t >t,, the solution of the system (2) i s  a 
superposition of multiply reflected waves (8): 

where y is the coefficient of reflection of the acoustic 
wave from the surface of the metal, and cp,(z) is the 
phase of the wave after the k-th reflection. 

When the alternating field is turned off at t = t,, 
energy ceases to flow into the sample, and the only 
oscillations that continue to propagate in it are  those 
produced during the time of action of the field. This 
circumstance is  taken into account by the fact that the 
solution 5 at t >tl is constructed in the form of a 
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difference: 

e t )  [e( t -kt t -cpk(z)) -e( t - t t -k t - (z) )  1. (10) E*(z, t ;  ti)== 2 * 29 

h-0 

The action of several R F  pulses on the metal particle 
is described in the linear approximation by a sum of 
the solutions (10): 

where T, and t, are  the start and duration of the a-th 
pulse. 

The linear solution (11) makes it possible to deter- 
mine with the aid of expressions (2) and (3) the electric 
field E(z, t) inside the metal for the time interval 
t > T, + t ,  with allowance for the nonlinear increment +. 

4. The echo signals are  determined by the magnetic 
field H(T) =C,H,(~) produced by all the powder particles 
after the second pulse of the external alternating field 
is turned off. The integral form of Maxwell's equations 
make it possible to connect the field H,(t) of an individ- 
ual powder particle with the value of E(z, t) on its sur- 
face. This circumstance makes it possible, if the solu- 
tion (9) is  represented in the form 

where n,=[t/t,] is  the integer part of the ratio t / t , ,  to 
take into account only the sum, since the last term 
makes no contribution to the field on the surface. 

Summing over k in (12) we obtain for two pulses of 
duration t, and t, separated by an interval r,,  

where x = rexp(-iwt,). From (3) and (13) we get the 
nonlinear increment to the field H,(t). Retaining only 
the terms that determine the echo a t  t =  27,, we have 

x x e x p [ i o ( t - 2 4  1 [I-exp -- ( ( : + i.tl)] + C.C.). 

(14) 

The approximate equality in the expression for i% in (14) 
is  valid at n,,,, >> 1 and n, ,2-, >> 1, as is  assumed by us. 
The expressions in the curly brackets describe the ac- 
tion of the alternating-field pulses, and those in front 
of the curly brackets characterize the damping of the 
oscillations excited in the metal by these pulses. 
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Formula (14) i s  the response of a single powder 
particle to monochromatic action. The response of the 
entire powder is given by 

where G(w) is the wave packet of the alternating-field 
pulse, g(1) i s  the distribution function of the linear di- 
mensions of the particle. The distribution d l ) ,  which 
depends on the sample preparation method, i s  generally 
speaking not known. For example, the experimental 
situation inc" i s  sufficiently well described by the rec- 
tangular distribution 

where 1, = 1, - I,, and 1, and I, a re  the smallest and 
largest metal particle dimensions. To integrate in (15) 
it must be recognized that the function (14) has a reso- 
nant behavior near the values wt, = (2n+ l)n, where n is 
an integer (see the Appendix). For reasonable values of 
the powder-particle dimensions (in nl, e.g., I,= lo-' cm 
and 1,= l o v 2  cm) and of the pulse frequency-spectrum 
width, we can confine ourselves to one value, n= 0. 
Then (14) takes the form 

2415 D Z e c o  a o 
~ , ( t ) = - -  nlo I (*) T H l ( 0 ) a . H 2 ( O ) n . '  

Substituting (17) in the integral if (15) and assuming 
that the frequency spectrum of the pulse is described 
by a normal distribution with a mean value wo (the 
carrier frequency of the external alternating field) and 
with a second moment t;', we get 

2412 D Z e c o  1 

H,, ( t )  = T T  (e) H, ( o ) ~ , , ~ I ~ ~ ( o )  <,(I-?) p2px4-rz+na 

r=y exp ( - n s l o o L ) .  

The expression (18) describes an RF field spike at the 
carrier frequency wo, with an amplitude that has a max- 
imum near t =  2r2 and a width -t,. It i s  this spike which 
is detected as  the echo signal that appears at a time 7, 

after the second pulse. 

5. We now compare the echo-signal properties that 
follow from (18) with the experimental data of [I1. 

a) The obtained theoretical dependence of the echo- 
signal amplitude on the RF field of the pulses 
-Hl(0)g(O) agrees well with the measurement results 
of [I1. Deviations from the theoretical relation at Hl(0) 
> H,(O) (H,(O) = const) and at H,(O) > ~ ' ( 0 )  (H,(O) = const) 
can be eliminated by taking into account terms of 
higher order in nti(l - r) in the derivation of (17). The 
dependence of the echo signals on the pulse duration 
was not investigated experimentally. 

b) With increasing interval T, between the pulses, the 

FIG. 2. Echo signal am- 
plitude vs . the constant 
magnetic field: 1-Au, 2- 
Ag(0.05% Mn); T =  4.2 K. 

echo amplitude decreases, a s  follows from (l8), in 
near-exponential fashion: 

4s 
l -dn  ex* (-*.) -q, (-22): 

where i s  was assumed that the wave transmission coef- 
ficient y, = (1 - y) i s  small. Expression (19) agrees 
fully with experiment.['] 

c) The theoretical dependence of the echo-signal 
amplitude V and of the relaxation time T* on the con- 
stant magnetic field is described by the expressions 

BHo' 
V=AHo3 exp ( - p H o 2 ) ,  T.-l=? - I  + - 

ph 2% ' 

where A is a constant. In Fig. 2, curve 1 corresponds 
to values A = 0.001 and P= 0.456 X 10-90e'2 in (20), and 
is in splendid agreement with measurements made in 
gold powder, while curve 2 (A = 0.0035, B = 0.82 x lo-' 
Oe-') describes well the experimental data for silver 
powder. The experiment inC'] was carried out a t  T =  4.2 
K ,  which corresponds to the wCr > 1  assumed above. 

