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We show that when there are no external electric and magnetic fields, an electric current is generated via 
hydrodynamic motion of a plasma, and, hence, there occurs spontaneously a macroscopic magnetic field. 
The reason for the current generation is the difference in the electron and ion viscosities. We consider the 
spontaneous occurrence of a magnetic field for slow hydrodynamic motions of the plasma, and also when a 
beam of fast multiply charged ions are slowed down in the plasma, when the effect is greatly enhanced. 

PACS numbers: 52.30. + r, 52.40.Mj 

The average velocities of electrons and ions in a p,=A1,T,, ~,=IV,T,  (4) 
plasma may become different during hydrodynamic mO- a r e  the electron and ion pressures. The electron and 
tion because of their different viscosities. This means 

ion temperatures T, and T, are taken to be constant for 
that hydrodynamic motion can, when there a r e  no ex- 

the sake of simplicity. We assume to begin with also ternal electric and magnetic fields, lead to the genera- that there is no external mwnetic field The vis- tion of an electric current in the plasma and, hence, to 
cous s t r e s s  tensors for the electrons i?, and for the ions the spontaneous appearance of a magnetic field. The 
ii, then have the form 

present paper is devoted to a study of that effect. 

In Sec. 1 we consider relatively slow plasma motions. 
We show that the process of magnetic field generation 
soon acquires a non-linear character a s  the viscosity 
starts  to depend on the magnitude of the magnetic field. 
Thanks to the non-linearity the growth of the field is 
slowed down and i t  becomes frozen into the plasma. 
The process considered here can therefore serve a s  one 
mechanism for the generation of a "seed field" in the 
problem of the turbulent hydro-magnetic dynamo. r1.21 

The effect i s  enhanced when the velocity of the plas- 
ma motion increases. In Sec. 2 we consider the genera- 
tion of a magnetic field when a beam of multiply charged 
fast ions a r e  slowed down in  the plasma. In that limit- 
ing case one needs already a kinetic discussion to solve 
the problem. 

1. HYDRODYNAMIC MOTION OF A FULLY IONIZED 

aa6 d i v  y e , , )  ; 

Here q*, qOi  and v,, v i  a r e  the viscosity coefficients 
and the collision frequencies of the electrons and ions 
and InA is the Coulomb logarithm. The friction force is 

We simplify Eqs. (2) to (7). We use the fact that nor- 
mally the characteristic scale L of the motion is large 
compared to the Debye radius and, hence, the plasma i s  
quasi-neutral: 

PLASMA A-~=.Y~ =fi. 

We consider a fully ionized plasma. Let the plasma The continuity equations (2) can then be  rewritten in the 
motion satisfy the relations form 

. . 
d i v ( N V )  = d i v ( N Y . )  = d i v ( ~ Y V , ) .  for characteristic spatial and temporal scales L and 

A t ,  where I,, l i ,  and v,, v, a r e  the mean f ree  paths and 
the collision frequencies of the electrons and ions. The The last equation determines the electric polarization 

motion of both the electronic and the ionic components Of a quasi-neutra1 plasma (see Refs* 4~ 5)s 

of the plasma i s  then described by the hydrodykimics We introduce instead of V, and V, new variables-the 
equationsr3] hydrodynamic velocity V and the velocity difference U: 

\ - I  

d v, 1 .  m vz=y - - d l  
~ I Y ~ [ ~ + ( \ . . V ) \ ' . ]  = - g r a d p . -  dlr i r - r \ : ( ~ + T [ \ . X ~ I )  +R, '11- 117 U, V.=V+-U. J l+ni  

a\-, I 
(3) 

J V N , [ - ~ ( ) . ~ V ) \ - .  d t  = - g r r d p ,  - dl. ?, -eS,  

Adding and subtracting the two Eqs. (3) from one anoth- 
Here e r  we get (for H = 0) 
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) - div ( ~ n . - k ,  
) -R+elVE-- grad 

Y+m 

We can neglect the last term in (11) because of condi- 
tion (1) when compared to  R. Moreover, we use (5), (9) 
to transform the viscous friction term in (11): 

Mqo. I (VZV,  +-graddivv. 
M+m M+m \ 3 

The last term in  (12) can also be neglected in compari- 
son with R by virtue of (1). Finally we have instead of 

