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A microscopic theory of an electron-hole Fermi liquid in conditions of coexistence of singlet and triplet 
pairing is constructed in the framework of the Larkin-Migdal scheme (Zh. Eksp. Teor. Fiz. 44, 1703 
(1963) [Sov. Phys. JETP 17, 1146 (1963)l). The spectrum of the possible excitations in such a system is 
considered. 
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1. Electron-hole systems, bothequilibrium, insemi- liquid theory for the Green functions and the gaps, and 
metals and semiconductors have recently attracted in Sec. 3 the equation for the vertex of the interaction 
much attention from experimentalists and theorists. It with an external field i s  obtained. In Secs. 4-7 the 
i s  sufficient to point to the flow of papers on electron- properties of the dispersion equation a re  analyzed and 
hole droplets in semiconductors o r  to the work on exci- the results obtained a re  discussed. 
tonic insulators (see, e.g., the reviews by ~ e l d y s h ~ l ]  
and KopaevC2]). One of the interesting features of elec- 
tron-hole systems in solids i s  the possibility of a phase 
transition to the dielectric Unlike in the case 
of superconductors, here it i s  possible for electron- 
hole pairs to be formed not only in the singlet state but 
also in the triplet state, and this, in particular, can 
lead to the appearance of ferromagnetic properties. 

The situation corresponding to coexistence of singlet 
and triplet pairings, which i s  achieved, e.g., by doping 
o r  by means of a magnetic field, is giving rise to par- 
ticular In the latter papers the authors in- 
vestigated in detail the magnetic properties of an exci- 
tonic insulator with two types of gap in the high-density 
approximation. 

It should be remarked that the aforementioned rear-  
rangement of the spectrum of the charge ca r r i e r s  can- 
not fail  to affect also their collective properties in the 
corresponding region of frequencies. Moreover, the 
interaction in the system is by no means weak, gener- 
ally speaking, and this requires that many-particle 
Fermi-liquid correlations be taken consistently into ac- 
count. 

The present paper i s  devoted to an investigation of 
the properties of the electron-hole Fermi liquid in sys- 
tems of the excitonic-insulator type, and to an analysis 
of the spectrum of the sound and zero-sound excitations. 
In constructing a theory of this kind of liquid we shall 
make use of the scheme of Larkin and ~ i ~ d a 1 , " ' ~ '  hav- 
ing generalized i t  to the case of a two-component sys- 
tem with two types of pairing. Lying at the basis of this 
scheme i s  the assumption that the ratio of the gap to the 
Fermi energy i s  small 1); this, a s  in the the- 
ory of superconductivity, corresponds in practice to 
weakness of the coherent part of the effective interac- 
tion of the quasi-particles, which i s  the part respon- 
sible for the phase transition. Consistent use of this 
parameter in the general case i s  possible in the so- 
called "classical regime," in which the role of fluctu- 
ations is relatively small  (compare the discussion of the 
analogous range of topics for 3He in the reviewcg1). 

Below, in Sec. 2, equations are  obtained in Fermi- 

2. The Green functions of the electrons and holes in 
the absence of pairing have the usual form 

G"J - at P' + P', 
E - E " ) - k i 6  

where 5:" i s  the energy of the carr iers ,  measured 
from the Fermi  level E,, i =  ( e ,  h ) =  ( l ,2) ,  G,,, i s  a func- 
tion that i s  slowly varying near the Fermi surface, 
(a,)-'= (aG(i)/as)o, and p i s  the shift of the Fermi level 
a s  a result of the doping (in equilibrium, p, = -p, = p).  
We shall suppose that the presence of the doping impur- 
ity weakly alters the chemical potential of the carr iers ,  
p << tF, which permits us to neglect the corresponding 
corrections of order in the calculations of the 
Green functions. However, for coexistence of two types 
of gap it i s  necessary, generally speaking, that p be 
nonzero. 

