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A study is made of the motion and scalar radiation of particles moving near a spherically symmetric black 
hole embedded in an external asymptotically homogeneous and constant magnetic field. It is shown that 
the magnetic field produces a potential barrier which prevents the escape of both charged and neutral 
particles to infinity in a plane orthogonal to the magnetic field. Exceptions are massless particles for 
which the projection of the angular momentum onto the direction of the magnetic field is zero. There exist 
stable circular orbits of charged particles corresponding to almost 100% mass defect, also stable 
untrarelativistic trajectories. The scalar radiation of an ultrarelativistic particle moving in a stable orbit is 
y2 times (y is the energy to mass ratio) greater than the radiation of a particle moving in an unstable 
ultrarelativistic geodesic in the Schwarzschild field. 

PACS numbers: 97.60.Lf 

1. INTRODUCTION 

The investigation of p r o c e s s e s  that  take place in the 
neighborhood of a black hole embedded in a n  external  
electromagnetic field i s  of in te res t  in connection with 
many astrophysical  situations. Although a n  electr ical ly  
neutral black hole cannot by itself have "magnetic hair", 
accret ion of p lasma c r e a t e s  a tendency f o r  a n  external  
magnetic field to  arise.' '] A magnetic field near  a 
black hole may be  due to the p resence  of a magnetic 
satel l i te ,  fo r  example, a pu lsa r .  Finally, fo r  par t i c les  
with l a rge  charge to  m a s s  ra t io  e / k  (in a l l  that follows, 
we use a sys tem of units in which G = h = c  = 1) a mag- 
netic field that i s  even a s  weak a s  the intergalactic field 
may appreciably modify the motion in the gravitational 
field. The dis tance a t  which the Newtonian force  acting 
on a n  electron i s  equal to the Lorentz fo rce  i s  de te r -  
mined by 

where Be = k2/e x 4.4 10130e, A, i s  the electron Compton 
wavelength, 1 1  i s  the velocity, 0 i s  the angle between 
the direct ion of the velocity and the magnetic field, and 
r, i s  the g rav i ta t~ona l  rad ius  of the black hole. F o r  a 
relat ivis t ic  e lectron moving In the neighborhood of a 
black hole of m a s s  .\I- 101\1,, the Lorentz fo rce  is of the 
s a m e  o r d e r  a s  the g rav i ta t~ona l  fo rce  a t  a magnetic 
field s t rength of o rder  B -  lO-'Oe. 

and gravitational radiation, which has been actively 
discussed in recen t   year^,^^-^] becomes a m o r e  rea l i s t i c  
proposition. Indeed, both the so-called geodesic synch- 
ro t ron  radiation in  the Schwarzschild field12' and a K e r r  
fieldC3w4' a r i s e s  a s  a r e s u l t  of the motion of par t i c les  
along unstable ul t rarelat ivis t ic  geodesics; in  addition, 
the proximity of these  t ra jec tor ies  to  a closed null geo- 
des ic  leads to a n  additional lowering of the  radiation in- 
tensity. A s  we shal l  s e e  below, a n  external  magnetic 
field makes  possible  ul t rarelat ivis t ic  motion in s table  
c i rcu la r  o rb i t s  that a r e  not c lose to  a closed null geo- 
des ic ,  and this ,  in  par t i cu la r ,  inc reases  the radiation 
intensity by y2 t imes  compared with the geodesic synch- 
ro t ron  radiation, and it  a l s o  extends the allowed range 
of initial da ta  fo r  real izat ion of the effect. 

A number of interest ing effects a r i s e  when allowance 
i s  made for  the influence of the  magnetic field on the 
m e t r i c  of spacet ime.  It  i s  easy to  es t imate  the char-  
ac te r i s t i c  s t rength of a magnetic field that affects the 
space t ime  geometry. We shal l  a s s u m e  that  the magnet- 
i c  field i s  constant and homogeneous (and directed along 
the polar  a x i s  of a spher ica l  coordinate system).  By 
vir tue of the cylindrical symmetry ,  i t  i s  c l e a r  that to 
es t imate  the relat ive contribution of the magnetic field 
energy and the m a s s  M of the black hole to  the met r ic ,  
i t  i s  necessary  to  compare  the  energy of the  magnetic 
field in  a cylinder of rad ius  r and height r,, which i s  
equal to  nr2r ,~ ' /8n,  with the m a s s  M itself.  We find 
then that  a homogeneous magnetic field begins to  d i s to r t  

The existence near a black hole of a l a rge-sca le  mag- the  m e t r i c  a t  a dis tance f rom the singularity of o rder  
netic field of even very low strength may appreciably B-' (a quantity that  has  the dimensions of a length for  
change the picture of accret ion of charged par t i c les  into 

G = c  = 1). F r o m  th i s  we deduce a charac te r i s t i c  gravi-  
the hole. We show that  a magnetic field extends r ight  tational s c a l e  of the magnetic field s t rength (in oersteds) 
down to the horizon the region in which t h e r e  exis t  near  the black hole: 
s table  c i rcu la r  o rb i t s  around a nonrotating black hole 
in  the plane perpendicular to  the magnetic l ines  of 
force.  In part icular ,  one can  have s table  o rb i t s  on 
which the par t i c le  has a n  a lmos t  100% m a s s  defect.  The 
magnetic field i s  a s tabi l izer ,  and makes  possible, f o r  
example, s table  motion in c i rcu la r  t ra jec tor ies  around 
a nonrotating black hole with ul t rarelat ivis t ic  velocity. 
In this  connection, we note that the problem of t rans -  
forming the energy of relat ivis t ic  par t i c les  moving in 
the neighborhood of a black hole into electromagnet ic  