.wpp.-mpi 
-R+eNE=- grad 

1 
(=) + G-z- (02v+ p a d  div V 

(13) 
Equations (13), (lo), and (8) form a complete set de- 

cribing the hydrodynamic motion of a quasi-neutral 
plasma. It differs from the se t  traditionally used (see, 
for instance, Ref. 6) in taking into account the effect of 
the viscosity on the difference in electron and ion veloc- 
ities (the last term in Eq. (13)). Below we shall show 
that just this generally weak process guarantees the 
generation of an electric current in the case of hydro- 
dynamic motion of a plasma when there a r e  no external 
electric and magnetic fields. Indeed, i t  follows from (8) 
that 

div j=-e div(NU) =O. (14) 

We consider the incompressible flow 

div V=O. (15) 

Determining NU from (7), (13), and (15) and substituting 
i t  into (14) we a r e  led to the equation 

describing the electric polarization field of the plasma 
(E = -vv). It follows from (16) that 

Substituting now (17) into (13) we eliminate the polariza- 
tion field E. We then find from (13) that 

This yields the velocity of the electron motion relative 
to  that of the ions U, i.e., the electron current in the 
plasma j = eMJ: 

By virtue of the condition (15) the current (18) has zero 
divergence-it does not lead to the appearance of elec- 
t r ic  charges o r  a polarization of the plasma. 

The physical nature of the current (18) if quite lucid: 
i t  is connected with the difference in  the viscosity coef- 
ficients for the electrons and the ions in  the plasma. 
Thanks to the difference in the viscosities there appears 
a difference in the average velocity of the electron and 
ion motions and, hence, there  appears an electric cur- 
rent. It is then important that the transfer of the total 
momentum is mainly caused by the ion viscosity (lo), 
(6) so that the average velocity of the ion motion Vi  is 
close to the velocity of the hydrodynamic motion of the 
plasma V given by (9). On the other hand, the average 
velocity of the electrons differs appreciably from it. 
This difference is caused by the electron viscosity. 
The electron viscosity also determines therefore the 
electric current (18) arising in the plasma. 

The mechanism for the appearance of a current is 
made clear in Fig. 1. The solid line shows the profile 
of the hydrodynamic velocity of the motion of the plas- 
ma in they -direction o r  the profile of the ion velocity 
which is close to it. The electrons a r e  more mobile 
than the ions, they possess a larger kinematic viscosity, 
and tend to flatten out a velocity gradient. Their veloc- 
ity profile is shown by the dashed curve. The current 
appearing i n  the plasma is proportional to  Vi - V, and i t  
changes sign in  the inflection points of the hydrodynamic 
velocity profiles. 

The magnetic field produced by the current (18) 
equals 

H = - -  4ng rot V + grad Y, (19) 

where 9 is an arbitrary harmonic function (v29 = 0). It 
is determined by the conditions a t  the boundaries. 

As an example we consider a one-dimensional plasma 
flow: let the hydrodynamic velocity V in  the chosen 
frame of reference be in the direction of they -axis and 
let i t  change in magnitude along the x-axis, i.e., 

V=(O, v,, O), V,=V,(t). (20) 

The incompressibility condition (15) i s  then always sat- 
isfied. The electric viscosity current j is directed 
along the y-axis, i.e., i t  is parallel to  V. It is equal to  

j= (0, j ,  O), j . = g ~ z V , l ~ x 2 .  (21) 

In particular, for Poiseuille flowL7] the current has a 
constant magnitude: 
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Here 11 =voi is the viscosity coefficient, p the total pres- 
sure  (4), (101, ( d p l d y  ), the constant pressure gradient. 
The magnetic field H produced by the current (21), (22) 
is in the direction of the z-axis. In magnitude it equals 
(cf. (19)) 

In particular, for Poiseuille flow in  the region -a x 
s a, where a is the boundary of the plasma, we have 

-1when r t - a  
H-H, - - -  %/a when - a  < z < a. 

1  when z > a  

It i s  here important that at the boundary x = i a  the gra- 
dient l a ~ ~ / a x l  z0. If, however, the hydrodynamic motion 
occupies a region unbounded in x inside the plasma, the 
constant vanishes in Eq. (23). A magnetic field a r i ses  
in that case only in the region where the plasma moves 

4 ~ g  av, H ----. . - 
c a2 

A completely analogous situation occurs also for an 
axially symmetric flow of the plasma. 

