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Examples of stratification of homogeneously heated electron-hok plasmas in semiconductors and in 
chemical substances involved in biochemical reactions (Turing model) are used to develop a nonlinear 
theory of nonequilibrium systems whose properties depend on two parameters with different spatial 
dispersion, i.e., the distribution of one of them is characterized by a small length 1 and that of the other 
by a large length L.  Possible inhomogeneous stationary states of such systems are investigated. The 
stability of the stationary states is examined and it is established that spatially periodic distributions in the 
form of narrow (of the order of 1) strata of high-temperature excitons (or enhanced concentration of the 
chemical material in the Tiiring model) separated by a distance of the order of L are stable. It is shown 
that the number of such strata in the specimen is determined by its geometric size and the level of 
excitation of the system. Several stable inhomogeneous states will appear for a given level of excitation, 
and the number of such states is found to increase with the length of the specimen. Thus, one or two 
strata may be formed at the ends of the spcchen or at its center even when the specimen length is less 
than L.  The formation and disappearance of a distribution with a given number of strata are not uniquely 
determined by the level of excitation, i.e., the process exhibits hysteresis. When stability is lost, the 
system goes over in a random fashion (depending on the type of fluctuation) into one of the stable states 
that it can support for a given level of excitation. 

PACS numbers: 05.90.+m, 71.35. +z 

1. INTRODUCTION 

The homogeneity of many systems taken out of ther- 
modynamic equilibrium by external disturbances is  of- 
ten found to be violated by fluctuations with a particular 
value of the wave vector k,. This type of instability, 
i.e., stratification, is  encountered in biological sys- 
tems and in chemical reactions?' and also during the 
homogeneous heating of excitons in semiconductors, 
electron-hole plasmas, weakly ionized gases, c4 and 
semiconductor structures. ~ 5 '  The common feature of 
all these systems i s  that their properties depend on two 
(or more) parameters, 8 and 17, with different spatial 
dispersion, i.e., the lengths 1 and L that, respectively, 
characterize the distribution of 8 and q in space a re  
very different (L >> I ) .  The phenomenon of stratifica- 
tion in such systems is connected with the spatial de- 
coupling of the  parameter^.[^'') In fact, the parameter 

cannot follow a fluctuation 6 8  with k,= (1 L)-'I2 be- 
cause koL>>l. In other words, for inhomogeneous 
fluctuations of this kind, the parameter does not act- 

2. SPECIFICATION OF SYSTEMS AND BASIC 
EQUATIONS 

When nonequilibrium electrons and holes produced in 
a semiconductor as a result of photoexcitation or  in- 
jection combine to form bound states, the accompanying 
energy release A 6  is  transferred mainly to the resultiag 
excitons. Even at relatively low concentrations, the hot 
excitons succeed in thermalizing quite rapidly. In fact, 
the exciton-exciton collision time is 7, = (ov,n)-l, 
where v , is  the thermal velocity and a = na2, i s  the ex- 
citon-exciton scattering cross  section. Substituting 
typical values for the exciton Bohr radius, a, 
- lo-' c ~ , [ ~ I  we find that, for exciton concentration 
n =1015 cm-3 and T =4.2"K, the collision time is re, 
=lo- ' -  lo-' sec. The relaxation time of the exciton 
kinetic energy is determined by the exciton-phonon in- 
teraction, and i s  greater by several orders of magnitude 
than the exciton-momentum relaxation time 7 , .  For 
example, in germanium at T =4.2"K, experimental data 
indicate that 7* = - 10-lo set.", 

ually vary in space. Stratification sets in if, for given 
q, the fluctuation 6 8  grows because of the presence of It follows that the hydrodynamic approximation 7 ,  

positive feedback in the system. The stratification >>re, i s  valid for exciton concentrations in the range 

process in the systems under consideration may be ac- n = 1014 - loL5 ~ m - ~ .  The effective temperature T of the 

companied by the appearance of stationary, spatially gas of noninteracting excitons and their concentration 

periodic, structures. n for T, > 7,- T a  is ,then described by the following set 
of equations. "I 

We shall use the examples of stratification in elec- 
tron-hole plasmas during homogeneous heating in the 
course of photo-generation processes, and in chemical -=- an at [ ~ D ( T )  ]-:+It, 
materials involved in biochemical reactions, to develop a t  axz 

(1) 

a nonlinear theory of stratification, i.e., of the develop- 3 a 5 a2 T - T o  
ment of one-dimensional periodic distributions. - - ( n T ) =  -+a - [ n T D ( T ) ] - n -  

2 at ( 2 ) a = z  r. + w, (2) 
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where 

is  the exciton diffusion coefficient and kinetic energy 
relaxation time, respectively, R and 7, a re  the rates 
of exciton generation and the recombination time, To 
is the lattice temperature, and W=AcR is the power in- 
put into the exciton system when electrons and holes 
a r e  bound into excitons. We emphasize that Eqs. (1) 
and (2) a re  the fundamental hydrodynamic equations: 
the first  of them expresses the conservation of the 
number of particles and the second expresses the en- 
ergy balance in the system. These equations describe 
the properties of many physical systems such as  gas- 
dischargeB ] o r  electron-hole c31 plasmas. 

In particular, Eq. (1) and (2) provide the exact des- 
cription of the properties of heated quasineutral elec- 
tron-hole plasma for equal effective masses of elec- 
trons and holes.[31 The presence of the Coulomb in- 
teraction between the carr iers  ensures that the con- 
ditions for the hydrodynamic approximation a r e  satis- 
fied at lower concentrations than for hot excitons. The 
essential point is  that the momentum-relaxation time 
of hot carr iers  at low temperatures is, a s  a rule, an 
increasing function of T. 

It will be convenient to rewrite the se t  of equations 
given by (1) and (2) in the form 

where 

and L = (7, D,)'/', 1 =[(5/2 + ( Y ) D ~ ~  ]'I2 are  the diffusion 
length and the energy mean f ree  path (cooling) of hot 
carriers.  It is important to note that, as  a rule, 7, 
>> re SO that L >> 1. (For example, in germanium, 7, 

10-8sec and T, does not exceed lo-' ~ e c ~ ~ ' ~ ]  
even for T =4.2 OK. 

