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The spectrum of the collective excitations in the state of a noncommensurate charge-density wave 
(NCDW) is considered within the framework of a phenomenological approach, with account taken of 
commensurability effects. A model is investigated in which commensurability effects lead only to spatial 
changes of the CDW phase in the ground state of the system at a constant wave amplitude. In this model 
the NCDW superstructure consists of domains in which the CDW is almost commensurate with the host 
lattice, and which are separated by domain walls (solitons). It is shown that in such a phase there exist 
two branches of the collective CDW oscillations: an optical branch with a gap determined by the 
commensurability effects, and a zero-gap acoustic branch, which can be interpreted as the oscillations of 
the domain walls. The course of the transition to the commensurable case is traced. The conditions for the 
validity of the cansidered model are discussed. 

PACS numbers: 71.45. -d 

1. INTRODUCTION coordinates that has not one but an infinite number of 
harmonics. We show in this article that this change of 

Charge-density waves (CDW) have been observed the ground state of the NCDW leads to a modification 
recently in a large number of quasi-one-dimensional of the low-amplitude oscillation spectrum of the CDW. 
and layered compounds (see, e.g.,cl'sl). In the desc- 
ription of the properties of such systems, an important 2. FREE ENERGY OF A SYSTEM WITH CDW 
role is played by the characteristics of the collective We carry out the analysis within the framework of the 
excitations, principally oscillations of the CDW."] In phenomenological approach of clo,12~, and confine our- 
the simplest case, without allowance for the scattering selves to changes of only the phase of the order para- 
by the impurities and of commensurability effects, 

meter, whose modulus is kept constant; just as  in 
there exists in the system an optically active Friihlich 

M c ~ i l l a n ' s  paper,[101 we confine ourselves to an an- 
collective mode (FCM) with a spectrum that starts with 

alysis of the situation wherein the order paremeter of 
zero; this mode makes a substantial contribution to one CDW changes in only one direction. The order para- 
the dielectric constant and to the conductivity of a sys- 
tem with CDW.'~.~] 

meter a ( r )  and the free energy of the Ginzburg-Landau 
type a re  written in the formclO*'ll 

In the commensurate phase a gap appears in the spec- 
trum of the FCM that corresponds to small-amplitude 
oscillations of the CDW phase. In additions, among the 
excitations of the commensurate charge density wave 
(CCDW) there a re  large-amplitude changes of the 
CDW phase. Such excitations (solitions) a re  the con- 
sequence of the nonlinearity that appears in the sys- 
tem a s  a result of the commensurabilitv 
Thus, in the commensurate phase the commensurability 
effects alter radically the spectrum of the phase oscil- 
lations, eliminating the acoustic character of the dis- 
persion of the FCM a s  well a s  the Frijhlich dc conduc- 
tivity. 

The commensurability energy, however, may turn 
out to be significant also in the noncommensurate 
phase-it can alter the detailed structure of the ground 
state and the character of the oscillation spectrum of 
the CDW. For one-dimensional systems, the structure 
of the ground state of the noncommensurate CDW 
(NCDW) was investigated by ~otani , ["  near the doubling 
of the period, and by Moncton, Axe and Di ~ a l v o ~ ~ '  and 
by ~ c ~ i l l a n ~ ~ * ~ ~ ~ ~ '  for layered crystals near the trip- 
ling of the period. All these studies have shown that, 

to the commensurability effects, the ion dis- 
pfacement in the ground state of NCDW near the com- 
mensurate state is described by a period function of the 

where a, b, c, and e are  periodic functions and, for ex- 
ample, b = bo+ 2b1 cosK o r ,  where K is the reciprocal 
vector of the initial lattice without the CDW. The term 
of third order in ar with the coefficient b in (1) takes 
into account the commensurability effects in the case 
when Q = K / 3 ,  and we confine ourselves hereafter to 
this case only (in analogy with McMillan's workclol). A 
free energy in the form (1) implies that the considered 
phases of the order parameters change quite slowly in 
space-over distances greatly exceeding the correlation 
length 5, (otherwise the order-parameter amplitude can- 
not be regarded a s  constant). In the case when the lat- 
tice instability is due to singularities of the Fermi sur- 
face of the conduction electrons we have [,=Ev,/A, 
where v,  is the electron Fermi velocity and A is the 
energy gap on the corresponding sections of the Fermi 
surf ace. 