where Mo i s  the  s o l a r  m a s s .  A magnetic field of o r d e r  
B, significantly d i s to r t s  the m e t r i c  already near the 
horizon (although it d o e s  not change the form of the 
horizon nor the  so-called sur face  gravity).  However, 
even a field that  sa t i s f ies  B << B, but extends to a suf- 
ficiently g r e a t  dis tance begins to influence the met r ic  
a t  l a r g e  r. 
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~rnst[ ' I  has obtained an exact solution of the system 
of Einstein-Maxwell equations corresponding to a 
Schwarzschild black hole embedded in a constant and 
homogeneous magnetic field (magnetic universe). In- 
vestigation of the motion of particles in this metric 
shows that the magnetic field produces a potential bar-  
r i e r  for not only charged particles but also neutral 
particles and prevents their escaping to infinity except 
for massless particles which have zero projection of 
their angular momentum onto the direction of the mag- 
netic field. This, in particular, leads to the following 
picture of the evaporation of mini black holes in a mag- 
netic universe. Photons and other massless particles 
in a state with m = 0 (m i s  the azimuthal quantum num- 
ber) escape to infinity; the remaining particles created 
near the horizon form an atmosphere around the black 
hole, this having the shape of a surface of revolution. 
The atmosphere contains charged particles, and in the 
equatorial plane the charges of opposite signs move in 
opposite directions. 

The rotation of a black hole in an external magnetic 
field in the case when the direction of the rotation axis 
does not coincide with the magnetic field direction i s  an 
unstable situation since, by Hawking's well-known 
theorem,171 a stationary black hole must be axisymme- 
tric. Because of this, the rotation axis of the black 
hole begins to turn, and ultimately is established along 
the magnetic field,E8*91 which guarantees the required 
axial symmetry. It i s  convenient to express the char- 
acteristic time of this process in terms of the gravita- 
tional unit B,: 

Another effect resulting from the rotation of a black 
hole in a magnetic field i s  a tendency for the hole to 
acquire electric ~ h a r g e , ~ ' ~ * ~ "  which can happen if there 
is plasma in the neighborhood of the hole. The amount 
of charge corresponding to a stable equilibrium with the 
plasma i s  

where a = J / M  i s  the ratio of the hole's angular momen- 
tum to i ts  mass. In this connection, we mention the 
possibility of the following situation: a black hole form- 
ing a binary system with a magnetic satellite acquires 
an  electric charge whose magnitude varies in general 
with the variation of the magnetic field strength and, 
therefore, with the orbital frequency of the pair. The 
ratio of the Coulomb and Newtonian forces exerted by 
the hole on an electron i s  

This ratio is of order unity (for a/M-$) for a hole of 
mass lOMo if B" 10'SOe. Thus, this mechanism of 
charging a black hole in a magnetic field may modulate 
the process of accretion into the hole a t  the orbital fre- 
quency of the binary system. 

Something interesting must happen when a Kerr mini 
black hole evaporates in a magnetic field. Since, a s  we 
have noted above, an atmosphere containing charged 

particles i s  formed around the evaporating hole, the 
conditions a r e  created for a black hole bombcL2] due to 
the trapping of the radiation and its "superamplifica- 
tion" 113,141 

2. SCHWARZSCHILD BLACK HOLE IN 
A MAGNETIC UNIVERSE 

As has been shown by ~ r n s t ~ ' ~ l  and ~ i n n e r s l e y ~ ' ~ ~  the 
system of Einstein-Maxwell equations for axisymmetric 
configuratibns in the electrovacuum a r e  invariant under 
transformations of the group SU(2,l) acting on the space 
of certain complex functions related to the components 
of the metric tensor and the electromagnetic potentials. 
Application of transformations in this group to the well- 
known solutions of the Einstein-Maxwell equations en- 
ables one to construct new solutions. One of these 
transformations, which i s  defined by a real  parameter 
B, leads when applied to a flat empty world to Melvin's 
magnetic and the parameter B here plays 
the role of the magnetic field strength. As a result of 
this transformation, the Schwarzschild spacetime goes 
over into the spacetime with the intervalcs1 

which coincides with the Schwarzschild spacetime a s  
B- 0 and the magnetic universe a s  M- 0. From this 
we obtain the natural interpretation of (2.1) a s  a solution 
describing a nonrotating black hole embedded in a con- 
stant and homogeneous magnetic field. The vector po- 
tential of this magnetic field has the form 

Br' sinZ 0 A ---- 
P- 6ur. 2A 

The spacetime (2.1) i s  not asymptotically flat, in 
agreement with our expectation for a homogeneous mag- 
netic field extending to infinity. Its characteristic fea- 
ture i s  the difference between the spatial sections 
8 = const and cp = const. For example, the circumference 
of a circle whose center coincides with the singularity 
increases anomalously in the plane cp = const for large 
r, whereas the length of the circumference in the plane 
9 =r /2  i s  2 r r ( l  +B2r2/4)", and this tends to zero a s  

It can be seen from(2.l) that the form of the horizon 
surface i s  not distorted by the magnetic field. As be- 
fore, the horizon is nonsingular, a s  can be  seen by cal- 
culating the invariants of the curvature tensor. In a 
local inertial frame, the acceleration of a particle held 
a t  res t  on the horizon i s  

where u, is the radial component of the four-velocity 
u*=dzu/ds. The way in which w tends to infinity a s  the 
horizon is approached differs depending on the polar 
angle 8, but for 8 =0, r the expression (2.3) coincides 
withthe Schwarzschild value. It follows from this, in 
particular, that the so-called surface gravity of a black 
hole i s  not changed by the magnetic field; for in ac- 
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cordance with the well-known theoremc18] the surface 
gravity 'K. i s  constant on the horizon. Since the expres-  
sions (2.3) and (2.1) coincide for 0 = 0 with the corre-  
sponding Schwarzschild quantities, the assert ion fol- 
lows. This i s  also readily seen directly by using the 
following definition of x :  

du" 112 du, - $1, 1 
xup = - x= (paog") ds - go, w = - 

dt ' 4.11 ' 

Let us  consider the picture of magnetic lines of force 
corresponding to the vector potential (2.2). The nonzero 
Schwarzschild components of the electromagnetic field 
tensor a r e  