Consider the stratification of plasma while it is  being 
heated in the absence of extraneous currents, i.e., the 
temperature and concentration gradients on the lateral 
surfaces of the specimen a re  z e r ~ . ~ ~ ] ~ )  Hence, we 
have 

where 1, is the specimen length. By linearizing (3)-(5) 
in the inhomogeneous fluctuations. 6q and 68, we can 
easily verify"' 31 that, for 1,2 L>> 1, the homogeneous 
distribution becomes aperiodically unstable with respect 
to fluctuations with 

when 

Hence, it follows that the necessary condition for the 
stratification of the exciton gas (electron-hole plasma) 
is that CY +s >O.['. 31 This condition is satisfied at low 
enough temperatures when the electrons and holes dis- 
sipate their momenta on charged centers since, under 
these conditions, a = 3 / 2  and s*-1/2 for a l l  hot-car- 
r i e r  energy dissipation mechanisms. @ '  lo 

From the standpoint of the general approach to the 
analysis of such systems, which we a re  attempting, the 
stratification of the electron-hole plasma can be eluci- 
dated a s  follows. c31 Suppose a fluctuation 6 8 ,  i.e., a 
temperature fluctuation (Fig. l a ) ,  appears in a region 
of size of the order of (1 L)"'. It then follows from (3) 
that 617 will change little (roughly by 1/L), i.e., the 
parameter will remain virtually constant in space for 
such local fluctuations. Moreover, it follows from (4) 
that, for a given 7,  the fluctuation 6 8  will grow for 8 
> e O .  Fluctuations with k >  k ,  will be damped out be- 
cause they produce large diffusion currents, and those 
with k < ko will decay because the feedback mechanism 
producing the growth of 6 8  with k  = k ,  is reduced a s  a 
result of the damping change in q. 

The small variation in q -nD(T) in the region of grow- 
ing O is  due to the fact that the heat flux ensures th'at 
hot ca r r i e r s  are  removed from this hotter region, s o  
that their concentration n in this region is  reduced (Fig. 
la) ,  and this, in turn, produces a diffusion current in 
the opposite direction. In other words, the thermal 
current of carr iers  is balanced by the diffusion current. 
The small  change in 0 means that nT1+ const and, 
therefore, changes in the concentration and tempera- 
ture a re  in antiphase but have the same characteristic 
length (Fig. la). We note that the condition L>>l is 
satisfied because T, >> 7,. The latter ensures that the 
ca r r i e r  concentration n cannot follow the fluctuation in 
the temperature (see the f i rs t  footnote above). How- 

FIG. 1. Illustration of the stratification mechanism: the form 
of inhomogeneous fluctuations 6 8 and 6 TJ in a region of size 
( ~ 1 ) ' ' ~  for a hot electron-hole plasma (a) and for plasma in 
thermodynamic equilibrium with the lattice (b); c - ~ i r i n ~  
model. 
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ever, the difference between the frequency dispersion 
of 8 and n does not result in stability.[31 In fact, it 
follows from (1) and (4) that the fluctdations a re  
damped out for n =const, but a re  found to grow for q 
-T@~+~.  The latter condition is satisfied only because 
of the different spatial dispersion of q and 8. 

We emphasize that a change in the concentration, 6n, 
need not necessarily be in antiphase with the change in 
temperature. Stratification may appear even when 6n 
is in phase with OT (Fig. lb). This situation occurs a t  
higher temperatures when the exciton gas (or electron- 
hole plasma) comes to thermal equilibrium with the lat- 
tice, and the power supplied to the specimen under il- 
lumination is expended mainly by heating the lattice 
(phonons) whose temperature T is given by the thermal 
conduction equation averaged over the thickness of the 
specimen: 

where c, p, and H, are,  respectively, the specific heat, 
density, and thermal conductivity of the lattice, E ,  i s  
the band gap (exciton energy), I is  the characteristic 
length of temperature variation, 18' "I and, in contrast 
to (2), To is the temperature of the ambient medium. 
At higher temperatures, the momentum of excitons 
(electrons and holes) is, a s  a rule, dissipated on pho- 
nons. Under these conditions, ct =-  3/2 when excitons 
succeed in thermalizing with the lattice, i.e., D(T) 
, T-1 /2 . The thermal conductivity of the lattice is  a 

decreasing function of temperature above a certain suf- 
ficiently low temperature (for example, in the case of 
germanium for T>20°K), s o  that, to be specific, we 
shall suppose that H. (T) = x,(T/T,)'~, where /3 = 1. n21 
Substituting 

in (7), we may rewrite it in the form 

where 70, =cpl2xi1 is the characteristic time for lat- 
tice-temperature relaxation. It i s  easily verifiedB1 by 
linearizing (1) and (9) in the inhomogeneous fluctuations 
that, for L>>l, the homogeneous distribution becomes 
unstable with respect to fluctuations with 

for 

when 

and it follows from this that the necessary condition for 
stratification in the present case is3) P -  a>2. This 
condition is satisfied for the system we a re  considering 

because a = - 3/2 and /3 = 1. Here, the instability is due 
to the fact that the quantity p-nD(2') in (8) remains, a s  
in the previous case, practically constant in space for 
fluctuating 6 8  with k =ko (Fig. lb). However, since, in 
the present case, D(T)-T-"~, it follows from 17 
- q T'"~ =const that 6n and 6T a re  in phase (Fig. lb). 

We note that, in the above systems, the parameter 
q -nD(T), which varies smoothly in space, has been 
introduced artifically, whereas the true physical vari- 
ables, namely, the carr ier  concentration n and their 
temperature T vary in space with the same character- 
istic length (Fig. 1). Moreover, there a r e  systems 
whose properties depend on two real physical paramet- 
e r s  with different spatial dispersion. This situation 
occurs, for example, in heated semiconducting struc- 
tures and in biochemical reactions. 14] 

Many biological systems in which the concentration of 
chemical materials exhibits stratification a re  described 
by the Tiiring equations. In the simplest case (assum- 
ing that the kinetic coefficients of the chemical reac- 
tion" a re  equal), these equations can be written in the 
form 1 

where q and 0 are  the concentrations of the intermed- 
iate materials participating in the biochemical reac- 
tions, L and 1 are  the corresponding diffusion lengths, 
A and J a re  the concentrations of the initial materials, 
which a re  held constant during the reaction, and T is 
the characteristic time of the chemical reaction. In 
this particular model, the homogeneous distribution of 
the concentrations q and 0 of the intermediate materials 
for L>>1 and the boundary conditions given by (5) turn 
out to be aperiodically unstableu1 with respect to fluc- 
tuations with 

ke=(lL)-'"A'" for 8>8"=2A(J+I ) - ' ,  

i.e., J>Jo =1 (practically independently of A for 1 < A  
<<~/1""51). 

