
'v. P. Trubitsyn, Fiz. Tverd. Tela (Leningrad) 8, 862 (1966) 5 ~ .  England, R. Etters, J. Raich, and R. Danilowicz, Phys. 
[SOV. Phys. Solid State 8, 688 (1966)l. Rev. Lett. 32, 758 (1974). 

'v. Magnasco and G. F. Musso, J. Chem. Phys. 47, 1723 6 ~ .  H. Nosanow, Phys. Rev. 146, 120 (1966). 
(1967). 'A. A. Abrikosov, Astron. Zh. 31, 112 (1954). 

3 ~ .  A. Neece, F. J. Rogers, and W. G. Hoover, J. Comput. 
Phys. 7, 621 (1971). 

4 ~ .  G. Hoover, M. Ross, C. F. Bender, F. J. Rogers, and 
R. J. Olness, Phys. Earth Planet. Inter! 6, 60 (1972). Translated by A. Tybulewicz 

Magnetic properties of disordered media 
A. F. Andreev 

Institute of Physical Problems, USSR Academy of Sciences 
(Submitted 21 September 1977) 
Zh. Eksp. Teor. Fiz. 74, 786-797 (February 1978) 

It is shown that in spatially disordered magnetic systems three macroscopically different types of 
magnetically disordered exchange structures are possible. Besides a disordered ferromagnet and a 
completely random structure of the spin-glass type, a structure corresponding to a disordered 
antiferromagnet with three mutually perpendicular antiferromagnetic moments is possible. Nonlinear 
equations are found that describe the dynamical properties of spin glasses and disordered ferromagnets and 
antiferrornagnets with allowance for the external magnetic field and relativistic interactions. The spin-wave 
spectrum and magnetic-resonance frequencies are calculated. 

PACS numbers: 75.30.D~. 75.30.Et 

This paper i s  devoted to a macroscopic analysis of 
the magnetic properties of spatially disordered media, 
i.e., systems in which the spatial distribution of the 
magnetic atoms is, on the average, homogeneous and 
isotropic. We a r e  concerned here with amorphous sub- 
stances containing magnetic atoms o r  with weak solu- 
tions of magnetic atoms in nonmagnetic crystals. We 
shall assume that the appearance of one magnetic struc- 
ture or another in the substances under consideration 
is  due principally to exchange forces considerably 
greater than the relativistic interactions. 

A spatially disordered system can be completely ordered 
magnetically. The only such case i s  complete ferromagne- 
tic ordering of the spins of the magnetic atoms. Any 
other magnetic order i s  obviously incompatible with 
spatial disorder. The macroscopic properties of such a 
ferromagnet do not differ from the properties of ordina- 
ry  crystalline ferromagnets and a r e  described by the 
Landau-Lifshitz equation.['] 

In recent times, disordered systems with magnetic 
structures of a different type have been widely investi- 
gated (see the  review^[^*^]). These, firstly, a r e  the so- 
called spin glasses (see Ref. 2), in which not only the 
positions but a lso  the directions of the spins of the dif- 
ferent atoms a r e  randomly distributed. In addition, 
there exist systems (see Ref. 3) possessing a finite 
spontaneous magnetization whose value a t  ze ro  temper- 
ature, however, differs substantially from the nominal 
value. The state of such a disordered ferromagnet i s  
analogous to the state of a spin glass in an external 
magnetic field. There i s  partial ferromagnetic order 
superimposed on a fairly random (in general) distribu- 
tion of spin orientations. 

veloped in the work of Marchenko and the author,C41 all 
the theoretically possible macroscopically different 
types of such partial order will be found. I t  turns out 
that, apart  from the disordered ferromagnet, there ex- 
i s t s  only one other possible structure-a disordered 
antiferromagnet characterized by three mutually per- 
pendicular antiferromagnetic moments. 