Diagrammatically, we can write 

where a, p a re  spin indices, taking the value i1/2. The 
indices 1, 2 refer to the kind of particle. We also intro- 
duce the irreducible pairing and spin-flip amplitudes 
and the mass operator: 

The mass operator C,, whose action reduces basically 
to renormalizing the mass and chemical potential, i s  
already taken into account above in formulas (1); there- 
fore, we shall omit it in the following. 

When quantities of order p/s, a re  neglected, in the 
case of coinciding dispersion laws, as  adopted below, 
i t  follows from considerations of symmetry that 

( 1 )  (1) ( 1 )  li) (1) (2) 
A, ==A, =A,, A, =A, -A,, Z, 52: ==XI. (3 

Finally, we denote the se t  of all graphs that trans' 
form one kind of ca r r i e r  into the other by Fa8 and Fo8: 
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and write the equation for the Green function of the sys- 
tem with pairing, which we denote by (G,,),: 

In analytic form, we have 

(GaB) ,=G'" (&a+ A,E.ptA.f'-ae+z, (G-at.) .), 

FWp=G"' (Ar(Go@) .+A.(G-.s) .I, (6) 

whence it i s  easy to find 

(Gas)s-l/sa(~+Cp) (Q(A+, P+)+(-I)*-@Q(A-,  P-)}, 

F , s - l l ~ a ( l - Q ( A + ,  p + ) +  (-l)'+pA-Q(A-, p - ) I ,  
(7) 

where 

A*=(A.*A,)a-I, p,=pf 21, gp=pZ/2m, 

O(A,  11) --[EL%,'-At-(e+gl)2p]-'. 

The presence of two types of excitation in a system 
with coexisting gaps already follows directly from the 
form of the solutions (7). 

The equation for the gap has the following form: 

and analogously for A,. The block does not contain 
parts linked by two vertical lines, and under the cond- 
dition A/<,<< 1 coincides with the irreducible four-point 
vertex of the system without pairing (cf. Ref. 7). 

In the absence of doping o r  under the condition y << E,, 
we have F, = F a ,  and (G:,'), = (z$)),. However, before 
making use of the relations (7), it is  necessary to 
change in Eq. (8) to integration over the region of ener- 
gy close to the Fermi-surface, which i s  achieved by in- 
troducing the vertex r: (and f :): 

Here 8([) is  the usual step function. The corresponding 
procedure i s  described in detail in Ref. 7. In complete 
analogy we can quote the final result: 

The vertex r: corresponds to the interaction of elec- 
trons and holes with opposite spins. 

In the case of coinciding (or close) dispersion laws, 
the functions I':(p, p') depend only on the angle between 

p and pf. In accordance with this, we expand I': as us- 
ual in Legendre polynomials (cf. Ref. 7): 

and confine ourselves to the harmonic with I = 0, assum- 
ing the interaction to be isotropic. As a result, the sys- 
tem of equations for the gaps As and A, takes the form 

1 1 '  1 
2 A , l n - - = A + l n - - A - l n -  CZ A+, A- ' 

where 

In the large-density limit, when C, i s  found to be 
small, p, - p and the system (12) goes over into the 
corresponding system of equations of Refs. 5,6. A sta- 
ble solution A,+ A- of the system (12) exists, as  in the 
limit indicated above, only under the condition y 2  0 
(see Sec. 5 below). In accordance with the require- 
ments of consistency, the gaps must be chosen to be 
real. 

The system of equations (12) must be supplemented 
by an equation for the amplitude C,. In diagrammatic 
form the corresponding equation i s  

As a result of the renormalization of the irreducible 
four-point vertex 

by introducing the new amplitude 

we obtain the equation 

Here the index w, a s  usual, denotes the limit k/w-0 a s  
k ,  w - 0, and r,0 i s  the spin part of the Landau Fermi- 
liquid function corresponding to the sum of the electron- 
electron and electron-hole interactions. 