Thus, the phenomenon of stratification can be formu- 
lated in a unified fashion for a broad class of physical 
and biological systems whose properties depend on two 
parameters with different spatial dispersion. The stra- 
tification of such systems is due to the nonunique de- 
pendence of the rapidly-varying parameter O (with the 
smaller characteristic distribution length) on the level 
of excitation J of the system when the slowly-varying 
parameter 17 is  fixed in space [this is  clear, in par- 
ticular, from (4), (9), and (l l)] .  The result of this i s  
that the form of the stationary states, their stability, 
and other characteristic features a re  common for this 
class of systems. To be specific, we shall largely con- 
fine our discussion to heated electron-hole plasmas. 
The set  of equations (10)-(11) corresponding to the Tii- 
ring model then has the desirable feature of simplicity 
and can be used for illustration and comparison. 
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3. STATIONARY STATES AND THEIR STAB1 LlTY 

The fact that the systems under consideration have 
the small parameter E =1/L enables us to use the con- 
cept of "slow" and "fast" motion,[183 in our case, slowly 
and rapidly varying distributions, and to perform a 
qualitative analysis of the stationary states. These 
states are  conveniently investigated a s  the phase paths 
in four-dimensional phase space which, as  can be 
seen from (3) and (4), a re  described by the following 
set  of equations: 

where x is measured in units of L. According to gen- 
era l  theory, t~~ when E << 1, all the phase paths of this 
system a re  close to the path corresponding to the slow- 
ly-varying or rapidly-varying distributions, and to 
their combinations. 

The slowly-varying distributions correspond to solu- 
tions with E =O.  The characteristic length for such dis- 
tributions is unity (L). It then follows from (12) and 
(13) that the connection between q and 0 is local (Fig. 
2a): 

and the distribution of 4 is  described by 

azq d u ,  
-+-=0, where U1= 
axz dq 

(15) 

Rapidly-varying distributions correspond to solutions 

FIG. 2. The function q ( 0 )  in the case of local coupling (a) and 
the potential Ue 03) for rapidly-varying distributions in the 
case of J=J2 and several values of D2 IN. Curves 1, 2, and 3 
correspond to different heating levels J (Ji <Jo<J2 <J3); c and 
d give the corresponding functions for the ~ i i r i n g  model. 

of (12) and (13) for q(x) =const. The characteristic 
length for such distributions is E - (1) and the form of 
O(x)  is  determined by 

Equations (15) and (16) have the form of the equations 
for the conservative motion of particles in fields des- 
cribed by potentials U, and U,, respectively. We em- 
phasize that a similar situation occurs for other sys- 
tems of this kind. Thus, in Turing's model, the equa- 
tions for the slowly-varying distributions a re  

and, for  the rapidly-varying distributions, 

1 -02(J+ I). 
2 

We note that the potential U, corresponding to the 
rapidly-varying distributions has two extremal points 
0, and 0, for each q>qO,, where qo, corresponds to the 
extremum of the function q(0) in (14), and these a re  the 
roots of (14) which, in turn, depend on the level of ex- 
citation J (Fig. 2). The point @, < 0, is a saddle poInt 
and 0, is a center. For q -  q,, the points 0, and 0, 
merge into a single point eO, which i s  a point of inflec- 
tion of U,. It is clear from Fig. 2 that, for the system 
under investigation and for the Ttiring model with given 
J, there i s  an infinite number of potentials (I, corre- 
sponding to different values of 4. Since, for 4 > qo,, the 
potential U', (Fig. 2b) has the form of a potential well, 
it follows that 0(x) can have oscillatory solutions with 
characteristic length 1 and the number of half-oscilla- 
tions is  determined by the specimen length I,. 

Without leaving the class of rapidly-varying distri- 
butions for the fluctuations 60(x, t), it can be shown 
that distributions in the form of several rapid oscilla- 
tions a re  unstable. In other words, such distributions 
a re  unstable with respect to the rapidly-oscillating 
fluctuations 6 6  (with characteristic length E) for which, 
a s  in the stationary case, we may suppose that q 
=const. In fact, substituting (3) in (4), and using E << 1, 
we obtain 

Here and henceforth, the time will be measured in units 
of e. Linearizing (19) and the boundary conditions (5) 
for rj =const in the inhomogeneous perturbation 5 0  
=68(x)e-Yt, we have 

d(60) ,- (x = 0, I.) = 0. 
dx 
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To obtain the actual form of V, (x) ,  we must substitute 
the solution of (16), which describes the distribution of 
8(x), whose stability has been investigated in the liter- 
a t ~ r e , " ' ~ ~ ' ~ ~ ~  into (20). The solution is unstable if at 
least one of the eigenvalues y of (20) is less than zero. 
Differentiating (16) with respect to x, we have 

Hence, it follows that dQ(x)/dr is an eigenfunction of 
the operator He, corresponding to y = O  but satisfying 
boundary conditions other than (21). 

Thus, analysis of the stability of rapidly-oscillating 
solutions is  the exact analog of the analysis of the sta- 
bility of stationary inhomogeneous states in systems 
with an S-shaped current-voltage characteristic. The 
latter has been examined in the l i t e r a t ~ r e ~ * ' ~ '  181 and it 
has been shown that distributions in the form of two or 
more half-oscillations a re  unstable with respect to 
fluctuations 60  when the number of nodes in the latter 
is less by one (or more) than the number of nodes in the 
function dO(x)/dx in the interval (0, I,). The growth of 
such fluctuations leads to an increase in the tempera- 
ture in one layer due to the reduction in temperature in 
a neighboring layer. The result of this is  that the num- 
ber of layers is  reduced, and the separation between 
them increases. Hence, it follows, in particular, that 
complicated stationary states containing at least one 
segment of the rapidly-varying distribution in the form 
of two (or more) layers is  unstable (this is examined 
in greater detail in the next section). 

The potential U,, corresponding to the slowly-vary- 
ing distribution, has two branches (Fig. 3) with @ 

>eO (6) and 0s 0°, respectively, (Fig. 2), which com- 
bine at the point q = 770 ( 6  =eO). For J > JO, the right- 
hand branch of U, (broken curve in Fig. 3) has the form 
of a potential well, i.e., it allows periodic solutions 
with 8 (x)>0°  in the form of oscillations with character- 
istic length of the order of unity (L). Such oscillating 
distributions a re  knownr3] to be unstable with respect to 
short-wave inhomogeneous fluctuations 677, for which 
the number of nodes i s  greater than the number of nodes 
of dq(x)/dx in the interval (0, l , ) ,  where q(x) i s  the 

FIG. 3. Form of the potential U, for slowly-varying distribu- 
tions: a-heated electron-holeplasma; b - ~ i r i n ~  model. Bro- 
ken curves correspond to O >0°, solid curves 6 a 0 ° ,  boundary 
point r)= qoJ corresponds to O=eO,  where 0' is the magnitude 
of the parameter 0 ,  for which stratification sets in. Curves 
1, 2 ,  and 3 correspond to different values of J (Ji < J o  < J z  < 53). 