The dynamical properties of disordered magnetic me- 
dia can be described macroscopically in a manner anal- 
ogous to the way in which ordinary amorphous solids 
a r e  described by the theory of elasticity. In this case 
the analog of the spatial-displacement vector that ap- 
pears  in elasticity theory i s  a rotation of al l  the spins 
through the same angle. The exchange energy does not 
change under such a rotation. The change of energy i s  
determined, therefore, by the time and space deriva- 
tives of the rotation angles, which a r e  analogous to the 
velocity of the medium and the deformation. The des- 
cription of the spin dynamics by means of rotation an- 
gles has been used in the study of the magnetic proper- 
ties of the superfluid phases of He315s81 and of crystal- 
lineF7] and disorderedC8] magnets. There is, however, 
an  essential difference between elasticity theory and 
magnetic dynamics. Unlike spatial displacements, dif- 
ferent rotations do not, generally speaking, commute. 
Therefore, the equations of magnetic dynamics a r e  non- 
linear even for small velocities and deformations. Be- 
low we shall derive the dynamical equations for all 
three types of disordered magnetic structures, i.e., for 
spin glasses and disordered ferromagnets and antifer- 
romagnets. For  our purposes i t  will be convenient to 
use the Lagrangian formalism applied by ~ a k i [ ~ ]  to in- 
vestigate the magnetic properties of liquid He3-B and 
by ~ z ~ a l o s h i n s k i ;  and ~ u k h a r e n k o [ ~ l  for crystalline 

Below, on the basis of the symmetry arguments de- magnets. The spin-glass case i s  the simplest. The 
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point i s  that, by the virtue of the complete randomness 
of the corresponding structure, the spin glass does not 
have any macroscopic characteristics that change under 
"deformation." Therefore, the form of the equations i s  
determined by the geometry (see Ref. 10) of the rotation 
group. These equations, if we linearize them and neg- 
lect the magnetic field and relativisitic interactions, 
become-equivalent to the equations of Halperin and Sas- 

The equations for the disordered antiferromag- 
net a r e  highly analogous to the equationscB1 describing 
the spin dynamics of HeS-B. 

1. SYMMETRY OF DISORDERED MAGNETS 

The symmetry of any macroscopically homogeneous 
magnetic medium with exchange forces i s  determined 
by specifying the exchange class (see Ref. 4), i.e., the 
point group of transformations consisting of all the 
combinations of spatial rotations and reflections, rota- 
tions in spin space, and time reversal under which the 
medium under consideration i s  invariant. If in the ex- 
change class we formally identify all  the spin rotations 
and time reversal with a single transformation, we ob- 
tain a certain point group G defining the purely spatial 
symmetry of the medium. This i s  the symmetry group 
of all the spin scalars characterizing the given medium. 
In the case of crystalline magnets the group G i s  one of 
the familiar 32 crystal classes. In the case we a re  con- 
sidering, namely, that of macroscopically isotropic 
disordered media, the group G i s  the direct product 
SO(3) x P of the group of three-dimensional spatial ro- 
tations and the spatial inversion P. 

The macroscopic magnetic properties of a medium 
a r e  uniquely determined by specifying the multipole 
moments M,, = {Mym} (see Ref. 4), which transform a s  
a vector (a! i s  the spin-vector index) under spin rota- 
tions and according to one of the irreducible represen- 
tations (1 and m are,  respectively, the indices specify- 
ing the irreducible representation and the label of the 
function transforming according to the given represen- 
tation) under the action of transformations of the group 
G. In the case of crystals G i s  a finite group and the 
multipole moments have meaning for every irreducible 
representation. The point is  that, as i s  clear from Ref. 
4, in the general case multipole moments correspond 
to each irreducible representation that can be realized 
by scalar functions of the coordinates. For finite 
groups every representation can be realized in such a 
way. But for the continuous group SO(3)x P scalar func- 
tions of the coordinates realize only those representa- 
tions for which the parity i s  equal to (-1)' (in the pre- 
sent case, 1 and m must be understood to be the orbital 
angular momentum and its  projection; 1 = 0, 1, . . . ; 
m=-1, * . .  , l ) o  

It was shown in Ref. 4 that in the equilibrium state 
not more than three moments can be nonzero and that 
the different moments a r e  perpendicular to each other, 
those belonging to the same multi-dimensional repre- 
sentation having the same length. It i s  clear that for 
the group SO(3)x P there a r e  just three possibilities: 
1) all the moments a r e  equal to zero, 2) just one mo- 
ment M ,  corresponding to the identical representation 

1 = 0, i s  nonzero, and 3) three moments M, (in place of 
m = -1, 0, 1 for 1 = 1 it  i s  convenient to introduce the 
spatial vector index i = x ,  y, z ) ,  equal in magnitude and 
perpendicular to each other, a r e  nonzero. As applied 
to the magnetically disordered media discussed above, 
the f i rs t  possibility corresponds to the spin glass, the 
second to the disordered ferromagnet, and the third to 
the disordered antiferromagnet. 