Br Br2 sin 0 cos O 
F,,=- -sillz 0, F2,=- 

'IZ A2 

We go over to a local Lorentz frame: 

.. A'" - r - r s in0  
d;"A- dt, dE'=<I-dr, dEZ=ArdO, d t 3  = d 

r 3 % I\ (F. 
(2.6) 

The tetrad components of F,,  in this f rame a r e  

A' '3 

Br = - F;; = B.1-? cos 0, Bo = Fi, = - B - A-3 sin 0. (2.7) r 

As r- 2 M, the value of B, becomes zero, and the lines 
of force  become orthogonal to the horizon. This how- 
ever does not contradict the concept of a homogeneous 
field. A two-dimensional spatial section of the 
Schwarzschild geometry can be perspicuously repre-  
sented a s  a surface of revolution in three-dimensional 
space.[1g1 The "visible" homogeneity of the magnetic 
field corresponds to the projection onto a plane of the 
lines of force on this surface. Therefore, being ortho- 
gonal to some curve on the surface of revolution, the 
lines of force preserve homogeneity in the projection 
onto the plane.c201 The factor A-2 in (2.7), which leads 
to an  apparent inhomogeneity of the field, also has a 
purely geometrical origin. Indeed, the element of a 
two-dimensional spherical surface in the space (2.1) 
has the form r2A2dQ, SO that the factor in (2.7) i s  a 
geometric factor guaranteeing constancy of the flux. 

In the case when B/B, <C 1, there i s  outside the black 
hole a certain region BY << 1 in which the spacetime i s  
approximately Schwarzschild. In this region, the vector 
potential (2.2) coincides with the solution of Maxwell's 
equations on a given Schwarzschild background, this  
solution having the nature of a homogeneous magnetic 
field a t  infinity .c20' 

We construct the nonvanishing invariant of the elec- 
tromagnetic field tensor (2.5): 

This expression has a singularity a t  the point r = 0; i t  
disappears on the transition M -  0 to the magnetic uni- 
verse, which does not contain a black hole. To eluci- 
date the nature of this singularity, we go over to a tet- 
rad which is nonsingular on the horizon, which corre-  
sponds to a certain Lorentz transformation of the tetrad 
(2.6): 

The corresponding tetrad projections of the electromag- 
netic field tensor which a r e  nonzero have the form 

As a consequence of the Lorentz transformation, an 
electr ic  field a r i s e s  in this system. Near the singular- 
ity, &- 0, &- const, and E, - ". The flux of mag- 
netic lines of force through the surface of a hemisphere 
near the singularity: 

I 

2 n j  d cus ~ r ~ . \ ? / i , = ; r , . ~ ~  (2.11) 
0 

is equal to the analogous quantity for  flat spacetime. 
On the other hand, for r=  0 the field invariant (2.8) can 
be represented in the form I = (E,)'. We conclude that 
the singularity of the invariant (2.8) a t  r= 0 is not due 
to a "sucking in" of the magnetic field (as can be seen 
from (2.11), this does not occur a t  all) but has a purely 
geometrical origin since the singularity of the electric 
field i s  related to a feature of the tetrad (2.9) a s  r- 0. 

3. MOTION OF NEUTRAL PARTICLES IN 
ERNST'S METRIC 

To investigate geodesics in the spacetime (2.1), we 
use the Hamilton-Jacobi equation 

where p is the m a s s  of the particle. By virtue of the 
axial symmetry, the solution of this equation can be  
represented in the form 

s=-E~+LT+S, ( r ,  0 ) .  (3.2) 

where E i s  the energy of the particle and L i s  the pro- 
jection of the angular momentum; however, the varia- 
b les  in the equation for  S, do not separate in the gener- 
a l  case. Nevertheless, it follows from the symmetry 
of the problem that one can have purely radial motion 
along the polar axis  that coincides with motion in the 
Schwarzschild field, and a lso  planar motion for 8 =n/2, 
to which we turn below. For  trajectories in the plane 
8 =n/2, we obtain from (3.1) 

Using (3.2) and (3.3), we write down the f i r s t  inte- 
gra ls  of the equations of motion of the particle: 
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where A,=A(8 =r/2), and in what follows we shall omit 
the subscript zero. 

In contrast to the case of the Schwarzschild metric, 
the effective potential energy of the radial motion (3.5) 
increases unboundedly a s  r- w, and this feature i s  also 
preserved for massless particles provided L # 0. It fol- 
lows that the escape of massive particles to infinity in 
the plane 8 =n/2 i s  altogether impossible, while in the 
case p = 0 i t  i s  possible only for purely radial motion 
(L SO). 

For massless particles we introduce the impact pa- 
rameter p = L / ~  and, dividing the f i rs t  two of Eqs. (3.4), 
we obtain 

The vanishing of the radicand determines the turning 
points. Apart from the value of r,,, which i s  the coor- 
dinate of the turning point that goes over into the corre- 
sponding Schwarzschild value a s  B- 0, there is one 
further turning point, whose coordinate for 7 >> M, 
Bp <<I i s  

corresponding to reflection from infinity for p#  0. 

Differentiating the right-hand side of the expression 
(3.6) with respect to the parameter r, we obtain a s  a 
result of simultaneous solution of the equations 

a condition for determining the radii of closed circular 
null geodesic orbits: 

Equation (3.8) for B = 0 has one root r = 3M, while for 
sufficiently large B there a r e  no roots a t  a l l  in the 
physical region r > 2 M  since the right-hand side of (3.8) 
is a curve that goes to infinity too rapidly. To find the 
"critical" magnetic field strength B, for which there i s  
one closed null geodesic, we bear in mind that in this 
limiting case the curve corresponding to the right-hand 
side of (3.8) touches the straight line r = 3 M  a t  some 
point r,, and, therefore, the value of the derivative of 
the right-hand side of (3.8) a t  this point i s  equal to the 
value of the derivative of the left-hand side, i.e., unity. 
In conjunction with Eq. (3.8), this condition enables us 
to find r,: 

and the corresponding value of B, i s  

For B >B,, there a r e  no closed circular null geode- 
sics; for B = B,, there i s  one circular null geodesic; for 
B < B, there exist two null geodesic circles with radii 
r, and r,, for which, with allowance for the smallness 
of the ratio B,/B,, one can obtain the following approx- 
imate e-xpressions: 

Note that a s  B-  0 the value of the radius r ,  goes over 
into the Schwarzschild value r, = 3M, and r ,- oo. 