FIG. 4. Stationary states in the form of successive combina- 
tions of rapidly- and slowly-varying distributions O(x) and 
q(x): a-potential U, for slowly-varying distributions for 
8 < e O  and heating level J >Jo ;  the distribution of 6 and q in 
the form of periodic (b) and nonperiodic (c) combinations 
(broken curve shows the concentration distribution); d, e ,  and 
f-the corresponding functions for the  iring model. 

slowly-varying distribution whose stability is  being in- 
vestigated. The instability of the slowly-varying distri- 
butions corresponding to 0(x) > O0 is connected with the 
fact that the parameters O and q a re  practically con- 
stant within a region with linear dimensions less than 
L. Moreover, linear theory shows that such a distri- 
bution is unstable against short-wave fluctuations with 
k 2  ko = (1L)-1'2 for 6 >go,  which tend to split such 
slowly-varying distributions into shorter-wave layers. 
It also follows from this analysis that any complicated 
solutions 8(x)  and q(x) that a re  combinations of the 
slowly- and rapidly-varying distributions turn out to 
be unstable if they contain a segment of the slowly- 
varying distributions corresponding to 6 >go. 

Thus, of all the stationary solutions corresponding to 
the above system for L >> 2, the only stable solutions a re  
those that a re  the successive combinations of rapidly- 
varying distributions in the form of single layers 
(strata) and slowly-varying distributions (Fig. 4) corre- 
sponding to the second branch of U, with O s  0 O  (solid 
curves in Fig. 3). Since U, does not form a potential 
well for 0 < €3' (Fig. 4a), the motion of a "particle" in 
this potential can only be an infinite motion. However, 
such slowly-varying distributions may become periodic 
(Fig. 4b) when combined with the rapidly-varying dis- 
tributions. In point of fact, since q(x) varies only 
slightly in space, we may suppose that the value q =qn 
remains practically constant in the region of the rapid- 
ly-varying distribution O(x), i.e., the enhanced-tem- 
perature stratum. Outside the stratum, q(x) a t  f i rs t  
varies with the characteristic length L up to q = q t ,  
which corresponds to the turning point (Fig. 4), where 
dq(x)/dx =0, and then again increases up to 77 = u, at the 
point where the new stratum is located. Since there is 
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an infinite set of such solutions for a given excitation 
level, we may select those (Fig. 4) for which 

Since this condition can be satisfied for many values of 
qm, there is, in principle, an infinite number of non- 
periodic successive combinations (Fig. 4c) of rapidly- 
varying distributions with different values of qm and 
slowly-varying distributions corresponding to the same 
turning point q, of the potential U, (Fig. 4a). 

To analyze the stability of stationary states forming 
the successive alternation of rapidly- and slowly-vary- 
ing distributions, we must investigate the complete set 
of equations describing both the slowly- and rapidly- 
varying distributions. In the case of the electron-hole 
plasma, these equations a re  the equations given by (3) 
and (19), whereas, for the Turing model, we have (10) 
and (11). We recall that (19) follows from (3) and (4) 
to within terms proportional to 6. Analysis of the exact 
set  (10) and (11) is then analogous to the analysis of (3) 
and (19), and leads to the same qualitative results. 

By linearizing (3) and (19) in the inhomogeneous fluc- 
tuation 

we obtain 

3 dZ 3 [ c e 1  .TB1-a~leE[-;i i-+~.-yTe-*-= I 
( e - I )  d 2 8  1 =-[--- e.+.+. dXz IT"? (24) 

where lengths a re  measured in units of 1 and the times 
in units of 70,. To obtain the specific form of the opera- 
tors I?, and &, and, in particular, the potential V, 
given by (20), we must use the stationary solution of the 
set  (12), (13), whose stability we a re  investigating. Let 
pa and 6qk be the eigenvalues and eigenfunctions of (23) 
with right-hand side equal to zero and normalized with 
weight 1c1(5/2 + and let h, and 68, be the eigen- 
values and eigenfunctions of (24) with the right-hand side 
again equal to zero and normalized with the weight 
(3/2)1i1 8-I -"  . Expanding 677 into a series in terms of the 
functions 6qk, we obtain from (23) 

where the angle brackets represent averaging over the 
specimen length I,. We now substitute (25) in (24), and 
into the resulting equation we insert the expansion of 
6 8  in terms of the functions 66,. The result is  a set 
of algebraic equations for the expansion coefficients 

8-1 
pknm = ( I  + a) 1 e2 - 7 (+ + a)] ( 6qhle$q-i (- 

d 2 8  -z)) (q8-2-a6qt6@,, ) (ph - 7)-'. (27) 

Thus, the question of the stability of a particular in- 
homogeneous stationary state reduces to the question 
of whether the roots of the determinant of (26), i.e., 
the spectrum of values of y, include a t  least one nega- 
tive value. 

It follows from (10) and (11) that for the Tiiring model, 

where 6qn and c2pn a re  the eigenfunctions, normalized 
to E-~I,, and the eigenvalues of the operator 

and 60, and An a re  the eigenfunctions and eigenvalues 
of the operator 

(Here, 6@, a re  normalized to 1, and x is measured in 
units of 2.) Physically, O(x)>O and, therefore, it ip 
clear from (29) that V ,  > O  for any distribution. Hence, 
i t  follows that pn >O. Finally, according to the oscilla- 
tion theorem, p, increases with increasing number of 
nodes of 677, . 

We therefore conclude that all the fluctuations 671, 
a re  damped and the damping rate increases with in- 
creasing n. This conclusion is valid for  all the systems 
under investigation. In point of fact, by transforming 
(23) with the right-hand side equal to zero to the normal 
Liouville form, we can easily verify that the spectrum 
of pn is determined by an equation whose form is ana- 
logous to the Schrodinger equation with potential V,>O 
practically everywhere, with the exception of, possibly, 
a narrow region of size less than I. The relaxation of 
the fluctuations 6qn follows directly from the physics of 
the stratification process for which we have already 
noted that the long-wave fluctuations 68, which a re  
locally "followed" by the 677, a re  attenuated by the damp- 
ing effect of the variation in q. Short-wave fluctuations 
6 0  with k > k , ,  for which the change in q is  small, a re  
found to grow. Since the 60, describe fluctuations 
in O for 677 =0, one would expect that the values of X, 
include negative values. This is  also indicated by the 
form of the potential V,, which, a s  can be seen from 
(24) and (30), is less than zero in the region of the 
rapidly-varying distribution. In further analysis, it is  
convenient to consider short (I, < L) and long (I,>> L) 
specimens separately. 