We shall discuss the last  possibility in more detail. 
Inasmuch as the spin i s  a pseudovector and changes 
sign under the time-revetsal operation T, a disordered 
antiferromagnet with moments Mf" i s  not invariant under 
P and T separately but i s  invariant under the product 
PT. If such a structure i s  realized in a dielectric, the 
magnetoelectric effect (the appearance of magnetization 
proportional to the external electric field) should occur, 
and i s  observed, e.g., in the crystalline antiferromag- 
net c~,o, .["* 12] 

When relativistic effects a r e  taken into account a par- 
ticular orientation of the triad of mutually perpendicu- 
l a r  spin vectors Mi with respect to the coordinate 
space should be realized. Of all the orientations, that 
which, in the appropriate normalization, i s  characte- 
rized by moments ~ f "  = 6f" i s  special. A medium with 
such moments i s  obviously isotropic even when the rel- 
ativistic interactions a r e  taken into account. Its point 
symmetry group (magnetic class) i s  the group 
SO(3) x PT. Any other orientation can be obtained from 
the one discussed above by a rotation of all the spins 
through a certain angle 8 (0 < 6 < n) about an axis defined 
by a unit vector n. As a result the moments acquire 
the following values: 

where e,,, i s  the antisymmetric unit tensor. 

The anisotropy energy U,, which depends on the an- 
gle 8 and i s  defined by averaging the Hamiltonian of the 
relativistic interactions, is, in the present case, a lin- 
ear combination of the two invariants M ~ " M ;  and (ME)2. 
Substituting the expression for the moments in terms 
of 8, we obtain 

where 9 = tan(8/2), and A and B a r e  the anisotropy con- 
stants, proportional to the square of the ratio of the 
electron velocity to the velocity of light. IfA > 0, the en- 
ergy i s  a minimum a t  cp = O(8 = 0) or cp = m  (8 = n),  depen- 
ding the sign of B. If A <O and B > A/2, the minimum 
i s  reached a t  the finite value 9 = [ ~ A I / (  IAI + 2 ~ ) ] ' / ~ ,  
while in the case A < 0 and B < A/2 it  i s  again found at  
cp =a. 

Thus, three types of states of a disordered antiferro- 
magnet a r e  possible. Besides the isotropic structure 
(cp= 0) discussed above, structures with an exact spatial 
symmetry, of the type of that of nematic liquid crystals, 
a r e  also possible. The unit rotation vector n plays the 
role of the director, the states n and -n being different 
for finite 9 and identical for p =a. The nonisotropic 
antiferromagnetic phases a re  highly analogous to the 
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spin system of liquid HeS-B. The principal qualitative 
difference i s  that in our case the moments MY describe 
long-range order arising against a background of a sys- 
tem of randomly oriented spins. The corresponding Lagrange equations have the form 

2. THE SPIN GLASS 

We shall consider the equilibrium state of a spin 
glass. We carry  out an arbitrary spin rotation, the 
same for all spatial points. If we neglect the relativis- 
tic interactions, then, in the absence of an external 
magnetic field, we obtain a s  a result another equilibri- 
um state with energy equal to the energy of the original 
state. Let the parameters (pa(o! = 1, 2, 3) realize a 
certain parametrization of the group of spin rotations. 
The state obtained by means of any rotation cpa, where 
(pa does not depend on the coordinates, i s  an equilibri- 
um state. Now let the parameters (pa@,) be slowly va- 
rying functions of the coordinates. In this case the 
state of the system a t  the point x i  can be obtained from 
the initial state a t  the same point by the rotation (pa(xi), 
The energy of the state (pa@,) exceeds that of the equili- 
brium state by a quantity U that i s  quadratic in the spa- 
tial derivatives of (pa@,). To calculate U we shall con- 
sider the rotations pa@,) and pa@, +&,) = (pa@,) +dpa 
corresponding to two close points. Let 

Here I.& a r e  the Christoffel symbols corresponding to 
the metric ga 6. 

We now introduce a concrete parametrization of 
{(pa) = $ that i s  convenient for the following. We put @ 
=n(p, where n is the unit vector along the rotation axis 
and cp = tan(8/2); 8 i s  the angle of rotation about 
n(0 < 8 n). Any spin vector o i s  transformed under the 
action of a spin rotation $ in accordance with the formu- 
la 

The advantages of this parametrization a r e  displayed in 
the simple law determining the product of two rotations. 
If we perform first  the rotation 4, and then $,, a s  a re- 
sult we obtain a rotation corresponding to the param- 
eter 