We discuss now the question whether the system with 
the free energy (1) is merely a model o r  whether it 
can describe in some cases a real  situation. 
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In quasi-one-dimensional systems with a fixed num- 
ber of electrons on the chain (corresponding to a value 
Q = 2k, that is not commensurate with K), an NCDW- 
CCDW transition with decreasing temperature leads 
inevitably to the appearance of electrons above the gap 
(see ['I). In this situation, the description of the sys- 
tem with the aid of the phase q(x) only may be insuf- 
ficient. In addition the change of phase in space in con- 
nected with the change of the concentration pe of the 
electrons located under the gap (pew 8q/ax), and the 
energy of the electric field must be taken into account 
in the free energy. One cannot therefore exclude the 
possibility that the free energy (1) is insufficient for the 
description of quasi-one-dimensional crystals, and at 
any rate we are  unable at present to point to any real 
case for which the description (1) can be regarded as 
fully satisfactory. 

In layered compounds, the state with CDW is metallic 
and the change of phase in space does not change the 
electron density (in the model with saddle points or  con- 
gruent sections of the Fermi surface, variation of the 
phase with the coordinate leads only to a change of the 
electron distribution function with respect to the elec- 
tron momentum in momentum space). Layered sys- 
tems therefore do not pose those difficulties which were 
noted above for quasi-one-dimensional systems (their 
FCM is optically inactive). But layered crystals do 
have a hexagonal lattice structure and three CDW that 
interact with one another appear in such crystals. This 
factor is not taken into account in (I), yet the inter- 
action of the three CDW can significantly alter the be- 
havior of the system (see CIS1) and in this case we must 
consider the f ree  energy for the three CDW in two-di- 
mensional space. We shall return to the question of the 
applicability of (1) to real layered crystals at the end 
of the article, and note for the present only that the 
system considered by us is the simplest one and admits 
of a complete analytic solution of the spectrum of the 
small-amplitude phase oscillations. This solution ex- 
plains, at least qualitatively, how the FCM spectrum 
is transformed into CCDW under the influence of the 
commensurability effect. 

Following ~ c ~ i l l a n , ~ ' ~ '  we express that part of the 
free energy (1) which depends on the phase q(x) in the 
form 

In the derivation of (2) from (1) we have introduced the 
dimensionless length x = r 1 Q - K/3 ( and have intro- 
duced the notation Fo= e,~~9:/2, Y = b l \ k o / e o ~ Z ( ~  - K/3)' 
and put M = 3 in (2), even though the case of arbitrary 
commensurability can be treated within the framework 
of the approach with the free energy (2). 

3. GROUND STATE 

Starting with the free energy (2), McMillan investi- 
gated the properties of the system in a variational ae- 
proach by numerically minimizing F. ~zyaloshinski i~ ' '~  
obtained an analytic solution of a similar problem. We 
present here briefly the analytic results that will be 

needed subsequently. 

Making of change of variable Mq = 0, we rewrite (2) 
in the form 

where 21;=YM2. The extremum condition takes the 
form of the sine-Gordon equation for 0, 

d2e/dz'-6 sin 8=0. (4 ) 

This is the equation of a physical pendulum; its solution 
is well known, namely, 

where C 2 21; is the integration constant, and the origin 
is arbitrary, since the system is isotropic. 

The solution (5) at C >  25 takes the form shown schem- 
atically in Fig. 1, i.e., i t  describes the change of the 
phase (oscillations) with period Z that depends on C ;  
C - 2 t +  0 we\have I - .o and 0 - 0, corresponding to a 
transition to the commensurate phase. 

The free energy (3) is a function of the parameter C 
on the class of solutions (5). This parameter is de- 
termined not from the boundary conditions, but from the 
condition that the free energy be a minimum. (The same 
situation was encountered in the analysis of the vortex 
structure in type-11 superconductorsc141 and in Joseph- 
son junctions. [15') 

Substituting the solution (5) in (3) and taking into ac- 
count the relation d0/dx= (C - 21; ~ o s O ) l / ~ ,  we can re- 
duce the f ree  energy to the form 

It is convenient to rewrite this expression in the form 

where L is the dimension of the system, and the period 
I is expressed in terms of elliptic functions 

FIG. 1. Schematic dependence of the phase of the order , 

parameter on the coordinate in the quasi-commensurate state. 
Curves 1, 2, and 3 correspond to different (increasing) values 
of the commensurability constant 4. 
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We can express in same fashion the free energy (7) 
itself, which takes, with allowance for (8), the form 