4. STABLE STATIONARY STATES I N  SHORT 
SPECIMENS 

We shall show that a single stratum at  the center of a 
short specimen ( I<< I ,  < L), i.e., a stationary state in 
the form of a single oscillation in the rapidly-varying 
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FIG. 5. Distribution in the form of a stratum at the center of 
a short specimen (1  < < I , <  L)  and the corresponding functions: 
a-distributions of 9(n)  and q(n), b and c-form of the potentials 
Ve and V, determining the fluctuations of 68,  and 6% for heated 
electron-hole plasma; d and e-thecorreqmnding functions for 
the ~Gring model (broken curve corresponds to L = 0 3 ) ;  f-ei- 
genfunctions for the discrete spectrum corresponding to the 
"ground" and "first excited" states. 

distribution, going over into a slowly-varying distribu- 
tion on either side (Fig. 5a), is stable for a certain 
range of values of J .  In a short specimen, I J ( X )  varies 
only slightly and, since 6 is related to TJ locally outside 
the stratum, it follows from (23) and (29) that the po- 
tential V ,  ( x )  will also vary only slightly everywhere 
with the exception of the narrow region of the stratum 
(Fig. 5c). For the longest-wave fluctuations ~TJ,, the 
region of rapid variation in the potential V, is trans- 
parent (the particle corresponding to these 6% under- 
goes "tunneling"), and, therefore, such fluctuations 
"feel" only the average value of V ,  evaluated.over the 
region in which they vary. This enables us to take a s  
the zero-order approximation for the potential V ,  the 
average value of this potential, having replaced func- 
tions of @ ( x )  by their average values in (23) with the 
right-hand side equal to zero. Using (5), we then have 

Since, for I, < L, p, is much greater than po begin- 
ning with k =1, we can retain only the first  term in the 
sum over k in (26). The condition that the determinant 
of (26) must be equal to zero then reduces to 

This result has a simple physical interpretation. For  
I, < L, even the longest-wave inhomogeneous variations 
in TJ with the length I, a r e  rapidly damped out because of 
the large diffusion currents produced by them. Neglect- 
ing the inhomogeneous components of 611, we can deter- 
mine the homogeneous change in TJ by averaging (3) 
linearized in the fluctuation 6~ and 68: 

Substituting 6q =(bj in (24) and performing the nec- 
essary calculations, we obtain (33) and (34). 

We must now analyze the spectrum of A,. For the 
Ttiring model, it follows from (18) that a rapidly-vary- 
ing distribution in the form of a single oscillation for 
I, >> 1 is, to within exp(- 1,/1 ), 

and the corresponding potential well Ve (30) i s  

The eigenfunctions and eigenvalues corresponding to 
this well for 1,- are  well The spectrum 
contains three discrete levels: A,, = - 5t2,  Al =0, and 
A, = 3 t2. Taking into account the boundary conditions 
(5) for the infinite specimen with 1,>> 1 and TJ =const 
(L =m), we obtain an exponentially small change in the 
above values of A because the functions 68, correspond- 
ing to the discrete spectrum a re  localized in a region 
of the order of I (Fig. 5f) and decay exponentially out- 
side this region. By replacing the true well with a 
rectangular well, we can verify that A i s  reduced by 
- exp(- l.Jl). 

It follows that allowance for the finite length of the 
specimen for q(x) =const (L  =m) may lead to the appear- 
ance of a second negative eigenvalue 

corresponding to the perturbation tending to shift the 
stratum toward one of the ends of the specimen (Fig. 
5f). This conclusion applies to all the systems that we 
a r e  considering. In fact, as  already mentioned, d9/dx 
is an eigenfunction of the operator H ,  in (22) corre- 
sponding to A =O. For a single stratum, d0/dx has one 
node withing the interval (0, I,) and, therefore, the 
spectrum A, contains only one negative A,. The differ- 
ence between the boundary conditions for 6 0  and d6/& 
in the case of the finite specimenu71 then ensures that 
A, and A, are  modified by an exponentially small amount 
for 1, >> 1, 
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Since A, i s  exponentially small when q =const (L =a), 
it is  natural to examine the influence of a small  depart- 
ure  of q ( x )  from a constant value by the amount h, for 
l,>>l. For finite L in the Ttiring model, the functions 
q(x) and 8(x) within the slowly-varying distributions 
under consideration (Figs. 4d and 3) a r e  shown by (17) 
to increase outside the stratum on average by 

Averaging the stationary equations given by (10) and 
( l l ) ,  we find that (8) =A, and hence the reduction in 
8(x) in the stratum is 

According to (30), the potential well Ve r ises  by the 
amount 2A8,, and, the ref ore, the exponentially small 
negative level A, becomes positive (Fig. 5e). 

An analogous situation obtains for the heated electron- 
hole plasma. For this system, it follows from (15) that 
q(x) decreases outside the stratum in the region of the 
slowly-varying distributions under consideration (Figs. 
4a, b), whereas 0(x) increases (Fig. 5a). Since q 
=nQ1+ %ti1, it follows that n(x) decreases toward the 
ends of the specimen (Fig. 4b). The reduction in n(x) is 
due to the recombination of nonequilibrium carriers.  
For I,< L, the average reduction in the carr ier  concen- 
tration outside the stratum is of the order of An 
=n(l,/L)2. Averaging the stationary equation (1) over 
the specimen length, we find that (n(x)) =RT,  =const, 
and, therefore, the carr ier  concentration increases by 
6n,,>n,t(l,/L)2 within the region of the stratum. Integra- 
ting the stationary equation given by (19) over the strat-  
um, we obtain 

and hence it follows that 8(x)  i s  reduced within the 
stratum (Fig. 5a) by the amount 

The result of this is that the well Ve in (20) becomes 
narrower (Fig. 5b), and both A, and A, increase by an 
amount of the order of (1,/L 12. Thus, even slowly 
varying functions g(x), i.e., a slight damping effect as- 
sociated with the parameter q, result in A, > O .  

Thus, the A, for one stratum at the center of a finite 
specimen include only one negative value (Ao< 0) corre- 
sponding to the ground-state function 60, (Fig. 5f). This 
enables us to retain only the first  factor within the 
product in (33). We note that the only small eigenvalue 
A, is not present in (33). In point of fact, 8(x) and q(x) 
are,  in this case, even functions with respect to the 
specimen center (Fig. 5a), whereas 6 8 ,  is an odd func- 
tion (Fig. 5f), so  that P,, =O. In view of the foregoing, 
we have from (33) 

where P,, reflects the contribution of the stratum to y, 
and the sum on the right-hand side represents the con- 
tribution of the remainder of the specimen. In other 
words, the sum in (38) is determined by the fluctuations 
60, corresponding to the quasicontinuous spectrum of 
eigenvalues A,. Since these functions oscillate rapidly 
and a re  smeared out over the entire specimen, they 
provide an appreciable contribution only when the mag- 
nitude of 8 outside the stratum is comparable with the 
value 8, at its For sufficiently large ex- 
citation levels (J > J,), it i s  found that 6, i s  large 
(Fig. 5)  and, therefore, the region of the stratum pro- 
vides the main contribution. In other words, P,, ex- 
ceeds the sum remaining in (38), and 

f rom which it is clear that the necessary condition for 
the stability of the single stratum is that Po,,> I A,/. 
Numerical calculations show that this condition is  sat- 
isfied for J>J, and 2, >> 1. This is  most easily verified 
for the Tiiring model by substituting (36) and the 
ground-state function for the potential well (37) in (28). 