(the factor 2 i s  introduced for convenience in the follow- 
ing) be the infinitesimal rotation angle defining the ro- 
tation such that successive application of the rotations 
pa and 6 8  gives pa + d v a .  It i s  clear that in a spin 
glass the only quantity on which U can depend i s  

The "length" element dl of the group space i s  easily de- 
termined with the aid of formula (7). We have 

dlz=g,~drpadrpp= (60/2)'= ( 6 0 )  ', 

where 6o i s  obtained from (7) by the substitution @, 
=-$, @l2=$+d$: 

fie a arpa arpC (T) =4ks ( rp )b (v )  -- a t ,  a ~ .  ' 

By definition, the quantities ~,(cp)*A~(cp) a r e  the metric 
tensor gas(p) specifying (see Ref. 10) the metric of the 
Riemannian space corresponding to the group of three- 
dimensional rotations. We have 

As a result we find 

In the chosen parametrization the equations of motion 
(5) acquire the following form: 

where a > 0 i s  a certain constant. 

The state pa(xi) i s  not an equilibrium state. Together 
with the small spatial derivatives aqa/8x, small time 
derivatives of pa  appear. The kinetic energy K of the 
system i s  quadratic in $a. In analogy with (2), we ob- 
tain 

where 

a t ,  

The metric (9) i s  the metric of a sphere in four-di- 
mensional Euclidian space. Indeed, writing dl2 in the 
variables 0/2,9 and a, where 9 and a r e  the polar an- 
gle and azimuth of the direction n, we obtain where c i s  a constant which, a s  will be seen below, i s  

equal to the spin-wave velocity. 

The Lagrangian of the spin glass, determining its 
macroscopic spin dynamics in the absence of an exter- 
nal magnetic field and relativistic interactions, i s  thus 
equal to 

which coincides (see Ref. 13) with the metric of a three- 
dimensional sphere of unit radius. It i s  clear, there- 
fore, that the equations of motion a r e  invariant under 
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the six-parameter group O(4) of four-dimensional rota- 
tions. Infinitesimal transformations of the coordinates 
4, conserving the metric, a re  defined by the formulas 

&I = tizxcpl. 
The first  of these transformations i s  an infinitesimal 
spin rotation through the angle 69 =2€,. 

The variation of the action W considered a s  a function 
of the coordinates 4[14s91 for arbitrary 6+ i s  equal to 

6W = jdv g.,;p86cp". 

Substituting the formulas (11) into this we find the quan- 
tities conserved by virtue of the O(4) symmetry: 

The quantity S i s  the mechanical spin moment, and this 
immediately permits us to write down the expression 
for the magnetic moment M per unit volume in the ab- 
sence of an external magnetic field: 

here, y i s  the gyromagnetic ratio. 

If there i s  an external magnetic field the additional 
term Ma H appears in the expression for the Lagrangi- 
an. Calculating S and M = yS for the new Lagrangian in 
the same way a s  above, we obtain 

From this it follows that the equality ay2/4c2=x should 
be fulfilled, where x i s  the magnetic susceptibility. 

It remains for us to write in the Lagrangian the addi- 
tional terms describing the relativistic anisotropy ener- 
gy U,. The quantity U,, does not contain derivatives of 
the rotation angles and should be expressed in terms of 
the orthogonal spin-rotation matrix Oua, which, accor- 
ding to (6), i s  equal to 

Inasmuch a s  U, i s  obtained from the Hamiltonian of the 
spin-orbit and spin-spin interactions, which contains 
terms linear and quadratic in the spins, U, can contain 
only combinations of OmB that a r e  linear o r  quadratic in 
OUB and, in addition, a r e  invariant under rotations. In 
all there a r e  two such combinations: 

It i s  clear that the anisotropy energy of the spin glass 
can be written in the form 

where a! and p are  certain positive anisotropy constants. 
It i s  essential to note that these constants a r e  propor- 
tional to the fourth power of the ratio of the electron 
velocity to the velocity of light, i.e., they a r e  consider- 
ably smaller than the anisotropy constants A and B of 
the disordered antiferromagnet, appearing in formula 
(1). In fact, to calculate the anisotropy energy we 
should replace the electron spin operators oy, ot, . . . 
by Ouyo1, OBa~62, . . . in the Hamiltonian of the relativis- 
tic interactions and average over the equilibrium state. 
If we neglect the relativistic interactions, then 

and, by virtue of the orthogonality of the rotation ma- 
trix, OuyOBy = 6aB. In order to obtain the dependence of 
the energy on the angle of spin rotation it i s  necessary 
to take the relativistic interactions into account once 
again. Thus, the constants a! and 0 a r e  proportional to 
the square of the relativistic interactions. 

