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A one-dimensional electron-phonon system at T = 0 K, describable by the Frijhlich Hamiltonian, is 
investigated by the renormalization-group method. Because of certain features of the given modei-in 
particular, the presence of two cutoff parameters in the problem, the renormalization-group analysis is 
performed using normalization parameters and is formulated as a theory with dimensional constants. It is 
shown that, up to the third approximation of the renormalization group, for the given model the 
dimensional constants of the problem drop out in the low-energy region, the theory becomes "massless" 
and there is a finite renonnaliition of the coupling constant. Under these conditions the Green functions 
have power asymptotic forms in the low-energy region, corresponding to a scaliig picture. 

PACS numbers: 63.20.Kr 

1. Interest in the study of quasi-one-dimensional sys- 
tems has grown recently.[" These objects possess a 
whole series of properties that a r e  intrinsic only to 
one-dimensional systems, the prime example of these 
properties being the Peierls transition.['' Because of 
the large fluctuation effects, i t  is not possible to give a 
sufficiently complete description of the properties of 
quasi-one-dimensional systems within the framework of 
some or  other variant of mean-field theory. In view of 
this the need ar ises  for a more correct solution of the 
purely one-dimensional problem than that given by the 
mean field approximation. The renormalization-group 
method has often been used to study the one-dimension- 
a1 p r~b lem. [~ '~ ]  In these papers a four-fermion interac- 
tion model with twoc2931 or  morec4] coupling constants 
was considered. In the present paper the renormaliza- 
tion-group method is used to study a one-dimensional 
electron-phonon system. Analysis of this model i s  of 
undoubted interest, since phenomena such as supercon- 
ductivity and the Peierls transition a re  directly con- 
nected with the electron-phonon interaction. 

The model under consideration and those investigated 
previously a re  examples of models with one or  more 
dimensional coupling constants and several dimensional 
constants, some of which appear as natural cutoff pa- 
rameters in the perturbation-theory expansions. These 
dimensional constants can be regarded a s  certain 
"masses" in the theory. The renormalization-group 
method makes i t  possible, primarily, to investigate the 
asymptotic behavior of various Green functions in a 
certain region of energies or  momenta. It may be as- 
sumed that the pattern of the asymptotic behavior is 
determined by two factorsc5]: 1) whether o r  not the 
dimensional constants of the theory drop out of the cor- 
responding equations in the asymptotic limit, and 2) the 
behavior of the invariant coupling constants or invariant 
charges. The most favorable situation corresponds to 
the case when the dimensional constants drop out and 
we can then speak of a "massless" theory. In such a 
theory, in the case of a finite renormalization of the 
coupling constants, for example, the asymptotic forms 
of the Green functions have a purely power behavior. 

Such behavior was established for the models con- 

mensional electron-phonon system a t  T = 0 K carried 
out below on the basis of the Frijhlich Hamiltonian 
makes i t  possible to elucidate the distinctive features 
of this model and shows that, in the low-energy region, 
to within the third approximation of the renormalization 
group, the Green functions have a power-law behavior 
for this model too. 

2. We shall consider a one-dimensional electron- 
phonon system at T = 0 K. We assume that the electrons 
a re  well described in the tight-binding approximation. 
We disregard the Coulomb interaction between the elec- 
trons, assuming it  to be sufficiently weak. It may be 
supposed that this assumption is justified for the whole 
series of quasi-one-dimensional compounds in which 
the magnitude of the Coilomb interaction is small be- 
cause of the large polarizability of the molecules com- 
posing the crystal."' In this case the system can be 
described by the FrShlich ~ a m i l t o n i a n ~ ~ ]  

where a;,, (a,,,) is the creation (annihilation) operator 
for an electron with momentum k and spin o, b: (b,) is 
a phonon creation (annihilation) operator, and g,(q) is 
the electron-phonon interaction constant. We take R = 1. 
We consider the case of a half-filled band; the Fermi 
momentum k, i s  equal to k, =n/2a ,  where a is the per- 
iod of the chain. For the electron energy ~ ( k ) ,  the fre- 
quency w,(q) of the bare acoustic phonons, and the in- 
teraction constant g,(q), we use the expressions 