The plots of the relaxation time T* on Fig. 3 fit well 
the experimental data at values 7;: = 0.0095 psec-' and 
/3 =0.62 X 10-1'0e-2 at w,= lo7 Hz. With increasing fre- 
quency, the theoretical formula describes qualitatively 
the experimental results, but there is a quantitative 
difference, due apparently to violation of the "locality" 
limit qv,/wc<< 1. We note the importance of investi- 
gating relations of this type in order to determine the 
value of the non-electronic damping of the sound in 
metals. 

d) A qualitative agreement of the experimental and 
theoretical results i s  obtained also for the temperature 
dependence of the echo amplitude on the temperature; 

FIG. 3. Field dependence 
so of the relaxation time. 

C 
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this dependence, according to (la), is due to the temp- 
erature dependence of the electron free path time T and 
the time T,, of non-electronic sound damping. 

Thus, the good qualitative agreement between the 
theory developed here and the experimental data offers 
evidence in favor of the physical model assumed by us 
for echo formation in metallic powders. A quantitative 
comparison and determination of the physical character- 
istics of the investigated metal is meaningful if the 
totality of the experimental relations considered above 
is obtained for a single sample. This, in our opinion, 
would be a natural continuation of the experiments on 
echo phenomena in metallic powders. 

APPENDIX 

We consider the value of the function (13) on the 
surface z = 0: 

In the absence of damping ( r  = ye-'/" 1) and under 
constant action of the alternating field (n,+ = 0, ntl - m )  

we have 

which reflects the fact that in the stationary regime in 
the sample there are excited only natural oscillations. 

In the case of weak damping [(I - r )  << I] over times 
on the order of the pulse duration [n,, >> 1, but (1 - r)ntl 
<< 11 the amplitude of the function (A.l) is equal to 

where 

The function f 3  has a sharp maximum on the order of 
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( l - r ) ' ,  with awidth-2(1-r)  at x=wt,=(2n+l)n. The 
functions f, and f, vary slowly over intervals Ax 
- ( I -  r ) ,  and therefore 

[ k ( x ) f t ( z ) f : ( z )  I"'*[fl(  (2n+l)n)f~((2n+i)n)f~(z) 1'" 
- n , , [ ~ ( x -  (2n+1)  x - t + r )  - e ( r -  (2n-1- i ) x + i - - ~ ' )  1 (A.4) 

=ni,2 (1-I') 6 (x -  ( 2 n + l )  a). 

Thus, in the case of weak damping of the waves, a 
good approximation is the assumption that the pulse 
produces only natural harmonics in the sample, just a s  
in the stationary case. 

Recognizing that the quantity % in (14) is proportional 
to 5', we can easily obtain the following approximation: 

which leads to (17). 

"A similar model of a powder provided a good qualitative de- 
scription of electroaeoustic echo in piezo- and ferroeleo- 
trice .I7 * 

2 ' ~ e  note that the problem of sound generation by stationary 
electromagnetic radiation in bounded metal samples was 
solved by ~ r a v c h e n k o . ~ ~ '  

IS. Kupca and C. W, Searle, Can. J. Phys. 53, 2622 (1975). 
2 ~ .  Alloul and G. Froideveax, Phys. Rev. Lett. 20, 1235 (1968). 
'z. A. Pacult, P. C. Reid, and D. P. Tunstall, J. Phys. F 3, 
1843 (1973). 

4 ~ .  M. Kontorovich, Zh. Eksp. Teor. Fiz. 45, 1638 (1963) [Sov. 
Phys. JETP 18, f125 (1964)l. 

%. G. Skobov and E. A. Kaner, Zh. Eksp. Teor. Fiz. 46, 273 
(1964) [Sov. Phys. JETP 19, 189 (196411. 

6 ~ .  J. Quinn, J. Phys. Chem. Solids 31, 1701 (1970). 
?A. R. Kessel', 9. A. Zel'dovich, and I. L. Gurevich, Fiz. 

Tverd. Tela (Leningrad) 18, 826 (1976) [Sov. Phys. Solid 
State 18, 47 3 (19'76)). 

'G. A. Smolenskt~, S. N. Popov, N. N. ~ r a i n i k ,  B. D. ~dkht- 
man, and E. N. Tarakanov, Zh. Eksp. Teor. Fiz. 72, 1427 
(1977) [Sov. Phys. JETB 46, 749 (1977)l. 

%. Ya. Kravchenko, Zh. Eksp. Teor. Fiz. 54, 1494 (1968) [Sov. 
Phys. JETP 27, 801 (1968)l. 

Translated by J. G. Adashko 

Vodop'yanov et a/. 98 