We now write down the complete expression for the 
Lagrangian of a spin glass with allowance for the exter- 
nal magnetic field and relativistic interactions: 

The linearized equations of motion corresponding to this 
Lagrangian have the form 

whence we easily find the frequencies of the longitudi- 
nally polarized (with respect to the magnetic field) spin 
waves: 

and of the transverse spin waves: 

For H = a! = 0 the formulas obtained go over into the re- 
sults of the work of Halperin and  asl low.['] 

3. THE DISORDERED FERROMAGNET 

A disordered ferromagnet in the equilibrium state i s  
characterized by a constant spontaneous-magnetization 
vector M,. In the given case, however, unlike that of 
ordinary ferromagnets, it i s  convenient to write the 
equations of motion not for M but for the rotation angles 
#(xi, t). In the state characterized by the functions 
@(xi, t )  the spontaneous moment M(xt, t) i s ,  by virtue of 
(6), equal to 

2 M=&l,+ -(q (pill,) -cC2M,+ [~x>l,]).  
l+cpL 

(17) 

To avoid an excess of accuracy, we begin by elucidating 
the relationship between the exact magnetic moment per 
unit volume, which, in this section, we shall denote by 
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%, and the spontaneous moment M. If we neglect the 
derivatives of @, then 9n = M . In the next approximation 
terms containing derivatives appear in the right-hand 
side of the latter equality. Inasmuch as M depends on 
the rotation angles @ themselves and not on their deri- 
vative, it i s  clear that by a slight renormalization of 
the angles @ it i s  always possible to make the directions 
of the moments 3lZ and M coincide. Thus, by definition 
of the direction of the vector M, in the nonequilibrium 
case we have 3n = const 9 M . In equilibrium the constant 
i s  equal to unity. For the constant in the nonequilibri- 
um case an expansion in the small quantities 

Ma ) /  H) equations of motion obtained from (19): 

here, v =  M,/M and we have neglected the term 
x ,, yH [ u x  +I, which i s  small compared with the first  
term. 

From (20) we obtain the spectra of the longitudinal 
spin waves: 

and of the transverse spin waves: 

wl=ak2+yH+ay/2M,  
should be written (bw i s  defined by formula (8)). In the 
absence of an external magnetic field, if we take into 
account the symmetry under time reversal, this expan- 
sion can be written in the form 

Which, for H = a = 0, coincide with the formulas given 
in Ref. 8. 

4. THE DISORDERED ANTIFERROMAGNET 

For a disordered antiferromagnet it i s  convenient to 
measure the angles cpu from the state in which the mo- 
ments a r e  equal to M Y  = 6:. In the state characterized 
by the functions qOL&,, t ) ,  according to (6) the moments 
acquire the following values: 

where b i s  a constant. 

For this moment 3n to be obtained, the Lagrangian in 
the absence of a magnetic field should be equal to 

plus terms not containing time derivatives. There a re  
two such terms: wi and (Mui)', and, in addition, the 
anisotropy energy. The latter, a s  in the spin glass, i s  
determined by formula (13), since the components of 
the vector M we can construct just one invariant M2, 
which does not change under spin rotations. Taking the 
magnetic field into account a s  above by adding the term 
3lZ H to the Lagrangian, we obtain 

They satisfy the orthogonality and completeness rela- 
tions 

In the expression for the Lagrangian of a disordered 
antiferromagnet the spatial derivatives can occur in the 
following combinations: 

By virtue of (22), the third of these reduces to the first, 
which appeared in the spin-glass Lagrangian. By virtue 
of the relations 

where a and c a r e  positive constants and x,, i s  the sus- 
ceptibility in the direction of M. From (18) we easily 
find the magnetic moment with allowance for the mag- 
netic field: 

dBI, dill, --- -4Io,xJf,] [o ,x . \1 , ]=4o~-4(0 ,nI , )~ ,  
az, ax, 

whence i t  can be seen that b = 2x , , /y  M ~ .  

we can use in place of the second and fourth combina- 
tions the expressions 

Taking (17) and (8) into account, we can rewrite the 
Lagrangian (18) in the following, final form: 

Since these expressions differ from those in the case of 
the spin glass by an exact divergence 

in the present case it i s  necessary to take into account 
only one combination, for which we choose 

We write the linearized (about the equilibrium state 
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In addition, in the antiferromagnet there appears an in- 
variant that simultaneously contains space and time de- 
rivatives of the rotation angles: 