The magnetic field arising in the plasma can turn out 
to have an appreciable effect on the motion of the elec- 
trons and the ions. First ,  the viscous s t r e s s  tensor 
ii,,i and the friction force R can change. Of course, in 
that case the condition for the excitation of the dielec- 
tr ic viscosity current (18) is also changed which in  turn 
affects the magnetic field itself. For sufficiently large 
values of H the process of generating a magnetic field 
thus becomes non-linear. The linear approximation 
considered above is valid under the restriction 

when the effect of the magnitude field on the friction 
force and on the tensor i ieSi is unimportant. Using (19), 
(18) we rewrite condition (24) in the form 

The restriction (25) i s  very strong and i s  often vio- 
lated. It is therefore of interest to study the generation 
of a magnetic field in the non-linear case when condi- 
tion (25) is not satisfied and when there i s  an appreci- 
able magnetic field in the plasma. When there i s  a 
magnetic field present in the plasma Eqs. (2), (8) retain 
their form. After the transformation (9) Eqs. (3) can 
be written in a form analogous to  (lo), (13): 
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MP* - mp, ) ( Mi?. - m;, ) = - p a d  ( - div 
~ + m  ~ + m  ' (26) 

The viscous s t r e s s  tensors of the electrons (ii,) and 
of the ions (f,) a r e  given in  Ref. 3 for the case when 
there is a magnetic field present. Here we write down 
only the tensor ii, for the case when 

Taking the z-axis parallel to H we have 

The coefficient q ,  is defined here a s  before by Eq. (6) 
and the remaining coefficients have the form 

The friction force is 

where U = V, - Vi and the components U,, and U, a r e  
taken along and at right angles to the magnetic field. 

We consider the simple case of one-dimensional flow 
in  the plasma. As before, we take the y-axis in the di- 
rection of the velocity V, with Vy = V,,(x) a s  in  (20). 
Under the conditions (25) there ar ises  then a magnetic 
field directed along the z-axis. We assume that i t  re- 
tains i t s  direction also under conditions of strong aniso- 
tropy (27) (we shall show this in what follows). We can 
then write Eqs. (26), (28), and (30) in the form 

We have here eliminated the polarization field E = -Vq, 
which i s  determined by the relation (see (17)) 

It follows from (29) and (31) that 
. 
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However, the divergence of the current j, = -eNU is in 
this case not zero. There ar ises  then an additional po- 
larization field E, such that the total current j = j,+6El 
has zero divergence, (14): 

div j=div (jo+oEi) -0. (33) 

We find from (33) that 

acp, 2.54eT.v. azV, 
El- (E,,, 0, 0 ) ,  El,- - - -- - -- 

a~ moHsa, azl ' 

where ul is the conductivity of the plasma across the 
magnetic field: 

The total current caused by the simultaneous action of 
the viscosity j, and the additional polarization field El 
is equal to 

Here o, is the Hall conductivity: 

It follows from (32), (34), and (35) that j ,  = 0. Hence, the 
current arising in the plasma is, a s  in case (21), direc- 
ted along the y-axis which is parallel to the hydrodyna- 
mic velocity V. As to magnitude, i t  equals (cf. (21), 
(1 8)) 

Such a current generates a magnetic field directed along 
the z-axis, and this was already used above. 

The magnitude of H, is now determined by the non- 
linear equation 

aa. 4n 6x.2.04eT.h' a'V, ---- a= iY - - 
mcozH 

Its  solution with the boundary conditions a v,/ax- 0, HE 
-0  when x - i -  has the form 

It is convenient to  introduce the dimensionless parame- 
t e r  

We can then write the solutions of (18), (23), and (36) in 
the form 

From this i t  is clear that for large values of G the mag- 
netic field continues to grow with increasing G although 
less energetically than in the linear case. We note that 
replacing aVy/ax in (37) by lcurl VI we can use Eq. (38) 
for an estimate of the magnitude of the magnetic field 
generated in the plasma in the general case. 

Under real  cosmic conditions, for the interstellar 
ionized gas or ,  for instance, for the solar chromosphere 
and corona, the parameter G is always a large quantity. 
For instance, for the interstellar gas, putting Te - 1 eV, 
N-1 cmm3, V -  lo5 cm/s, L-loz0 cm, we have G-10'. 
It then follows from (38) that the effect considered here 
leads under cosmic conditions to the generation of a 
magnetic field guaranteeing the satisfying of the condi- 
tion for the freezing-in of field lines. This effect can 
thus serve a s  one mechanism for  the generation of a 
seed field for the turbulent hydromagnetic 