E (k) = - E ~  cos ka, o o ( q )  = c o , l s i ~ ~  (go/') 1 ,  
g O z ( q )  =p, I dill ( q a / 2 )  1 ,  (2) 

where 6, is the half-width of the band, w, i s  the value 
of the phonon frequency a t  the edge of the Brillouin 
zone, and p, i s  a certain constant. The zeroth-order 
electron and phonon Green functions have the form 

sidered in Refs. 2-4. The investigation of a one-di- where w and v a r e  the electron and phonon energies, 
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FIG. 1. 

respectively. 

By investigating the perturbation-theory diagrams 
for the electron self-energy part  C(k, w), the phonon 
self-energy part II(q, v) and the vertex function 
~ ( k ,  k +q,q; w, w +v, v), it can be established that the 
diagrams corresponding to values q - 2k, of the external 
phonon momentum and values k - k, of the external 
electron momentum give the most singular contribu- 
tions. Therefore, a s  in the previous p a p e r ~ , [ ~ - ~ I  we can 
confine ourselves to investigating the behavior of the 
quantities of interest to us as functions only of the en- 
ergy variables w, w + v and v, fixing the external phonon 
and electron momenta: q = 2kF, k =k,. We shall con- 
sider the structure of the perturbation-theory expan- 
sions for the quantities C(k,, w) = ~ ( w ) ,  n(2kF, v) = n(v) 
and r(2k,, k,; w,  w + v ,  v) = r(w, w + v, v). The diagrams 
for the quantities XI and Z in the chosen approximation 
a re  given in Figs. 1 and 2, where the solid lines corre- 
spond to electrons and the dashed lines to phonons. 
Diagrams for the quantity r a r e  given, e.g., in Fig. 55 
in Ref. 7. We shall investigate the expansion for II. 
The contribution of the diagram in Fig. l a  i s  equal to 

where i t  i s  convenient, henceforth, to denote the bare 
dimensionless coupling constant by go=g~(2kF)/2na~,w0. 
The contribution of the diagram in Fig. l b  i s  equal to 
(we give the leading term) 

It can be seen from (4) and (5) that the expansion for the 
quantity ll contains two cutoff parameters: c, and w,. 
An analogous situation obtains for the quantities C and 
I". The parameter E ,  comes from the integration of 
electron-hole loops with no internal phonon insertions. 
The contributions of diagrams with internal phonon in- 
sertions contain the cutoff parameter w,. We consider 
now the expression for C. The contribution of the dia- 
gram in Fig. 2a is equal to 

c d 

FIG. 2. 
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where a =wo/t0. This behavior of the quantity C means 
that in the present problem we have the analog of the 
so-called "infrared catastrophe" noted in Ref. 8, which, 
in the present case, consists in the fact that an electron 
near the Fermi level can emit o r  absorb an arbitrary 
number of phonons with small momenta. Terms of this 
type would play the leading role in a study of the region 
of momenta q - 0, k - k,. The problem in this case is 
analogous to the investigation of the infrared asymptot- 
ic  forms in  electrodynamic^.^^^ However, since, in the 
model under consideration, g,(q) - 0 a s  q - 0, this prob- 
lem i s  not of interest for the given model. In the case 
of interest to us  (q =2k,, k =k,), terms of this type lead 
to the appearance of the additional small expansion pa- 
rameter ct. The contribution of the second-order dia- 
gram for the vertex function r is equal to (we give the 
leading terms) 