Retaining, a s  before, only the zeroth harmonic g," of 
the expansion of a2pI'; in Legendre polynomials, we 
have (cf. Ref. 10) 

It is not difficult to see that for 1 ~ .  = 0 (and g," > -1) the 
quantity C ,  = 0, and, in analogy with Ref. 5, we arrive 
a t  the nonphysical region of the solution for the gaps. 

It should be remarked that above we did not take into 
account that part of the interband interaction which cor- 
responds to virtual single-particle transitions. The 
role of this interaction in the high-density limit and the 
corresponding system of equations of the type (12), (13) 
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fo r  the gaps and C, have been analyzed in detail in a re-  
cently published paper.[lOll) 

3. We shall find the interaction amplitude of an elec- 
tron with an external field, the poles of which determine 
the frequencies of the normal vibrations of the system. 
In graphical form, the corresponding equation i s  written 
a s  follows: 

In all closed contours, summation over the spins and 
kinds of particles i s  implied. It i s  important also that 
(G"'), = (c'2')s under the condition p << c,, and the am- 
plitude of the interaction with the field does not depend 
on the kind of particle. In fact, we arr!ve at an equa- 
tion of the form of (22) in Ref. 7, with U replaced by 

By the above-described renormalization, 

the integrals a r e  reduced to integrals over a region 
close to E,. The amplitude I-7 corresponds to the spin- 
less  part of the Landau Fermi-liquid function corres- 
ponding to the sum of the electron-electron and elec- 
tron-hole interactions. 

It is natural that (17) should be supplemented by eq- 
uations for  the vertices that take account of pair crea- 
tion, but in view of the close analogy with the results of 
Ref. 7 we write these equations immediately in analytic 
form. Moreover, in the general case i t  i s  necessary to 
add an equation for the polarization operator. We shall 
not write out this equation, since taking i t  into account 
leads to the appearance of the high-frequency plasma 
branch 

obtained ear l ier  in the papercu1 by Kozlov and Maksim- 
ov, in which the excitation spectrum of an excitonic in- 
sulator with one gap was treated in the gas approxi- 
mation, and also to zero-sound modes of the type stud- 
ied in the by one of the authors. 

Introducing now the notation 

and using the renormalized amplitudes ry,, introduced 
above, from Eqs. (17) we finally obtain the following 
system of four equations: 

The equation fo r  & i s  obtained by the replacements 

in the equation for a, and the equation for @ by the re- 
placements 

in the equation for R. 

The following notation was introduced above: 

o - k v  
- o = - ~ ~ ~ { F + ~ P } ~ ( ~ ,  m), (20) 

(p'-A2)'hx ( I + x ' ) ~  
~ ( x .  o ) =  ( 2  arcs,) z+ai-ct,, 

2 s  ( l + X Z )  " o / 2 + p x Z  

where i s  the operator that permutes the external 
points of the vertices, and the subscript plus or  minus 
on the quantities L, M,  N,  0 and corresponds to the 
choice A = A, in the formulas (20). Here RW i s  the re- 
normalized interaction amplitude of an electron with the 
external field: 

where R0 i s  the bare vertex [see (I?)]. 

Thus, unlike in the case of a one-component Fe rmi  
liquid, a system of four equations has arisen (new am- 
plitudes @ and cf, have appeared), and this i s  connected 
with the fact of the coexistence of singlet and triplet 
pairings. 

4. W_e turn to the solution of the system of equations 
fo r  R, R, 3 and 9, and thereby to the study of the dis- 
persion equation of the excitation in the Fermi  liquid, 
confining ourselves to the analysis of the longitudinal 
vibrations. Taking into account the complexity of the 
problem, we shall consider f i rs t  the low-frequency 
long-wavelength limit o - k.  v << min{~+, A-), w ,  and 
shall seek the scalar vertices R and @ in the form A 
+Bk.v.  After straightforward but cumbersome calcu- 
lations we find 

wherefl;' i s  a coefficient of the expansion of the function 
f " 5 pa2r; and 

Thus, in the presence of coexisting gaps the acoustic 
excitation spectrum preserves the same form a s  in a 
one-component superfluid Fe rmi  (compare 
also with the gas limit in Ref. 11 and with the case of 
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A nontrivial solution for  the amplitude a i s  obtained 
under the condition 

which follows directly from Eqs. (19)-(21). The quan- 
tity q i s  defined by the following expression: 

In accordance with the assumption that w and ck a r e  
small, Eq. (22) i s  valid only in  the case  of small  values 
of the parameter 7 = q ( l  +g,W). 