For massive particles when B <B, in the region r, 
< r < r ,  there exist circular orbits whose parameters a r e  
determined by the conditions Cleft= E, a ~ , f f / t  = 0: 

As the null geodesics (3.11) a r e  approached, these or-  
bits become ultrarelativistic, and 

Note that the factor A in the region of existence of cir-  
cular orbits lies, a s  follows from (3.10) and (3.111, in 
the interval 1 -( A 4/3. 

4. MOTION OF CHARGED PARTICLES 

To describe the motion (nongeodesic) of charged par- 
ticles in the Ernst field (2.1)-(2.2) it is necessary in 
Eqs. (3.11, (3.3)-(3.5) to make the substitution L -  L 
- ( e ~ r ~ / 2 A ) s i n ~ 8 ,  where e is the charge of the particle, 
and the parameter L now plays the role of the general- 
ized momentum corresponding to the azimuthal coordi- 
nate. Right-handed and left-handed rotation in the equa- 
torial plane a r e  now inequivalent since the Lorentz 
force has a different direction. For the same reason, 
radial motion for fixed value of L i s  different for parti- 
cles with charges of opposite sign. For values of L 
satisfying the inequality 

the effective potential of the radial motion increases 
monotonically with increasing r for any sign of the 
charge. For values of L sufficiently large compared 
with the right-hand side of (4.1), Ueff has a minimum, 
which for LB, >> 1 e 1 MB i s  situated a t  the point 

and the curve corresponding to the sign of the charge 
for which the Lorentz force i s  directed away from the 
hole passes everywhere lower than the curve corre- 
sponding to the opposite sign of the charge (Fig. 1). We 
conclude that the radial potential ba r r i e r  for particles 
of one sign of the charge is lowered under the influence 
of the magnetic field, while for particles of the opposite 
charge i t  is raised, which makes possible radial pene- 
tration of particles in the f i rs t  case a t  an energy lower 
than the corresponding Schwarzschild value. 

The parameters of circular trajectories of charged 
particles in the plane 8 =n/2 also depend on the sign of 
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FIG. 1. Effective potential for radial motion of a charged par- 
ticle (ueff/p)*= (1 - ZM/r)(l+ ( L / p  - e r / ~ ~ ) ~ )  for different 
values of the parameter E characterizing the influence of the 
magnetic field. The curves are constructed for the case 
L = 30Mp. 

the charge. The energy and generalize . angular mo- 
mentum for circular orbits depend on their radius a s  
follows: 

while the condition for the existence of circular orbits 
is that the radicand be  non-negative. 

Note that whereas in the case of neutral particles the 
influence of the magnetic field was determined by the 

.ratio B/B,, in the case of charged particles the factor 
r =eB/pB,, which is associated with the Lorentz force, 
becomes decisive. Even for a very small value of the 
ratio B/B,, the parameter r = eB/pB, need not be small 
for particles with large ratio e /p  (for an electron e/p - loz1). In what follows, we shall altogether ignore the 
"geometrical" influence of the magnetic field on 
charged particles, setting A = 1. In this case, instead 
of (4.4) we have 

It is readily seen that A ,,, has a singularity at Y = 3M, 
whereas X,-, does not. The region of existence of cir-  
cular trajectories, which i s  determined by the condition 
that the radicand in (4.5) be positive, extends right to 
the horizon for sufficiently large values of the ratio 
r = e B / p ~ ,  (Fig. 2). 

We show that,for r> 3M one can have rotation in both 
directions, but in the region 2M < r G  3M one can only 
have rotation for which the Lorentz force i s  directed 
away from the hole. The radial equation of motion i s  

FIG. 2. Regions of existence and stability of circular orbits. 
The hatched region is the region of parameter values for 
which circular orbits do not exist. The continuous curve 
bounds the region of radial stability of anti-Larmor orbits; the 
dashed curve is the region of stability of the Larmor orbits. 

where w, = e ~ / p u O  i s  the cyclotron frequency in the 
gravitational field (uo=dt/ds = yr2/a). The first  term on 
the right-hand side of (4.6) i s  the force of the gravita- 
tional attraction; the second, the centrifugal force; the 
third, the Lorentz force. Denoting the frequency of cir- 
cular geodesic motion in the Schwarzschild field by 
W, = ( ~ / r ~ ) l /  ', for circular orbits (d2r/dt2 =dr/dt = 0) 
we find 

The lower sign in (4.7) corresponds to the Lorentz force 
directed toward the hole ("Larmor" rotation); the upper 
sign, to Lorentz force directed away from the hole 
("anti-Larmor" rotation). For w,- 0, the frequencies 
(4.7) tend to i w , ,  and for w, << w, we find that &I, 
= -w:/w,, a,= -w,. From the condition that the square 
of the four-velocity be equal to unity, we obtain 

It can be  seen from this formula that Larmor motion 
(a,< 0) i s  possible only in the region r> 3 M ,  whereas 
anti-Larmor motion i s  possible in the region r >  3M 
and the region 2M<rG 3M. Combining Eqs. (4.3), (4.51, 
(4.7), we readily conclude that for r >  3M Larmor rota- 
tion corresponds to the value At+,  of the expression 
(4.5), and anti-Larmor rotation to the value A(-,. The 
angular velocity (4.7) after substitution of the corre- 
sponding values of the energy can also be written in the 
form 

For anti-Larmor rotation, the point r = 3M is not a 
singularity; for Larmor rotation y(,,(r- 3M)- m, a s  in 
the case of geodesic motion. Sufficiently far from the 
point r = 3M, namely for 

the difference between the energies corresponding to 
the two rotations in opposite direction a t  given radius 
is expressed by 
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for positive charge, the energy corresponding to Lar- 
mor rotation is greater. At even larger radii, the Lo- 
rentz force become predominant, and we obtain 

whence for Larmor orbits we obtain the usual value of 
the cyclotron radius. Thus, Larmor rotation can be re- 
garded a s  cyclotron rotation distorted by the gravita- 
tional field, while anti-Larmor rotation i s  possible only 
in the combined field of a black hole and the magnetic 
field. 