Thus, the perturbation-theory expansions for the 
functions C, II and contain two cutoff parameters w, 
and E,, and a s  an expansion parameter we have not only 
the dimensionless coupling constant go but also the 
adiabatic parameter a. Taking into account the small- 
ness of the parameter a ,  in the expansions for the 
quantities C, II and l? we shall confine ourselves below 
to terms linear in a. From (7) and from the expression 
for the exact phonon Green function 

it follows that the structure of the perturbation-theory 
expansions for the functions D and I' depends on the 
relative magnitudes of the quantities v, w and w,; e.g., 
in the region w << w,, v< w,, in addition to the purely 
logarithmic terms these expansions will also contain 
terms proportional to v2/w;. Of most interest to us is 
the region v << w,, w << w,, since phenomena such a s  
superconductivity and the Peierls transition a r e  linked 
with the behavior of the corresponding Green functions 
a t  small values of the electron and phonon energies. 
Below we shall investigate the region v << w,, w << w,. In 
this region, when only the leading terms in the parame- 
ter  a a r e  taken into account, the perturbation-theory 
expressions for the quantities C, II and r in the chosen 
approximation have the form 

+ago In -- t l n  - -12 +i4g2 In - -i- ( 1,l I W  - 1  n (  I:J ; I z  
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It follows from (9) that in  the low-energy region the 
perturbation-theory expansions have a logarithmic 
structure and we can apply the renormalization-group 
method to investigate the behavior of the quantities of 
interest to  us in this region. The essential point is that 
the logarithmic theory is valid only in the asymptotic 
region, and therefore the renormalization-group anal- 
ysis must be performed, using the general approach of 
Ref. 5, by introducing additional quantities-normaliza- 
tion parameters-into the theory. Using the renormal- 
ization-group method we shall investigate the behavior 
of the electron and phonon Green functions. 

3. Below we shall indicate perturbation-theory re- 
sults by the index 0. The perturbation-theory functions 
G'O', D"' and rtO' depend not only on the variables w, v 
and w + v but also on the bare quantities w,, g0(2k,) and 
€lo). From the perturbation-theory functions, using a 
renormalization transformation, we can construct 
another set  of functions-the so-called renormalized 
functions G, D and r. The latter a r e  defined to within 
arbitrary renormalization constants a ( .  This arbitrari- 
ness can be fixed by introducing a normalization param- 
eter X with the dimensions of energy and subjecting the 
renormalized functions to normalization conditions. We 
assume that the renormalized functions depend not only 
the  variables w, v and w+ v but also on the renormalized 
coupling constant g(2k,) and the bare quantities w, and 
e,. We note that, by following the general approach of 
Ref. 5, we can analyze the dependence of the functions 
G, D and I: on renormalized quantities G(2kd and to. 
The latter can be defined as the values of the poles of 
the corresponding Green functions of perturbation theo- 
r y ,  and the values of these poles should be calculated 
to the required accuracy in the coupling constant. How- 
ever, a s  will be seen, there is  no need for this in the 
case under consideration; in the final results, at least, - 
i t  i s  always possible to make the replacement w,- w, 
eo- gr 

From the three dimensional quantities w,, co and 
g(2k,) we can extract one dimensionless renormalized 
coupling constant g=$(2kJ/2narowo and one dimension- 
less  parameter-the adiabatic parameter a = w,/e,. We 
shall regard the quantity o, a s  the dimensional constant 
of the theory. In place of the functions r and I?"' it i s  
convenient to introduce the dimensionless quantities 

We subject the renormalized functions to the following 
normalization conditions: 

Normalization a t  a point (v2 = -1') i s  chosen in order to 
fulfill the condition that the constants z ,  be real. The 
renormalization-group transformation can now be writ- 
ten in the form 

In (12) the quantities z ,  a r e  functions of the form 
2,  =~,(wo,~,&?o,X). 

Differentiating the equation for D and D"' in (12) with 
respect to X a t  constant w,, a and go, and using the 
homogeneity of the function D, we obtain the following 
equation for D(v, w,, a,q, x)[~': 

Here t =  ln(v/v,J, where v, i s  a certain characteristic 
energy, dD= -1 i s  the canonical dimension of D, and 
the functions B(g, a, w,/x) and yD(g, a, w , / ~ )  a r e  equal to 

In (14), after the differentiation, the quantity go i s  ex- 
pressed in terms of g. The equation for G(w, w,, a,g, X) 
has the form (13) with the replacements v - w, y,- y, 
and dD- d,=-1, where the quantity a ,  w,/X) is 
equal to 

alnz ,  
yo=).-. aa (15) 

The solution of (13) has the form 

where the functions g(t) and O,(t) obey the equations 

with the boundary conditions 

g(0) =& a, (0) ==a,,. 