Taking into account the properties of the functions 
E(y) and K(y), and in particular their asymptotic forms 
a s  y - l(C - 25) : E(y) - 1, K(y)- ln(4/y'), where yt2 = 1 
- y - 0, we find that the free energy (9) has a minimum 
at C>2g (noncommensurate phase) if the following con- 
dition is satisfied: 

and in the opposite case the minimum is reached at 
C = 2g, corresponding to the commensurate phase. The 
transition between them is continuous and proceeds via 
an increase of the period I of the "commensurate do- 
mains" (see Fig. I ) . ~ )  

In the original notation, the critical value of the con- 
stant in the commensurability term in (2) i s  Yc= n2/8, 
which agrees with the value Y,= 1.2337 obtained by 
M c ~ i l l a n ~ ' ~ ~ .  We note that when the constant Y, cor- 
responding to expression (2) is determined, the critical 
value Yc is independent of the commensurability index- 
M.  

The qualitative picture is thus that even in the non- 
commensurate phase the commensurability energy de- 
formation of the CDW, s o  that the system consists of 
domains where the CDW ispractically commensuratewith 
the initial lattice (phases B(x) = 2nn o r  rp ( x )  = 2m/M) sep- 
arated by relatively narrow domain walls (called "dis- 
commensurations" by McMillan); in fact, a s  seen from 
(5), they coincide with static solitons). I t  is important 
to us that these domain walls do not act now a s  ele- 
mentary excitations in the systemCB1; the commensur- 
ability effects have the very structure of the ground 
state of the NCDW, in which a periodic lattice of static 
solitons and domain walls exists. 

4. COLLECTIVE EXCITATIONS 

We consider now the collective excitations (phasons) 
in a system described by the free energy (2), with 
account taken of the ground- state restructuring considered 
above. To this end it is necessary to add to the inte- 
grand of (3) a term - ~ - ~ a ~ B / a t ~  (S is the speed of the 
phason in the absence of commensurability effects). 

The classical equation fo r  the phase B(x, t) takes now 
the forms' 

tion (4) and Jl(x)eiwt is a small increment. Linearizing 
with respect to Jl, we find that this quantity satisfies 
the "Schr'ijdinger equation" 

a a$ - - - f cos ep (2)  * = 0 2 g ,  
ax2 

(12) 

where the role of the potential is assumed by V(x) 
= g costJo(x). An identical problem was encountered 
earlier in an investigations of small oscillations of the 
vortex lattice in a Josephson jun~t ion. '~" '~~ 1t was 
shown there that the spectrum of the collective oscilla- 
tions consists of two branches, acoustic and optical: 
in the broadened-band scheme this spectrum takes the 
form shown schematically in Fig. 2.C171 Here q ,  = in/l 
is the vector of the new reciprocal lattice and I is given 
by (8). The spectrum itself was investigated by Fetter 
and they have shown that the dispersion law 
of the acoustic branch is given by 

~ . , ~ ( q < q , )  =sZF2(7)q', F ( 7 )  = ( i - f ) " s K ( y ) / E ( 7 ) ,  

o.,'(q=q,) =s'(i-7') Vra. (13) 

and the optical spectrum is of the form 

The gap in the spectrum at q = q, 

(4,)  -o.~' (9,)  ~ S ~ C ~ ' I ~ S ~ Y M '  

coincides with the gap in the commensurate phase, in 
which the phason spectrum i s  

0 2 ( q )  =sz(E+q'). (16) 

The physical meaning of the appearance of two branches 
in the spectrum of the noncommensurate phase i s  quite 
clear. The optical branch can be treated a s  phase os- 
cillations within the commensurate domains. In the 
limit a s  5 - 5 ,  (1- and q, - 0 )  only this mode remains 
in the system. On the other hand the acoustical mode 
corresponds to oscillations of the domain-wall system. 
The validity of this interpretation can be verified di- 
rectly by examining the solution of Eqs. (4)  and (12) at 
when only one domain wall remains in the system in 
the limit. The explicit solution of Eq. (4) is then (see, 
e.g., [l5]) 

oo(s) -4 arctg e-""' 

and the "potential" V(x)=t cosBo(x) in (12) turns out to 
be V(x) = [ I  - 2 c o ~ h - ~ ( x C ) ] ,  The corresponding equa- 

FIG. 2. Spectrum of coll- 
ective oscillations of CDW 
(phasons) in quasicomm- 
ensurate states. 