For a more rigorous analysis of stability, we shall 
use the fact that y <<I&,/ near the point of loss of sta- 
bility. This enables us to obtain from (38) the follow- 
ing stability condition: 

The increase in q, averaged over the specimen for a 
small  J, can be obtained from (19) (taking into account 
only 6q =(6q)), i.e., we can determine (671) /6J. Lin- 
earizing (1 9) in the perturbations 

6 0 4 8  ( x )  e'*', 6q=6q  ( 5 )  e'"', 6J=6 J e l m L ,  

we obtain (24) with the right-hand side augmented by 
659-'. Substituting 677 =(671) into this equation, and 
performing the necessary transformations, we obtain 

where 

It is  clear from (40) that the stability of the distribu- 
tion under consideration is determined by the sign of 
the denominator in (41) for w = 0. For  the Tffring mod- 
el ,  the corresponding static derivative is 

where 

and the stability of the stratum for J <  - 1 +A2 is de- 
termined by the sign of the denominator in (43). 
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FIG. 6. Value of Q averaged over the specimen with 1,SL as a 
function of J: a and b-electron-hoIeplasma; c- iring model 
(branch I corresponds to homogeneous distribution, 11-distri- 
bution in the form of a single stratum at the end. 111-single 
stratum at the center, IV-one stratum at each end of the speci- 
men). Broken curve shows the regions of instability of the 
corresponding distribution. 

Qualitative analysis of the dependence of (4) on J 
(Fig. 6) for  a single stratum and 1 <<1, < L can be based 
on the following considerations. At the branch point 1 
(Fig. 6) of the solutions, where the inhomogeneous 
distribution goes over smoothly into the homogeneous 
distribution, the derivative (bq) / b J  for I, >> I should 
also go over smoothly into the derivative d g / d  for the 
homogeneous distribution, and should therefore be pos- 
itive. For large J, when 0, is large (Fig. 5a), the 
quantity (17) exceeds qhom corresponding to the homogen- 
eous distribution (Figs. 6a, b). (For the Tiiring model, 
( 1 1 )  is smaller, cf. Fig. 6c.) In fact, for I,< L, the 
function q(x) varies very little within the specimen and, 
a s  can be seen from Fig. 2a, the quantity q, is deter- 
mined by 0, and increases with increasing 8,. Since 
6, i s  greater than 0 for the same level of excitation 
J > J, and a homogeneous distribution, the quantity (q) 
i s  also greater than q,,,, (Fig. 5a). Comparison of (34) 
and (42) will show that Po,,= B,, . As already noted in 
connection with (38), the sums in (41) a re  small for 
J>J, (Om>> 1) in comparison with the other terms, and 

Po, > 1 1 .  Hence, it follows that both the numerator 
and the denominator in (41) a re  less than zero and, 
therefore, (bq)/GJ>O. The fact that this condition is 
satisfied for J>J, has a simple physical interpretation. 
An increase in J for 0,>> 1 leads to an increase in the 
temperature at the center of the stratum and, conse- 
quently, to an increase in (4). 

With decreasing level of heating J or, more precise- 
ly, decreasing (q), the distribution 8(x) becomes less 
rapidly varying, so  that the influence of the regions out- 
side the stratum, i.e., the sums in (41), becomes 
greater. Hence, a s  J decreases (between 4 and 3 in 
Fig. 6a), the denominator in (41) initially passes 
through zero a t  3 ,  where (bq)/bJ =rn, and then the num- 
erator passes through zero a t  2, where (6q)/bJ = 0  
(Fig. 6a). Thus, according to (40), the segment 1-2-3 
in Fig. 6a corresponds to an unstable state, whereas 
3-4 corresponds to a stable state of a single stratum. 
In the Tiiring model (Fig. 6c), described by (43), all 
these conclusions can be rigorously justified in numeri- 

cal fashion, a s  well, by using 0(x) [in the form of (36)], 
the wave function be , , ,  and the eigenvalues A,, in the 
potential (37). 

Since the instability of the homogeneous distribution 
sets  in near 1, and a single stratum becomes unstable 
a t  3, the process of formation and disappearance of the 
stratum exhibits the phenomenon of hysteresis (Fig. 6a). 
At 1, the homogeneous distribution may go over a s  a 
result of instability into a number of stable inhomogen- 
eous stationary states for given J (Figs. 6a, b), for ex- 
ample, a single stratum at the center (Fig. 5a) o r  on 
the lateral surface of the specimen (Fig. 7a). In point 
of fact, the distribution in the form of a single half-os- 
cillation(Fig. 7a) corresponds to the 6(x) of Fig. 5 for 
x 3 0 (or x 0). For this type of distribution, the bound- 
ary condition (5) is satisfied only by the fluctuations BB, 
(Fig. 5f) with even n, i.e., the eigenvalue spectrum 
does not, in general, contain and, therefore, even 
for L - a, we only have A, < 0. Hence, the analysis of 
stability i s  here analogous to the foregoing, and leads 
to the same results. Moreover, for  a stratum at the 
end and the same J(>Jo) and l,, both 0, and, conse- 
quently, (q) a re  greater than for a stratum at the cent- 
er .  This is reflected in Fig. 6a. 

As J increases (from 3' to 4' in Fig. 6a), the temper- 
ature 8, both in the stratum and at the opposite end of 
the specimen, is  found to increase (Fig. ?a). This is  
due to the fact that the reduction in q(x) and, conse- 
quently, the increase in 8(x) in the region of the slow- 
ly-varying distribution, a re  faster a s  J increases. 
This follows from (14) and (15). As a result, the quanti- 
ty g(1,) becomes equal to e0 for a certain value of J 
(Fig. ?a), provided the specimen is not too short (I, 
>> l), i.e., we reach the boundary branch point ~ ( 1 % )  = q  
for the potential U, (Fig. 3a). For large J, a distribu- 
tion B(x) in the form of a single stratum at the end 
(Fig. ?a), subject to the boundary conditions given by 

FIG. 7. Distributions in the form of a single stratum (a) and 
one stratum at each end of the specimen (b). Numbers shown 
against the curves correspond to increasing heating. The 
figure also shows the fluctuations 66 ,  and 6qk (c) for two strata 
corresponding to the "ground" and "first excited" states in the 
potentials Vo and Vq(d). The broken curve in the last diagram 
shows V, for large J. 
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(5), is  possible only when q(x) goes over to the solution 
of (15) corresponding to U, for 8 3  0, a s  x = 1, is  ap- 
proached (broken curves in Fig. 3a). As was shown in 
Sec. 3, this solution for q(x) is  unstable, s o  that, be- 
ginning with a certain J (4' in Fig. 6a), a single stratum 
on the end surface becomes unstable. This conclusion 
is  valid for any distribution, including that in the form 
of a stratum at the center of the specimen (Fig. 5a), but 
the value of d for which this distribution becomes un- 
stable is ,  of course, greater (4 in Fig. 6a) because the 
region in which q(x) decreases in the case of a stratum 
at the center is  smaller by a factor of two than for a 
stratum on the side surface (Figs. 5a and ?a). 