The quantity g(t), determined by Eq. (I?), i s  called the 
invariant coupling constant o r  invariant charge. The 
quantity iS,(t) i s  an effective parameter of the theory. 

Using the perturbation-theory results, we shall deter- 
mine the functions B, y, and y, in the low energy re- 
gion. We define the latter by the conditions 

In this region we choose a normalization point X satis- 
fying the condition 

I?.lK00. (20) 

We shall consider the region of variation of the vari- 
ables w and v such that the ratios w/X and V/X take the 
following values: 

In accordance with the condition (21) we put the quantity 
v, equal to vo= I X  1. In the low-energy region the per- 
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turbatiobtheory functions G "' and D"' a re  defined in 
the natural way in terms of the expressions (9) for the 
quantities Z and KI. The function fa'  in the same re- 
gion i s  determined, in accordance with (lo), from the 
expression (9) for I? ''. In the approximation of interest 
to us, i.e., the second approximation of the renormal- 
ization group, i t  is necessary to take into account the 
terms of order g i  in the perturbation-theory expres- 
sions. In this case, taking into account the smallness 
of the parameter a ,  we shall neglect terms of order 
ag:, i.e., in the expression (9) for r@" we shall not take 
into account the penultimate term, which couples the 
variables w , v and o + v. 

Using the normalization conditions (11) for  the func- 
tions D and G, from (12), taking (20) into account, we 
obtain 

where 7) = ln(l/a). In an analogous way, using the nor- 
malization condition (11) for the function f with the aid 
of formulas (22), we find 

Eqs. (22) and (23) determine the quantities z,, z, andg 
a s  functions of go, w,, a and 1. Substituting the for- 
mulas (22) and (23) into (14) and (15), differentiating, 
and expressing the quantity go in terms of g with the aid 
of Eq. (23), we obtain 

It follows from (24) that the functions B, y, and y ,  do 
not contain the quantity w,/k that plays the role of the 
"mass variable" in the given problem. The dimension- 
a l  constants have dropped out of the basic equations of 
the problem, and in the asymptotic limit we have a 
"massless" theory. 

We shall consider the first  approximation of the re- 
normalization group, retaining the first  terms in the 
right-hand sides of Eqs. (24). Below we shall need the 
form of the functions D(vo, J,(t), a, 2(t), X) and 
G(vo, &,(t), a,g(t) ,k).  Since we have taken v,= I X  I ,  ac- 
cording tothe conditions (11) these functions a r e  equal to 

From (17) we find, in the first  approximation, 

According to (I?),  the effective parameter &,(t) of the 
problem i s  equal to 

Taking (24)-(27) and the condition (20) into account, 
from the expression (13) for D and the analogous ex- 
pression for G we obtain, in the f i rs t  approximation, 

D= (-2/oo) [ 1-4(1-2a)g ln  Ihlv I I-', 

G=(l/o) [1-4(1-2a)glnIh/w I]". 

The functions g and D have a pole a t  4(1- 2a)g In I X/v 1 - 1. The appearance of the pole i s  associated with the 
instability of the system under consideration with re- 
spect to a Peierls doubling of the period. In this con- 
nection i t  i s  useful to compare the position of the pole 
in the expression (26), calculated by summing the lead- 
ing logarithmic terms, with the position of the pole de- 
termined in the mean-field approximation. For this, in 
(26) we express the asymptotic coupling constant g in 
terms of go with the aid of Eq. (23); a s  a result, we 
have 

I t  is  convenient to compare the values of the corre- 
sponding critical temperatures T,, and T,. Putting 
v= T, in (29), we obtain 

The quantity T,, determined in the mean-field approx- 
imation, i s  equal toc9' 

The quantities T,, and T,, a r e  written to within a nu- 
merical coefficient in the pre-exponential factor. I t  can 
be seen that the value of T, differs from Tpo principal- 
ly by the presence of a factor of two in the exponent. 