For  positive values of q Eq. (22) always has  a solu- 
tion with w2(0) >0. The presence of a threshold appears 
completely natural, since the amplitude corresponds 
to excitations with a spin flip. The absence of spin de- 
generacy leads to the appearance of a minimum fre-  
quency w2 = q(1 +g,W) for  a transition between levels with 
opposite spins. The situation i s  completely analogous 
to that considered by Kozlov and ~ a k s i m o v , ~ " '  where 
the threshold was determined by interband transitions. 
In the limit A, = A,, 7 = 0 and we a r r ive  a t  the usual 
acoustic spin-wave spectrum (cf. the case  of a one- 
component liquid in Ref. 16). 

For  negative values of the parameter  7 the picture 
changes radically-stable vibrations exist only at  suf- 
ficiently large values of ck, o r ,  more  precisely, in  the 
region 

Moreover, when k2c2 = -q the frequency vanishes, after 
which the system becomes unstable with respect  to 
long-wavelength excitations of the type (22). The stabil- 
ization effect a t  finite values of the wave vector in- 
dicates the possibility of a transition of the system to a 
stable nonuniform state with two gaps; however, this  
question needs further investigation. 

The situation described ar i ses ,  in particular, in the 
case p = 0, 1 +go"> 0, which corresponds to the nonphys- 
ical solution (in the absence of doping) obtained in Ref. 
5 in the limit k = O,g,W = 0. In the presence of doping a 
system with two gaps turns out to be stable. It i s  inter- 
esting that these conclusions also remain valid in the 
case of the formal limit of a Stoner ferromagnet, when 
g : s  -1. 

5. We shall investigate the solution of the system (19) 
in conditions when the Fermi-liquid parameters that a r e  
not responsible for  the pairing can be  neglected. We 
shall assume also that the system i s  uniform (RW = 0), 
and that I?: and I?: a r e  isotropic. In this case  Eqs. (19) 
have the following form: 

Next, integrating (24) over the angle and equating the 
determinant to zero, we obtain the following equation: 

+ J (u2-kzvP)  p- & q + (ra-kzv2z,1)  q+ 0. 
-1  1 1  (25) 

When i\, = i-, (25) goes over into a dispersion equation 
of the same type a s  that investigated in Ref. 15, and 
has, in  particular, the solution 

in the case  kv >> A. We investigated the limit w, kv << p 
above [(see (21) and (22)l. 

We consider next the case of large k, kv >> p. It i s  
easy  to s e e  that the dependence on the frequency i s  im- 
portant only near  the poles of the function cp, i.e., for  
w 2A,. In particular, if w " 2A,, the system (25) has  
a solution s imi lar  to (26): 

The presence of the t e rm containing q in the exponent i s  
unimportant in practice, since (kv)' >> A:, q. This  i s  a 
natural result,  because, for  la rge  momenta of the exci- 
tations, the lifting of the spin degeneracy has a weak ef- 
fect  on the form of the spectrum. An analogous result  
i s  also obtained fo r  w " 2A-. 

6. We shall analyze the limit k = O  in more detail. In 
this  case  the system of integral equations (19) becomes 
algebraic and the dispersion equation for  the threshold 
frequencies w(0) takes the following form: 

In the limit of A+-A- and frequencies w << p ,  Eq. (28) 
goes over into (22) for  values kEO. In the general case  
the analytic solution of Eq. (28) i s  difficult, but the very  
fact  that solutions exist can be  perceived from a graph- 
ical  analysis. 