To anti-Larmor rotation in the region 2M < r  3M 
there correspond both signs in front of the root in (4.5). 
For r >> 1 there exist circular trajectories whose radii 
a r e  close to the radius of the horizon: 

As the horizon i s  approached, the energy pyt,, of the 
anti- larmor trajectories tends to zero, which i s  due to 
the gravitational mass  defect. The energy measured in 
a local Lorentz frame (2.6) on the boundary determined 
by the equality sign in (4.13) i s  equal to the finite quan- 
tity i= p a .  To this energy there corresponds the 
gravitational mass defect 

which can be arbitrarily close to 10w0. 

The dependence of the energies of the Larmor and 
anti-Larmor trajectories on r for various values of the 
parameter c is shown in Fig. 3. Note that for r >  3M 
there exist Larmor trajectories characterized by an 
arbitrarily large value of y, and that the ultrarelativis- 
tic nature of the motion i s  not due to the proximity to 
the closed null geodesic r = 3M. In particular, if the 
condition opposite to (4.10) i s  satisfied, 

We now investigate the stability of these circular 
orbits of charged particles in the equatorial plane. For 
stability in the radial direction, i t  i s  necessary that 
82~ef f /8 rZ>  0. The resulting inequality can be  repre- 
sented in the two equivalent forms 

It is clear from this that for r >  6M the motion i s  radial- 
ly stable irrespective of the magnetic field strength and 
the direction of the rotation, a s  i s  the case for B =O.C1O1 
For r <  6M, the regions of stability in the radial direc- 
tion for Larmor and anti-Larmor rotations a r e  differ- 
ent since for given r and c the energies that must be 
substituted in (4.16) a r e  not equal. For sufficiently 
large c ,  the rotation corresponding to the energy value 
y(,, a r e  stable until r = 4.3M; the rotation with energy 

FIG. 3. Ratios of the en- 
ergy to mass, y =  E / b ,  for 
circular orbits correspon- 
ding to the two signs in 
E q .  (4.5); the upper sign 
corresponds to continuous 
curves, the lower sign to 
the dashed curve. 

Y(-, i s  stable right to the horizon. In particular, there 
exists a stable anti-Larmor orbit for which the mass 
defect i s  given by (4.14). 

To investigate the stability in the vertical direction, 
in the Hamilton-Jacobi equation we make an expansion 
with respect to the angle a =n/2 - 9 near the plane 
0 =n/2: 

Collecting the terms proportional to a2, we reduce the 
corresponding contribution to the form 

Taking into account the expression (4.7) for the fre- 
quencies, we readily see that the quantity in the square 
brackets i s  equal to w: and, thus, i s  positive irrespec- 
tive of the energy and the direction of the rotation, 
which in i t s  turn means that small oscillations with re- 
spect to the angle 0 take place with real  frequency, so  
that the motion in the approximation of small  oscilla- 
tions is stable for a l l  allowed r. 

5. RADIATION OF SCALAR WAVES 

One can distinguish three basic regimes of radiation 
of waves by particles moving in circular orbits in the 
Schwarzschild field: (a) radiationof the fundamental 
harmonic in nonrelativistic motion; (b) radiation of 
harmonics of order ya relative to the fundamental har- 
minic for motion in ultrarelativistic orbits  close to the 
null geodesic r = 3M; (c) radiation of harmonics of order 
yS for motion along nongeodesic trajectories sufficiently 
far from r=  3M with ultrarelativistic velocity. The dif- 
ference between the regimes (b) and (c) can be under- 
stood simply by using arguments about the formation 
length of radiation with given frequency.c211 For motion 
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in an orbit close to the null geodesic, the high frequen- 
cy beam emitted by a relativistic particle follows the 
particle because the trajectories of a photon and ultra- 
relativistic particle a r e  nearly the same. As a result, 
radiation of a high frequency in a given direction i s  
formed, not over a short section of the trajectory of 
order r /y,  a s  in the case of flat s p a ~ e t i m e , ~ ~ ~ ]  but over 
a length of the order of the radius r of the trajectory. 
Therefore, the spectral distribution of the radiation de- 
creases exponentially, not a t  frequencies of the order 
of y3 relative to the fundamental harmonic, a s  in flat 
space, but a t  frequencies that a r e  y times lower. The 
radiation of relativistic particles in the regime (b) has 
been investigated in detail by a number of a ~ t h o r s p - ~ * ~ ~ ~  
and we shall not consider this case further. The major- 
ity of the relativistic trajectories considered above, ex- 
cept'for-the Larmor orbits near r = 3M, correspond to 
regime (c). Qualitative arguments relating to the rad- 
diation in this case were considered inc3', but a quanti- 
tative theory was not constructed. Below, we give the 
complete theory of the radiation of scalar and electro- 
magnetic waves in the regimes (a) and (c), and we also 
follow the transition from regime (c) to regime (b). 

All the following treatment is given for the case B/B, 
<<I. In this case, there exists outside the hole a re- 
gion B r  << 1 in which we have an approximately 
Schwarzschild spacetime, and to i t  all the conclusions 
derived berow apply. This region must be sufficiently 
large to encompass the wave zone, for which [in re- 
gime (a)] we require that B/B, << wM(<< 1). In all  that 
follows, the passage to the limit r- - denotes transition 
to the wave zone. 