The validity of the f i rs t  approximation is limited by 
the condition g< 1,  and, thus, the result of the first  ap- 
proximation only indicates that we go outside the weak- 
coupling picture at large values of In 1 X/v 1. Because of 
this i t  i s  necessary to consider the second approxima- 
tion. The important point is  that the function P (24) in 
the second approximation has a zero a t  the point 

From (17) we obtain the following equation for 8: 

It follows from (33) that for v- 0 the quantity behaves 
like 

Thus, in the asymptotic limit the invariant charge tends 
in a power-law manner to i ts  limiting value g*, and, in 
the model under consideration, to within terms of order 
gS there is  a finite renormalization of the coupling con- 
stant. 

The finite renormalization of the coupling constant 
leads, in the framework of the "massless" theory under 
consideration, to power-law asymptotic forms of the 
functions G and D for w -  0, v- 0; according to (13), 
(24), (27) and (34), these a r e  equal to 
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where the power exponents T and 6 depend through the 
adiabatic parameter a on the dimensional constants w, 
and co of the problem. It follows from (35) that the sin- 
gularities that exist a t  finite values of v in the first  ap- 
proximation a re  shifted in the second approximation to 
the point v = 0, indicating the absence of a phase transi- 
tion a t  finite temperatures in the model under consider- 
ation. 

4. In conclusion we shall discuss briefly the results 
obtained. The investigation carried out has shown that 
the renormalization-group method can be applied to 
analyze a one-dimensional electron-phonon system and 
has exhibited the distinctive features of the given model 
that give r ise  to the specific form of application of this 
method. Amongst the most important features we can 
include the fact that for  the given model the logarithmic 
theory holds only in the asymptotic region, and also the 
presence of two cutoff parameters in the problem. As 
a result, as has been explained, the renormalization- 
group analysis of this model and other models of this 
kind should be performed with the introduction of nor- 
malization parameters and should be formulated from 
the outset as a theory with several dimensional con- 
stants. For example, for the given model in the case of 
an arbitrarily filled band, apart  from the dimensional 
constant o, a further constant p (the chemical potential) 
appears in the problem. The character of the behavior 
of the different Green functions is determined primarily 
by whether or not the dimensional constants of the theo- 
ry drop out of the corresponding equations in the limit 
of interest to us. In the case when dimensional con- 
stants remain in the problem, a s  can be seen from the 
results of Sec. 3, they play the role of certain effective 
parameters of the problem, dependent on the energies 
o r  momenta As a result the solution of the renormal- 
ization-group equations becomes more complicated and 
the pattern of pure power behavior of the asymptotic 
forms of the Green functions no longer obtains, although 
if, for  example, the dependence on the dimensional 
constants i s  logarithmic, the Green functions can pos- 
sess quasi -power asymptotic forms. 

For the model under consideration the Green func- 
tions have power asymptotic forms in the low-energy 
region. An analogous result can be obtained if we in- 
vestigate the temperature dependences of the given 
quantities; in this case, power-law behavior corre- 
sponds to the region of temperatures T<< OD, where 0 ,  
i s  the Debye temperature. For the present it i s  not 

possible to reach concrete conclusions about the char- 
acter of the behavior of the system in the region of en- 
ergies v S u0 o r  temperatures T s @,, since in this re- 
gion the renormalization-group method ceases to be ef- 
fective. The results presented make i t  possible to sup- 
pose that for real  quasi-one-dimensional systems the 
character of the behavior with temperature should de- 
pend on the relative magnitudes of the quantities 0, and 
To-the phase-transition temperature with allowance 
for the coupling between the chains. I t  may be supposed 
that in the temperature region To < T << 0, a power-law 
behavior close to that which follows from the solution of 
the purely one-dimensional problem will be displayed. 
I t  i s  necessary to note that the results obtained a r e  
valid to within terms of order g3, but it may be hoped 
that, for the given model, a s  for the four-fermion in- 
teraction model,c10' the results given will also be pre- 
served in higher approximations of the renormalization 
group. 
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