This, however, need not be taken into account, since i t  
is equal to the sum of an exact time derivative and an 
exact divergence: 

All the reasoning is otherwise identical to the previous 
arguments. As a result we obtain the following Lagran- 
gian: 

Here we have taken into account formula (1) for the an- 
isotropv energy, the constants x and y have their usual 
meaning, and c ,  and c ,  are, as we shall see, the velo- 
cities of the longitudinal and transverse (with respect 
to the wave vector) spin waves in the isotropic phase. 
The magnetic moment M per unit volume of the antifer- 
romagnet i s  determined by the formula 

The formula (23) differs from the Lagrangian, found 
by ~ a k i , [ ' ]  describing the spin dynamics of liquid He3-B 
only in the fact that for He3 a certain less-general set  
of constants occurs. In Ref. 6 the rotations were para- 
metized by means of Euler angles, which greatly com- 
plicates the formulas. 

The Lagrangian (23) describes all the antiferromag- 
netic phases. The only difference between them i s  that 
the equilibrium state of the isotropic phase corre- 
sponds to @ = 0, while for the other phases the equilibri- 
um value of the angles can be written in the form @ 
=nrpo, where n i s  the director. We write the linearized 
equations of motion of the isotropic phase (cp - 0) that 
correspond to the Lagrangian (23): 

In the general case a cubic equation for the spin-wave 
frequencies i s  obtained. We have 

where K satisfies the equation 

Here + i s  the angle between the directions of the mag- 
netic field and the wave vector k. 

For  H = 0 the frequencies of the longitudinal and 
transverse spin waves a re  equal to 

For k= 0 there a r e  three different magnetic-resonance 
frequencies: 

which coincide with the spin-glass magnetic-resonance 
frequencies obtained from (15) and (16). 

The equations of motion linearized about the equili- 
brium position r#~ =+, = #on have the following form: 

(l+cFo') (c?~p:cp) -qaf { c ? n ( n - ~ ~ )  -n (&#))-y ( l+yo2)   xi] 
-yc~o(H+[Hxc~ol, & ) + ~ ( ~ + [ ~ x p , l )  (poqj + (24) 

+ (cl"-c?) (P (div '++go rot 9 )  -rot q,(dir cp+cpo rot q ) )  - 
- (.Ty2/2x) n (nv) =O. 

Here the symbol I#J denotes the deviation from equili- 
brium and we have introduced the notation 

The general expression for the spin-wave frequencies 
in the nonisotropic phases have a cumbersome form. 
We shall give the results obtained from (24) in certain 
particular cases. 

For H = O  and k.L nthere a re  three finite frequencies: 

For H = O  and k(l n a finite frequency is obtained only for 
the longitudinally polarized wave: 

The other frequencies vanish in the approximation under 
consideration. 

In the spatially uniform case (k=O) for Hli8,  besides 
the longitudinal-resonance frequency 

there is  one more nonzero frequency, equal to yH. 
Finally, for k=O and H l n  there is  just one nonzero 
frequency: 
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PACS numbers: 76.40. f b 

In the formula that defines l!?,(k,$) (p. 103) the factor  
(k,uY - 51) should be replaced by (k,vY - 1S2). The expres- 
sion for  Ei j  '(f) in (32) and (36) must therefore be multi- 
plied by -il, and the expression for  Gb(t) in the s ame  
formulas must be multiplied by -1. It should also be 
noted that formula (40), from which the amplitude of the 
reflected second harmonic was calculated, i s  generally 
speaking incorrect (the author i s  grateful Yu. A. Roma- 
nov for pointing this out). In the case  of even resonance 
w =la,, a s  well a s  far  from resonance, formula (40) 
gives a correc t  est imate for the amplitude of the reflec- 
ted second harmonic (the factors of order  unity were  of 

no interest  at a l l  to us  in this case). For odd resonance 
w = (1 + 1/2)51,, formula (40) cannot be used under the as- 
sumption made in the paper. An exact formula for , the  
amplitude of the reflected second harmonic can be ob- 
tained by using, for example, the reprocity theorem. 
Calculations show that in the case of the odd resonance 
w = (1 + 1/2)51, considered by us i t  i s  necessary to intro- 
duce in (40) an  additional factor of the o rde r  of 6(2u)/ 
6(w) (6(w) i s  the depth of the skin layer at the frequency 
o), which decreases  somewhat the sharpness of the res- 
onance. 
Translated by J. G. Adashko 
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