Thus, for certain J, the distribution in the form of a 
stratum on the side surface (Fig. 7a) becomes unstable 
and the system may go over discontinuously to a stable 
state, for example, a stratum (Fig. 5a) a t  the center of 
the specimen (4'- 5, Fig. 6a) which, a s  has been ex- 
plained, is  stable for the given J, o r  two s t ra ta  (Fig. 
7b) at the ends of the specimen (4'- 5, Fig. 6b). It i s  
clear that the dependence of ( r ) )  on J is the same for 
these distributions. It is  possible to use the method 
developed below in Sec. 5 for the investigation of the 
stability of a large number of s t ra ta  in a long specimen 
to show that two strata a t  the ends of the specimen 
(Fig. 7b) a re  unstable if L i s  not much greater than the 
specimen length I,. However, because of the growth of 
fluctuations tending to increase the temperature in one 
stratum and reduce it in the other (see Sec. 5 and Fig. 
7c), the value of J corresponding to the lower limit of 
stability of this distribution (6 in Fig. 6b) is then great- 
e r  than for the single stratum at  the center of the speci- 
men (3 in Fig. 6a). 

5. STABLE STATIONARY STATES IN LONG 
SPECIMENS 

We shall now show that, in specimens with I, >> L, 
periodic combinations of rapidly and slowly varying dis- 
tributions (Figs. 4b and e )  i.e., s t ra ta  separated by a 
distance L, 2 L (Fig. 8), a r e  stable. We note that a long 
specimen in which this distribution is produced can be 
represented as  a se t  of N =I,/L, specimens of length L,, 
in each of which.the distribution corresponds to a single 
stratum (Fig. 5a). This means that the potentials V ,  
and Ve corresponding to Fig. 8a a r e  the sum of N poten- 
tials (Figs. 8b and c), each of which corresponds to 
potentials V ,  and Ve for a single stratum (Figs. 5b and 
c). It was shown in Sec. 4 that, among the eigenvalues 
corresponding to the potential Ve (Fig. 5b), only ko< 0, 
whereas A, > O  but i s  close to zero. 

The most convenient way to begin is  to investigate the 
stability of the s t ra ta  for a specimen in the form of a 
narrow ring for which the fluctuations 6q and 6 0  corre- 
spond to the cyclic condition: 68(0) = 60(1,). Since A, 
and A, correspond to the discrete spectrum, i.e., their 
eigenfunctions 5 0 ;  and 60: a r e  localized in a region of 
the order of z(Fig. 5f), and the potential wells a re  a t  
L, >> 1, it follows that, to determine the smallest eigen- 
values and the eigenfunctions of the periodic potential 
Ve (Fig. 8c), we can use perturbation theory which, in 

FIG. 8. Form of the stable periodic stationary state for heated 
electron-hole plasma in a long specimen (Z,>>L) and the cor- 
responding functions: a-@(x) and ~ ( x ) ;  b and c- V,, and V de- 
termining the fluctuations 67, and 60,, respectively (broken 
curve in b shows V, for large J ) ;  d-shortest-wave fluctuations 
corresponding to the bottom band of values of A,. 

solid-state physics, is  commonly referred to a s  the ap- 
proximation of strongly bound electrons.D0J In this 
approach, the eigenfunctions 66,(x) in the periodic po- 
tential V .  (Fig. 8c) can be written in the form 

N 

68. =x exp ( ik , s , )  60,' ( x  - x,) , 
m- 1 

and the discrete eigenvalues A, and A, split into N m m -  
ponents in the form of narrow bands of width I Ah I and 
a r e  shifted by AA,, where, in thenearest-neighbor ap- 
proximation, @ O 1  

ho,,"=ho,,f 2Ah cos k,L1+Aho; Ah, Aho-exp(-L,/L). (45) 

In (44), 60:(x) is  the i-th eigenfunction normalized with 
the weight (3/2) L;' over the region of size L, in 
the single well (Fig. 5b), x, is the coordinate of the cen- 
t e r  of the m-th stratum, and k ,  =2m/NL, where n =*l ,  
i 2 , .  . . , ~ / 2 .  

Since V, (Fig. 8b) is a periodic and slowly-varying 
potential with the exception of narrow (of the order of I )  
regions, we can use the approximation of almost-free 
electronsc201 for sufficiently long-wave fluctuations 
677, (x) with wave vector k L;' : 

where a, ( x )  is  the Bloch function with period L,. When 
L, 5 L, the function q(x) and, consequently, the poten- 
tial V,  vary slowly with x ,  so that, a s  in the case of the 
stability of a single stratum in a short specimen, the 
potential V, can be assumed to be constant in the zero- 
order approximation. When this i s  so, the f i ,  a re  given 
by (32), and 

We note that the 60; with i > 2 correspond to the 
quasicontinuous spectrum which, a s  described in Sec. 
4 in connection with the derivation of (39), provides an 
appreciable contribution only for low heating levels 
corresponding to the lower boundary (J< J,) of the sta- 
bility of the corresponding distribution (Fig. 6). It 
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follows that, when we analyze the stability of the dis- 
tribution for J > Jo, we can confine our attention to the 
discrete values A, and \ which split, in this case, into 
the narrow bands of (45). Substituting (44) and (46) in 
f27), we obtain 

where 

Since be; is an odd function of x (Fig. 5f), and the inte- 
grands in (49) a r e  even functions on a segment of length 
L,, it follows that, as  in the case of the single stratum, 
all the fiLj with j, z #O a r e  zero. Using the form of pi.',, 
given by (26), we find that the lowest values of y a r e  

We have established, in connection with the stability 
of a single stratum, that A, > 0 and is  not exponentially 
small (for L, << L, we have A, = c/L2). Therefore, all 
the Y: >O. We can estimatee;, by substituting (47) and 
(32) in (49), whence 

where P ,  i s  given by (34). It i s  clear from (52) that 
P:, is a minimum for n =N/2. This value of n corre- 
sponds to the most "dangerous" fluctuations 00, that 
tend to transfer heat between neighboring s t ra ta  (Fig. 
8d), i.e., reduce their number. [For two s t ra ta  in a 
short specimen (Fig. 7), this fluctuation is the anti- 
coupling combination W,.] As noted in Sec. 4, when 
J > Jo, we have P, > 1 A. I and, therefore, all the y: 
a r e  positive, whereas, for n =N/2, 

It is clear from (52) that this result is satisfied for L, 
>L.  Moreover, L, cannot exceed L by many orders of 
magnitude because, if this were so, 8(x) would reach 
8' between the strata, and such a distribution is un- 
stable (Sec. 4). 