We now turn to the calculation of the scalar radiation 
of charged particles moving in circular trajectories of 
radius r, (the subscript zero i s  introduced to distinguish 
the orbital radius from the coordinate r at  which the 
radiation field i s  considered). We write down the scalar 
wave equation in the Schwarzschild metric: 

where f i s  a coupling constant. Separating the variables 
in Eq. (5.1), we find that 

$ = R ~ .  ( r )  Y I ,  (0, rp) e-I"', o-mQ, 
I n ,  

(5.2) 

where Y,, a r e  spherical functions, and R,, satisfies the 
equation 

We agree to normalize the two linearly independent 
solutions of the homogeneous equation without right- 
hand side corresponding to (5.3) by the asymptotic con- 
ditions 

1 Le,", Z l e ( r + m ) = -  
( 2 0 ) ' "  r ' 

where j3 i s  the reflection coefficient, i ts  value being un- 
important in what follows. The solution 2 on the hori- 
zon must contain only a wave falling into the hole. Us- 
ing these functions, we obtain a retarded solution of 
Eq. (5.3) in the form 

where B(Y -yo) i s  the Heaviside step function. 

The intensities of the radiation going to infinity pout 
and falling into the hole PIn can now Qe expressed in 
terms of the values of the functions R and R a t  the point 
ro corresponding to the orbital position o f the  

- (5.6) 
The radial functions R,, and g,, can be obtained explic- 
itly in the case of low frequencies wr << lC14' and in the 
case I ,  m >> 1, corresponding to predominant radiation of 
high harmonics. In the first  case, the solutions nor- 
malized in accordance with (5.4) have for I = 1 the form 

3 1 1- - m,. - = -- sJf3<,,: (20,)1:.  [(&YiU ( : K F  4- 2 4  

Q=-211f0, x=r/2,l i-1.  

We consider the radiation produced by a particle 
moving with nonrelativistic velocity. In this case, we 
must assume in (4.9) that X << 1, which corresponds to 
the condition 51rO<<l of applicability of Eqs. (5.7). Sub- 
stituting (5.7) in (5.6), we obtain for the intensity of the 
long wavelength radiation that escapes to infinity and 
that falls into the hole the expressions 

pi"-~/~Qz(Ao/r.~)z(fp)z[(1+2x)sin (p+2Q cos cy]'. (5.8) 

The intensity of the radiation that falls into the hole 
contains an oscillating factor which depends on rp = Q 
ln[x/(x+l)]. Physically, this i s  due to the fact that, 
because of reflection from the barrier,  the "outgoing" 
solution contains both infalling and reflected parts in the 
near zone, between which interference occurs. Since 
Ma<< 1 in the case considered, i t  can be seen from (5.8) 
that the main part  of the radiation produced by a non- 
relativistic particle moving near the gravitational radi- 
us falls into the hole except for the cases when the or-  
bital radius of the particle i s  in a small neighborhood of 
the points r, determined by the equation 

Q l n  (1-2Mlr.) =nn, n=l ,  2 . .  . (5.9) 

We now consider the scalar radiation of an ultrarel- 
ativistic particle. In this case, high harmonics of the 
orbital frequency a r e  emitted, and to find the intensity 
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of the radiation POUt [the value of P in case (c) i s  ex- 
ponentially small] one must know the radial function srw 
in the approximation of high frequencies, for which i t  
is appropriate to use the WKB method. After the change 
of argument r *  =r  - 2M + 2M I n ( r / 2 ~  - 1) and substitu- 
tion R,, =u,,/r, the homogeneous radial equation is re- 
written in the standard form for applying the WKB 
method: 

#uddr.'+ (u>'-V~,~)U~.-O, 

V,,,= ( I -2M/r)  j l ( l + i ) / f  +2M/r') . (5.10) 

Ultrarelativistic orbits around a black hole embedded 
in a homogeneous magnetic field exist for r >- 3M. It is 
easy to see that the point r, corresponding to the posi- 
tion of an ultrarelatistic particle i s  always below the 
barrier produced by the curve Ven(r) near the right- 
hand wing. Indeed, the distance between the turning 
point determined by the intersection of the curve Veff (r) 
with the straight line u2 =m2SZ2 (see Fig. 4) and the point 
r, is determined by the equation 

(5.11) 

in which m 2 a  1'. For y >> 1, Im 1 >> 1 we find from (5.11) 

As will be shown below, the range of values of the ratio 
(1 -m)/m for which the intensity of the radiation is ap- 
preciably nonzero i s  of order y-', from which our as- 
sertion follows. The nature of the quasiclassical solu- 
tion of Eq. (5.10) depends essentially on the order of 
magnitude of w ( r , -  3M). If this quantity is not large, 
then the quasiclassical solutions must be fitted a t  the 
top of the barrier.  In the absence of a magnetic field, 
the corresponding problem was solved ink'51. In our 
case, the calculations a r e  completely equivalent; it i s  
only necessary to use the relations (4.3) and (4.4) for 
the energy. The spectral distribution of the radiation 
repeats the results ofk1, and we shall not give i t  [ r e -  
gime (b)]. We merely note that the number ma of the 
harmonic above which the intensity decreases rapidly is 
equal to 

and for the major part of the radiation 1 = m. 

We now consider the radiation of harmonics 
m >> [SZ(Y, - 3 ~ ) ] - '  [regime (c)]. In this case, a large 
number of waves fit under the ba r r i e r  Vem (7-1, and to 
match the solutions of Eq. (5.10) i t  i s  sufficient to re- 
tain the linear term in the expansion of the effective po- 
tential in the neighborhood of the turning point; a s  a re- 
sult, we reduce this equation to the form 

r / M  

FIG. 4. Effective potential of the radial equation for the sca- 
lar field (5.10). The circles are the positions of the ultrarel- 
ativistic circular orbits of charged particles. The intersec- 
tion of the horizontal lines with the curve Vef, determines the 
position of the turning points, at which the quasiclassical so- 
lutions are fitted. 