We note also that although we considered above only a 
completely ionized plasma, the effect of the generation 
of an electric current and a magnetic field due to vis- 
cosity occurs also for any degree of ionization. In par- 
ticular, in a weakly ionized plasma the electric viscosi- 
ty current is a s  before described by Eq. (18): 

where Vn is the velocity of the neutral gas and satisfies 
the incompressibility condition (div Vn = 0) and the co- 
efficient 

Here a, and ui are  the transport cross-sections for col- 
lisions of electrons and ions with neutral molecules, ke 
and ki a r e  numerical coefficients which depend on the 
nature of the interaction between the particles. The dif- 
ference with the case of a completely ionized plasma 
consists in that now the velocity of the hydrodynamic 
motion is determined by the neutrals while the electrons 
and ions make contributions of the same order to the 
electric current: jeSi - ~NZ~,,V'V,,. 

2. SLOWING DOWN OF A BEAM OF ACCELERATED 
MULTIPLY CHARGED IONS 

Above we considered the case of a relatively slow 
hydrodynamic motion of the plasma. When the velocity 
of the motion increases the generation of the electric 
current and of the magnetic field is enhanced. It is en- 
hanced also when the interaction between the particles 
increases, in particular, when the ionic charge Z in- 
creases. In this section we consider another limiting 
case when the motion i s  fast: V>> vTi and the ion charge 
Z>> 1. As an example of such a motion we can mention 
the deceleration of a beam of fast multiply charged ions 
in a dense plasma. We assume the ion beam to be com- 
pensated by electrons s o  that, a s  before, there i s  no a 
priori given current or magnetic field at all  in the sys- 
tem.') 

We consider a completely ionized plasma filling the 
(38) half-space x>  0 with a compensated beam of Z-ions of 
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mass Mz streaming into it with a velocity Vo in the z -  
direction. The density of the electrons and ions in the 
plasma N is much larger than the density of the 2-ions: 
N>> Nz. The slowing-down process of the 2-ions in the 
plasma is therefore independent of the interaction be- 
tween them, i.e., i t  has a linear character. Moreover, 
taking into account that we consider here only fast 
multiply charged ions with a velocity of the same order 
as the thermal electron velocity we can to  a first  ap- 
proximation neglect the motion of the main ions in  the 
plasma. The fast multiply charged ions lose their en- 
ergy mainly through interactions with the electrons in 
the plasma. In that case their scattering is small so  
that to  a first  approximation we may assume that the 
ions do not change the direction of their motion. The 
deceleration of the 2-ions, i.e., the change in their ve- 
locity Vz and their density Nz is then, a s  the beam pen- 
etrates into the plasma, described by the equation[Q*lO1 

The solution of Eq. (39) determining implicitly the func- 
tion y (x), i.e., the ion velocity Vz(x) is 

Here 1, is the electron mean free path and L a charac- 
teristic deceleration length for  a Z-ion. In particular, 
when Vz > v,, i t  follows from (40) that 

It i s  clear from (40) that close to the point 

multiply charged ions a r e  stopped (to be more precise, 
their velocity becomes equal to  the thermal velocity of 
the ions in the plasma). 

We now consider how multiply charged ions slowed 
down in the plasma excite an electric current. For the 
solution of this problem i t  is necessary to use kinetic 
theory. It is clear from (40) that the characteristic 
length L for  the deceleration of Z-ions in the plasma is 
much longer than the electron mean free path 1,. To 
determine the perturbation of the electron distribution 
function we can thus restrict  ourselves to a locally uni- 
form problem, assuming that the velocity Vz and density 
Nz of the multiply charged ions a r e  given a t  each point 
xby (39), (40). We write the kinetic equation for the 
electrons in a system of coordinates moving with a ve- 
locity equal to  the average velocity of the main ions in 
the plasma. It has the form 

where See, S,,, and Sez a r e  the collision integrals for 
collisions of the electrons with one another, with the 
main ions in the plasma, and with the 2-ions. 