When the stability of inhomogeneous stationary states 
is investigated for long specimens that do not close into 
a ring, the above cyclic boundary conditions of the 
Born-von Karman type must be replaced with the bound- 
a ry  conditions given by (5). This i s  equivalent to a 
transition from the analysis of the energy spectrum of an 
infinite one-dimensional crystal to the spectrum of a 
finite specimen. It is  knownD1] that the Tamm surface 
states may then appear near the surface. In the one- 
dimensional case, this means that a surface level may 
appear at a distance Ah0 below the "band" given by (45) 
on one of the boundaries, and the corresponding eigen- 
functions will be localized on this boundary. In the ap- 

FIG. 9. Value of 17 averaged over the specimen (L,>>L) as a 
function of J. Branch I corresponds to the homogeneous con- 
tribution, whereas branches with numbers against them corre- 
spond to inhomogeneous distributions, the number indicating 
the number of strata in the distribution. Broken curves show 
unstable distributions. Arrows indicate possible jumps in (11) 
resulting from loss of stability in a given stationary state. The 
"upper sawtooth" represents situations when the number of 
strata increases by one on each instability, and the "lower 
sawtooth" corresponds to a reduction by one in the number of 
strata (a-hot electron-hole plasma; b-~iiring model). 

proximation of strongly bound electrons, the quantity 
AAO is given by the overlap integral for the wave func- 
tions of neighboring atomsD1] (neighboring potential 
wells, cf. Fig. 8), s o  that, in our case, AhP, Ah, and 
Al\, (45) a r e  exponentially small  (-e'Ll/ ' ) .  Thus, our 
conclusions with regard to the stability of the distri- 
bution in the form of a large number of strata,  obtained 
for  cyclic boundary conditions, remain valid fo r  the 
boundary conditions given by (5). 

Since a long specimen can be represented by a se t  of 
N specimens of length L, each, we find that the depend- 
ence of (17) on J (Fig. 9) is precisely the same as  the 
analogous result (Fig. 6b) for 2 specimen of length L, 
with a stratum at  each end (Fig. 7b), i.e., 1 and 2 in 
Fig. 9a correspond to the boundary values of J corre- 
sponding to 6 and 4 in Fig. 6b. Thus, a s  J increases, 
the distribution a t  2 in the fo'm of N stvata becomes un- 
stable because 8 reaches the value e0 between the 
strata. The result of this is that the number of s t ra ta  
increases, If the number of s t ra ta  increases by one on 
each loss of stability, (q) will vary discontinuously a s  
a function of J, forming the "upper sawtooth" in Fig. 9. 
When J is reduced a t  1 (Fig. 9a), stability is lost a s  a 
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result of the "transfer" of temperature between the 
strata, and the dependence of ( r ~ )  on J when the number 
of strata i s  reduced by 1 is represented by the "lower 
sawtooth" in Fig. 9. Of course, the number of s t ra ta  
may change by 1, 2, 3,  etc. on each loss of stability, 
and this is  represented by the arrows in Fig. 9. The 
appearance of one o r  other stationary state is, in gen- 
eral ,  a random phenomenon unconnected with the devel- 
opment of one of the growing fluctuations 6 8  appearing 
randomly in the specimen. 

The number of stable s t ra ta  for  given 1, and J is 
bounded from above by their stability with respect to 
the transfer of heat between the s t ra ta  (Fig. 8d), and 
from below by the fact that, as  the separation between 
the strata increases, O(x) reaches O0 in the region of 
the slowly-varying distributions. It is clear from Fig. 
6 that, in a short specimen (of length L,), several un- 
stable inhomogeneous stationary states may coexist for 
a certain J, and the transitions II-III (Fig. 6a) and 
II-IV (Fig. 6b) formally signify an increase in the num- 
ber of strata by a factor of two. Generalizing this re- 
sult to a long specimen with I, =NL,, we may conclude 
that, for given J, at  any rate, distributions corre- 
sponding to the number of s t ra ta  between N/2 and N 
a r e  stable. 

As the number of s t ra ta  increases, the separation L, 
between them (Fig. 8a) is reduced and, in accordance 
with (51) and (52), they become unstable with respect to 
heat transfer. We note, however, that, as the level of 
heating increases, the critical separation between the 
strata for which they a re  still stable decreases and may 
become much less than the value given by (52), which 
corresponds to the V ,  =const approximation. In point of 
fact, as  was noted in Sec. 4, an increase in J is  ac- 
companied by an increasingly rapid reduction in p(x) 
and an increase in O(x) outside the s t ra ta  (Fig. 7a). As 
a result, the potential V,  becomes more rapidly varying 
and increasingly resembles (for two strata) the shape 
of two separated potential wells (Fig. 7d). For a large 
number of strata (Fig. 8a), the potential V, for large J 
assumes the form of a periodic combination of potential 
wells ( ~ i g .  8b). In the limit of deep potential wells, /.A, 
will split into N bands and, therefore, pNh will not be 
very different from /.A,. The result of this will be that, 
for a sufficiently high level of heating, and in accord- 
ance with (49) and (51), the s t ra ta  may turn out to be 
stable even for L, < L. (The values of Om at  the center 
of a stratum will then be much greater than OO.) Extend- 
ing this conclusion to the case of a short specimen (Fig. 
7), we may conclude that, a s  Ex decreases, the level of 
heating necessary to maintain the stability of a stratum 
at each end of the specimen (Fig. 7b) must increase. 

')we note that, in real systems, the parameters exhibit not 
only spatial but also frequency dispersion, so that temporal 
instability may often a r i ~ e ~ ' - ~ '  and may lead to periodic re- 
laxation oscillations. However, this situation does not ob- 
tain in the systems discussed below. 

')Strictly speaking, the current of ca r r i e r s  on the boundary is  
determined by the rate of their surface recombination S. 

However, for properly prepared surfaces, S << LT;' 
=V~T:/~T;'/ ' , i.e., the ca r r i e r  concentration even at the 
surface of the specimen i s  controlled by the bulk concentra- 
tion and not by surface recombination. For  example, for 
germanium, ~ ~ 1 0 - 1 0 '  cm.  sec", and for  T=4.2 "K we have 
v~ " 2 X lo6  c m .  sec-', i.e.. the condition quoted above is 
safely satisfied. The current of ca r r i e r s  on the boundary 
can, therefore, be assumed to be zero. 

3 ) ~ e  emphasize that, when the instability of nonequilibrium 
ca r r i e r s  i s  investigated, the ra te  of generation R and the 
recombination time T, a r e  assumed constant. If T, is a 
sharply decreasing function of temperature, the instability 
of the electron-hole plasma may set  in earlier.c31i31 In par- 
ticular, the above stratification condition turns out to be 
softer. However, when the system has this exotic function 
rr(T), it may exhibit a number of further features (for ex- 
ample, oscillations) which we shall not consider here. 
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