As a result of fitting (5.15) to the infalling wave on the 
horizon, and far  from the hole to the asymptotic ex- 
pression (5.4), we find 

Going over from the Airy function to the MacDonald 
function K,,, ,  we write the value of the radial function 
a t  the position of the particle in the final form 

where 

Bearing in mind that the MacDonald function decreases 
exponentially for values of the argument large compared 
with unity, we readily conclude that the main contribu- 
tion to the radiation of the harmonic m of the fundamen- 
tal frequency SZ i s  made by multipoles I satisfying the 
condition 1 - m s mf2, and that the spectrum contains 
the harmonics 

As in the case of flat s p a ~ e t i r n e , ' ~ ~ ~  the maximal num- 
ber of radiated harmonics i s  proportional to the third 
power of the energy, but, in addition, i t  depends 
strongly on how close the particle orbit i s  to the closed 
null geodesic r,= 3M. One can see  that a s  the radius 
of the orbit approaches 3M the cubic dependence of m,,,, 
on y i s  replaced by a quadratic dependence. Indeed, in 
the considered approximation one can se t  r,/M - 3 << 1 
if a t  the same time mSZ(r,- 3M) >> 1. In conjunction with 
(5.19), we obtain the restriction 

The Airy functions a r e  a solution of this equation: which must be satisfied for Larmor orbits if c2>>r/M 
u=A@ ( 9 )  iBIIr ( q ) ,  - 3. Taking into account (5.20), we find by means of 

1 - ya i - ya 
~ ( q ) = ~ ~ c o s ( j + y q ) d y .  l ~ ( q ) = y ~ i l l l ( j + Y q ) d y .  Yn Eqs. (4.3) and (4.5) 

o o (5.15) 7(+, ( r o / M - 3 )  =3'"e, (5.21) 
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from which i t  follows that a s  Yo- 3M the maximal num- 
ber  of the harmonic i s  

Thus, the quadratic dependence of the maximal f re -  
quency of the radiation on the particle energy (5.13) 
characteristic for  motion in orbits  close to the null 
geodesic [regime (b)] is reproduced in the passage to 
the limit from the radiation regime (c) to the regime 
b). 

Substituting (5.17) in (5.61, we obtain the intensity of 
the radiation: 

For  large values of 1 and smal l  values of the rat io 
(I - m)/m, the following approximation is valid for 
spherical functions: 

Using this formula and taking into account the quasicon- 
tinuity of the spectrum, we go over from summation 
over 1 and m to integration over J ,  and the parameter  

2m (r, - 2M)' y=- 
3y3 ro(r, - 3Y) ' 

a s  a result  of which we obtain 

One can show that the distribution of the intensity with 
respect to the parameter  $, which i s  related to the 
multipole order 1 by (5.181, i s  closely correlated to the 
angular distribution. Indeed, for  1 >> 1 and 1 -m <<m 
the square of the modulus of the spherical function has 
a maximum at  8 = n/2, and for  smal l  angles a! = 8 - 7r/2 
the following approximation in t e rms  of Hermite poly- 
nomials holdst4': 

Calculating the mean value of the square of the angle 
with the distribution (5.27), we find that the parameter  
f/ coincides to within a factor with the mean square 
value of the angle: 

Thus, the multipole and angular distribution of the r a -  
diation of an  ultrarelativistic particle a r e  intimately 
related. Taking into account (5.28), we find that the 
range of angles in which radiation is emitted i s  equal to 
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The integration with respect  to the parameter  J ,  in 
(5.26) is performed by means of the formulas given 
in  C221, and leads to the following expression for  the 
spectral  distribution of the radiation: 

Fo r  smal l  y, the intensity increases as y5/3; for  
la rge  y ,  i t  decreases  exponentially. The spectral  curve 
has a maximum correspodding to the critical harmonic 

under which condition the treatment given above i s  valid 
[regime (c)], then the radiation of relativistic particles 
in the gravitational field qualitatively repeats the pic- 
ture  of the radiation in flat spacetime, though the pa- 
r ame te r s  that characterize the angular and spectral  
distributions depend on how close the orbital radius is 
to the radius of the null geodesic. 

Integrating in (5.30) with respect  to y ,  we find the 
total intensity of the radiation: 

2  fyy' r - 3M p = -  0 
3 ( r ro - 2 , )  

(5.32) 

This quantity i s  y2 t imes greater  than the intensity of 
geodesic synchrotron radiation, but a s  Y, tends to 3M 
the dependence on Y becomes quadratic in accordance 
with (5.21). 

'R. Ruffini and J. R. Wilson, Phys. Rev. D 12, 2959 (1975). 
2 ~ .  A. Breuer,  P. L. Chrxanowski, H. G. Hughes, and C. W. 

Misner, Phys. Rev. D 8: 4309 (1973). 
3 ~ .  M. T e ~ o v ,  V. P. Khalilov, G.  A. Chizhov, and I. I. Mag- 

levannyi, Pis'ma Zh. Eksp. Teor.  Fiz. 19, 503 (1974) [JETP 
Lett. 19, 267 (1974)j; Zh. Eksp. Teor.  Fiz. 68, 377 (1975) 
[Sov. Phys. J E T P  41, 183 (1975)l. 

'P. L. Chrzanowski and C. W. Misner, Phys. Rev. D 10, 1701 
(1974). 

5 ~ .  A. Breuer,  Lect. Notes in Phys. 44, 139 (1975). 
6 ~ .  J. Ernst,  J. Math. Phys. 17, 54 (1976). 
IS. W. Hawking, Comm. Math. Phys. 25, 152 (1972). 
8 ~ .  H. Press ,  Astrophys. J. 175. 243 (1972). 
'M. D. Pollock, Proc. R. Soc. London Ser. A 350, 239 (1976). 
'OR. M. Wald, Phys. Rev. D 10, 1680 (1974). 
"A. R. King, J. P. Lasota, and W. Kundt, Phys. Rev. D 12, 

3037 (1975). 
12w. H. P r e s s  and S. A. Teukolsky, Nature 238, 211 (1972). 
13ya. B. ~el 'dovich,  Zh. Eksp. Teor. Fiz. 62, 2076 (1972) [Sov. 