The integral Sez is the source for the perturbation of 
the electron distribution function.') Considering it, we 
bear in mind that there is only one preferred direction 
in velocity space-the direction of motion of the Z- 
ions-the x-axis. Hence, the electron distribution func- 
tion depends only on the modulus v of the velocity and 
on the angle 8 with the x-direction: f =f(v, 8).  The 
multiply charged ion distribution function also depends 
solely on the modulus vz of their velocity and the angle 
8, Neglecting scattering of the 2-ions, it has the form 

Starting from the Landau integral,[''] and using (43) and 
the fact that there is only one preferred direction in the 
problem,r51 we a r e  led to  the following expression for 
Sez : 

I a 
S.z=--(v2jv)+-- 

U' av ' a (sin e i* ) ,  
v s in0  a0 

where 

3m v' (v-Vz cos 0) v (u)  A - -- 
i- (I-cosa 0 ) ,  

MA u' 

Az=-Vz'v (u)  (l-cos2 0 ) .  
m 

A,= - v  ( u )  (Vz-u cos 0)cos 0, 
Mz 

A,=V,v(u) (u-IJr cos U)sin 6; 

" [ I -  3VzZ(I-cos= 0) B,= - v Z v  (u)  v z  1 sin 0, 
Mz 2u' 

m u2v(u)  , 
B,=V,v ( u )  (v-V,  cos 0 )  sin 0, B,= - - sln 0, 

Mz Yz 
B,--v(u)  ( v -Vz  cos 0) ' ;  

4ne'ZZNz In A 
U =  ( v , ~ + ~ ~ - ~ v , ~  cos e l5 ,  v ( u ) =  

m2u' . 

We now expand, as usual, the electron distribution 
function in a ser ies  in Legendre polynomials Pk(cosO): 

For the integrals Sezk which determine the perturbation 
of each harmonic f,(v) in (42): 

we then get 

287 Sov. Phys. JETP 47(2), Feb. 1978 A. V. Gurevich 287 



where 

In deriving Eq. (45) we used the fact that when 

the perturbations of the electron distribution function 
a r e  small and the main role in  the integral S,, is thus 
played by the main symmetric function fo(v). We also 
used the fact that when V ~ > > ~ U ~ / M ,  the terms Al,A3 
and Bl, B, in (44') a r e  small. 

Knowing the integral SeZl we Can easily determine 
from Eq. (42) the directed part fl(v) of the electron dis- 
tribution function and, hence, the average velocity of 
motion of the electrons relative to the ions, i. e., the 
electron current. In particular,[5*61 

s o  that we find at once from (42), (45) the function fl and 
the current when we neglect the electron-electron col- 
lisions: 

Here j, is the current of the multiply charged ions and 
the function 

It is shown by the dashed curve in Fig. 2. 

When the electron-electron collisions a r e  taken into 
account Eq. (42) for the function fl is an integro-differ- 
ential equation. It is solved by the usual method.c101 
As before the electron current is given by Eq. (47): 
only the form of the function F(y)  is changed. It is 
shown by the solid curve in Fig. 2. As y - 0, ~ ( y )  = 1 
+ O(y '), when y >> 1 we have F = 4.80/y 3. The maximum 
value F,=1.18 is reached for y ~ 0 . 8 .  We give an a m -  
lytical expression for F (y)  which is obtained in second 
order in the expansion of the distribution function in  
Laguerre polynomials: 

FIG. 2. 
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F ( y )  -1.950Fo ( y )  -0.5545F1 ( y )  -0.06295Fz(y), 
Fo='l4n'"@ ( y )  -S/,ye-*, . 

PI=-'/4n5@(y) +'/,y ( I + y Z )  e-u: (48) 
F~-'V/,y"(i-2y')e-". 

The accuracy of Eq. (48) is one to two per cent. 

In equation (47) j, is the multiply charged ion current 
density. It is clear from (47) that the electron current 
arising in the plasma is about Z times larger than the 
current of the 2-ions. Because of that we can neglect 
at 2 >> 1 the current of the multiply charged ions them- 
selves in comparison with the electron current. When 
the 2-ions a r e  slowed down there a r i ses  thus in the 
plasma an appreciable enhancement of the currentO3) 
This effect is analogous to the drag of multiply charged 
ions in a plasma by an electron stream (escape of mul- 
tiply charged ions) considered in  Refs. 9, 13. 