Thus, putting f Y =g ; = 0 initially, in place of (28) we 
obtain the equation 

Taking into account the asymptotic forms of the func- 
tions p,, i t  i s  easy  to s ee  that a solution of Eq. (29) 
necessari ly exists  provided only that the gaps A* satisfy 
the following inequality: 

In the general case,  Eq. (28) has  a solution of the 
form (22) for  smal l  w when a condition of the type (30) 
i s  fulfilled, a s  i s  easily discerned from the intersection 
of the curves 

In addition, there a r e  two more zero-sound modes, en- 
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tirely due to liquid effects. With decrease off :gy these 
solutions a re  shifted into the region of high frequencies, 
approaching 2A+ or  2 4 ,  respectively, s o  that for frgy 
<< 1 we have 

  or f: =& we have A- = q = 0, and we arrive at a solution 
of the same type as  zero-sound in a one-component sys- 
tem: 

Finally, in the case q <  0, i.e., /.I = 0, in the low-fre- 
quency region there i s  a solution only for w2(0) < 0 and 
the system becomes unstable, as already noted above in 
the analysis of Eq. (22). 

7. Thus, the scheme developed above permits us to 
describe correlation effects in electron-hole systems 
with a phase transition, which can possess a number of 
interesting properties, e.g., ferromagnetic ordering, 
superfluidity in the case of electron-hole droplets, etc. 
In applications to real semiconductors and semimetals 
i t  should be borne in mind that the lower (as compared 
with metals) carr ier  density enhances the role of Fer-  
mi-liquid effects, on the one hand, and, on the other, 
leads to an increase of the correlation length and cor- 
respondingly narrows the region of applicability of the 
local theory, which assumes a point Fermi-liquid inter- 
action. Moreover, in the static case at zero  temper- 
ature the screening length in the ground state of the ex- 
citonic insulator increases without limit,'17' and for w 
-0, even for T 5 T,, i t  i s  found to be greater than the 
size of a pair, thereby limiting the region of attainable 
values of the wave vectors and frequencies. 

The spectrum of the longitudinal collective excitations 
considered above in Secs. 4-6 i s  made up of the "nor- 
mal" modes, such a s  sound, plasma oscillations and 
zero-sound in the two-component Fermi liquid, and os- 
cillations associated in an essential way with the pres- 
ence of two order parameters. In this case correlation 
effects play an essential role and lead to the appearance 
of new, zero-sound modes, due both to thk presence of 
the two gaps and to liquid effects. And if a branch of the 
acoustic type can lie in the low-frequency region w << A,, 
two other modes lie in the region w - 2 4 .  In typical 
semimetals and semiconductors this i s  the region of 
frequencies w - 10'3-1014sec~1, while in droplets the f re- 
quencies a re  one o r  two orders  of magnitude lower. 
Collisional dissipation, which i s  small at low temper- 
ature, i s  still further suppressed by the presence of 
pairing, and this favors observation of the excitations, 
e.g., by sound absorption o r  neutron scattering. At 
nonzero temperatures hybridization of both the spinless 
and the spin excitations of the normal and ordered 

phases should arise. 

The question of the excitation spectrum is also di- 
rectly connected with the question of the stability of a 
system with two gaps. The stability diagram deter- 
mined from the minimum of the free energy in the high- 
density limitc5' essentially corresponds to the curve q 
= 0 for k =s = f" = 0; in the region 17 < 0 a buildup of 
long-wavelength excitations occurs, and this leads to a 
rearrangement of the system and to a transition of the 
system to a state with one gap or, possibly, to a nonun- 
iform state. Correlation effects, a s  was elucidated 
above, change the value of the parameter q and deform 
the phase-stability diagram; in any case, however, 
electron- hole pairing leads to coexistence of gaps only 
in the presence of doping. 
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