Phys. JETP 35. 1085 (1972)j; Pis'ma Zh. Eksp. Teor. Fiz. 
14, 270 (1971) [JETP Lett. 14, 180 (1971)j. 

1 4 ~ .  A. ~tarobinskir ,  Zh. Eksp. Teor. Fiz. 64, 48 (1973) [Sov. 
Phys. J E T P  37, 28 (1973)j. 

1 5 ~ .  J. Ernst, Phys. Rev. 168, 1415 (1968). 
16w. Kinnersley, J. Math. Phys. 14, 651 (1973). 
"M. A. Melvin, Phys. Rev. B 139, 225 (1965). 
185. M. Bardeen. B. Car ter ,  and S. W. Hawking, Comm. Math. 

Phys. 31, 161 (1973). 
"L. D. Landau and E. M. Lifshitz, Teoriya Polya, Nauka 

(1975) (Translation: The Classical Theory of Fields, Perga- 

D. V. Gal'tsov and V. I .  Petukhov 427 



mon Press, Oxford (1975)). 2 2 ~ .  A. Sokolov and I. M. Ternov, ~el~ativistskir  6lektron 
'OR. S. Hanni and R. Ruffini, Lett. Nuovo Cimento 15, 189 (The Relativistic Electron), Nauka (1974). 

(1976). 
2 1 ~ .  B. Khriplovich and c. V. Shuryak, Zh. Eksp. Teor. Fiz. 65. 

2137 (1973) [Sov. Phys. JETP 38, 1067 (1974)l. Translated by Julian B. Barbour 

Quantum interferometer as detecting element of a 
gravitational antenna 

A. V. Gusev and V. N. Rudenko 

Moscow State University 
(Submitted 18 October 1977) 
Zh. Eksp. Teor. Fiz. 74, 819-827 (March 1978) 

The properties of a quantum interferometer as a probe of small acoustic perturbations of a gravitational 
detector are studied. The low-frequency fluctuations of a Josephson contact are calculated, and on this 
basis formulas are obtained for the limiting sensitivity of the gravitational antenna. It is shown that when 
quantum restrictions are taken into account it is possible in principle to achieve the resolution necessary 
for second-generation antennas. 

PACS numbers: 04.80. +z 

1. INTRODUCTION 

Braginsky et ~ 1 . ~ "  have formulated a very general 
prediction for the parameters of bursts of gravitational 
radiation which can be reasonably expected a s  the result 
of cosmic catastrophes occurring with participation of 
superdense s tars  (Y -Y,). For a frequency of events no 
less  than ten events per year and a duration of bursts 
~ -10" -10-~  see the upper limit of their energy densi- 
ty a t  the Earth l ies in the range W- 1- lo4 erg/cma 
(Braginsky's estimate takes into account components 
with M -3-30M. and arange < -0.1-10-3 for the frac- 
tion of the total energy converted to gravitational radia- 
tion). For a quadrupole gravitational detector (GD) with 
masses m, linear dimension 1,-lo2 cm, and a mean 

cm/sec2, i.e., the sensitivity barely reaches the opti- 
mistic limit of the prediction. Increase of the mass of 
the GD to 5x106 g (Ref. 4) provides only F/m - 10-lo cm/ 
sec2. 

In addition there is an important limitation due to the 
possiblity of amplifying the probe signal. The amplifier 
noise temperature must satisfy the condition 

For the best low-noise amplifiers in the frequency 
range considered, T,- 1 K . [~ ]  It is therefore clear that 
only W= lo3 erg/cm2 is accessible to detection; with in- 
crease of the mass W = 10 erg/cm2. 

frequency w, - 3 X lo4 rad/sec th i s  is equivalent to an ex- 
It follows from Eqs. (1) and (2) that an increase of the 

ternal perturbation with a relative acceleration of the 
masses F/m -lo-' cm/sec2 in the optimistic case (W= pumping frequency we would be a radical measure. 

However, this is hindered by the following considera- 
lo4 erg/cm2) and F/m - 3 X lo-" cm/sec2 in the pessi- 

tions. The first ,  which is technical in nature, is the 
case ( w = l  erg/cm2, r -2  lo-' It is unavailability to experimenters of pumping generators 

that the potential sensitivity of GD permits detection of 
with sufficient stability in the range we>3 x loL0. A sec- 

such excitations if the Brownian motion is reduced by 
ond, which is fundamental in nature, is the intrusion in- 

cooling to T ,- 3 X K o r  as  the result of a high me- 
to the region of quantum limitations, according to which 

chanical quality factor Q, - 1010.c21 The reason for the 
Eq. (1) is valid a s  long a s  kT, Z E w , ,  and the maximum 

delay in construction of second-generation antennas is 
sensitivity of the antenna will not exceed the quantum 

the lack of efficient detecting elements which measure 1:-:+[61 
l l l l l l L  

small vibrations of the GD. Actually, in the best con- 
verters of the parametric type with a pumping frequen- 1 iio '" 
cy we under matched conditions, their intrinsic fludua- (:) m , n a ~ ( < )  . (3) 
tions at temperature Te limit the sensitivity of the an- 
tenna at the levelc3] For T,-2-4 K the limiting value of the pumping fre- 

quency lies a priori  somewhere near we- 10". 

In recent years the hopes of a number of experimental 
groups have been based on the use of quantum magneto- 

(') meters employing the Josephson effect-so-called 
Substitution into Eq. (1) of the values Te = 2 K, m = 3 x SQUIDS;" However, our analysisc7' has shown that sin- 
lo4 g, w, = 3  X l O l " ,  and i = 2 X sec gives F/m 2 lom9 gle-contact SQUIDS with external pumping have the same 
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