The electron current j, of (47) has a non-vanishing 
divergence. This leads to  the appearance of an electric 
polarization field in the plasma E = -Vq. The total cur- 
rent, determined by the action of the 2-ions (L) and the 
electric polarization current (j,) has zero divergence, 
(14): div(j, + jd = 0. Hence follows the equation which 
determines a s  usual, (33), the potential of the polariza- 
tion field: 

div(6Tq) =div j.. (49) 

Here d is the conductivity tensor of the plasma and j, 
the source current (47). If we can neglect the effect on 
the conductivity of the magnetic field which ar ises  in 
the plasma (linear approximation (24)) and if the change 
in  the electron temperature is unimportant, B is a con- 
stant and Eq. (49) is identical with the Poisson equation. 
Its solution is found by expanding in spherical harmon- 
ics. In the case of an axially symmetric beam we have 
for the electric and magnetic fields 

where (see Ref. 14) 

Here r,  8 , q  is a spherical frame with origin in the ten- 

t e r  of the ion beam at  the boundary of the plasma x =  0 
and the angle 0 reckoned from the x-alris; , U = C O S ~ ;  j,, is 
the radial comp~nent of the current j,, (47); aj; /ax is 
a fictitious source in the region x<O (outside the plas- 
ma) arising through the condition that there should be 
no current flowing through the boundary of the plasma 
x =  0 (j;(-x) = -je(x)). An important role i s  played in 
Eq. (51) by the discontinuities of the current j ,  occur- 
ring at the plasma boundary x = 0 and in the point where 
the 2-ion stream stops x =  x, (see (41)); in fact, the re-  
gion of the discontinuity i s  spread out over a distance of 
the order of I , .  
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The total electron current forms according to  (47), 
(50), and (51) a closed configuration. In the region oc- 
cupied by the ion beam it  is directed, like the ion cur- 
rent, in  the x>O direction the current from the source 
(47) dominates here. Outside this region the electron 
current has the opposite direction and is caused by the 
electrostatic field. The current density steeply r i ses  
near the plasma boundary x 5 0 and a t  the point where 
the beam stops x=x,.  The magnetic field of the total 
current has only the component H,, (50). It has an an- 
nular structure and encircles the ion beam. The maxi- 
mum value is H,,-RJ~,,/c, where R, is the radius of 
the ion beam. Such a value of H, is, however, reached 
only when 

If, on the other hand, the beam is wide R, > L, the source 
current j, is effectively cancelled by the polarization 
field current j, so that the total current diminishes with 
increasing R,. As R,/L - .o the total current j = j, + j, - 0. This, of course, should be the case, a s  for a one- 
dimensional problem j = (j,, O,O), j, =j,(x), the quasi- 
neutrality condition div j = 0 is essentially equivalent to 
the condition j ,  = 0. In that case the source current is 
completely compensated by the polarization current. 

The lower bound in Eq. (52) i s  due to the condition of 
local uniformity of the problem: only in  that case is Eq. 
(42) valid. The applicability of Eqs. (50), (51) is also 
restricted by the condition that the linear approxima- 
tion (24) holds, which in our case can, when (52) is sat- 
isfied, be written in the form 

When condition (53) is violated the growth of the mag- 
netic field with increasing current of the multiply 
charged ions j , ,  is weakened (see Sec. 1). We note also 
the limitations on the applicability of the theory follow- 
ing from the stability conditions of the plasma when i t  
is perturbed by a multiply charged ion beam.[''] 

We also emphasize that we considered above only an 
established, stationary state of the plasma. The build- 
up process is accompanied by the appearance of the 
electric induction field which prevents the appearance 
of an electric current. The characteristic time for the 
establishment of a stationary state (under conditions 
(24), (53)) is 

At- (nRo/h)'v,-'. 

Here X =2nc/wo, w, is the electron Langmuir frequency. 

The author is grateful to V. L. Ginzburg, F. A. Erm- 
akov, L. P. ~ i t aevsk i i ,  and H. P. Furth for useful dis- 
cussions. 

l ) ~ h e  results of this section have been briefly reported earlier 
in Ref. 8 

2 ) ~ e  note that through the action of the 2-ions on the plasma 
there also arises an electric polarization field in the plasma. 
It also causes a perturbation in the electron distribution func- 
tion and must be taken into account in the kinetic equation. 
However. in the linear a ~ ~ r o x i m a t i o n  the ~erturbations of the 
distribution function caused by the multip& charged ions and by 
the electric polarization field a r e  independent and can be con- 
sidered separately. We have therefore-to begin with considered 
only the perturbations caused by the 2-ions (42). The effect of 
the electric field will be taken into account in what follows. 

3 ) ~ s i n g  the integral Sa0 , (45), one can easily determine the heat- 
ing of the electrons in the plasma due to their interaction with 
the multiply charged ions : 

Here dc/dt is the energy transferred on average to the elec- 
trons in the plasma per unit time and unit volume. The possi- 
bility to use multiply charged ions to heat a dense plasma is 
discussed in Ref. 12. 
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