We seek a solution of (1 1) in the form O(x, t) = B,(x) 
+ $ ( ~ ) e ' ~ ' ,  where Bo(x) is the solution of the static equa- 
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tion can be solved exactly and has an eigenvalue w2 = 0, 
while the "wave function" +(x) is localized near the do- 
main wall (taken here to be at the origin). 

It is also clear fromthis how the transition to the 
commensurate phase takes place as 3 - f, (the phenom- 
enological parameter Y or  f ,  introduced in the Ginz- 
burg-Landau functional, changes, for example, with 
temperature). In the foregoing analysis (neglecting 
pinning by the impurities), the acoustic mode is pre- 
served in the noncommensurate phase a t  all t < f,, which 
is in fact again a reflection of the noncommensurability, 
since the positions of the domain walls themselves a re  
not fixed in the lattice and can vary continuously in the 
assumed model. The weight of this mode (its phase 
volume), however, decreases a s  f - tc like 9,-1-l, and 
in the limit a s  f - b., this mode vanishes, s o  that only the 
mode with the spectrum (16) remains in the system. 

5. DISCUSSION OF RESULTS 

We discuss now some consequences of the results, as  
well a s  the limits of their applicability. 

We see that owing to the commensurability effects the 
CDW structure in the noncommensurate phase changes, 
s o  that domains commensurate with the initial lattice 
appear and are  separated by domain walls in which the 
CDW phase undergoes relatively fast changes. (In dif- 
ferent language, this corresponds to the appearance of 
harmonics of the fundamentals C D S . ~ & ~ ~ ~ )  In such a 
phase, the spectrum of the collective excitations (oscil- 
lations of the CDW phase) consists of two branches: 
acoustic, but extending only to q = q ,  = r/l, where 1 is 
the period of the produced domain structure, and opti- 
cal, which in fact is very close to the corresponding 
mode in the commensurate phase. The relative weight 
of the acoustic (zero-gap) mode can in this case be sub- 
stantially decreased in comparison with the case when 
there a re  no commensurability effects. 

Starting from the interpretation wherein the acoustic 
branch of the spectrum is regarded as oscillations of 
the domain walls, we can assume that when account is 
taken of impurities, defects, etc., a gap, appears in 
this branch and the conditions for this appearance are 
easier than the usual  one^^*"^', since such walls can 
apparently be easily pinned even by weak inhomogen- 
eities. In  this case, two gaps can appear in the spec- 
trum: the gap due to the commensurability effects and 
discussed in Sec. 3, and the gap produced in the spec- 
trum of the domain-wall oscillations by pinning on im- 
purities. It can thus be assumed that the joint action 
of these two pinning mechanisms greatly facilitates the 
conditions for the appearance of phasons in the spec- 
trum. 

We turn now to the question of the applicability of 
these results to layered compounds. Inside the domain 
walls, the phase changes over a characteristic length 
5;' = 1 9Y,(~/3 - ~) ' /2  1 'I2 at Y = Y,. The theory is valid 
if [,>>to, and in the case of instability due to singulari- 
ties of the Fermi surface we get the condition I K / ~  
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- Q I/Q<< A/€*. According to the data of Barker,  Di- 
tzenberger, and Di Salvo we have 4 ~ 0 . 2 5  eV in 2H- 
TaSe, (see [lQ1), from which we get 5,= 3A at (,= 30i.c101 
The condition 5,>> 5, is therefore satisfied in 2H-TaSe,. 
In fact, however, the NCDW-CCDW transition in this 
compound is of first order. This may be due to a three- 
wave interaction that causes c@nges in the modulus of 
the order parameter (see [I3') or  to the substantial in- 
fluence of the phonons in the region of the NCDW-CCDW 
transition.C101 

Thus, the simple model considered above can at pres- 
ent not be applied directly to any of the compounds 
known to us. There is no doubt, however, that in lay - 
ered compounds the commensurability effects near the 
commensurate phase actually lead to the appearance 
of a CDW structure of the domain type (but apparently 
with an additional change of the order-parameter mod- 
ulus in the domain wall). Solutions of this type were 
obtained in [I3' for the partially commensurate phase 
in IT-TaS, between 200 and 352 K; it appears that 
the NCDW in the 2H-TaSe, phase is of similar charac- 
ter  near the transition to the commensurate phase.lQ1 
In this case the CDW oscillation spectrum should have 
the same qualitative singularities that are  inherent 
in the McMillan model: the mode with dispersion of the 
acoustic type should be concentrated mainly in the do- 
main walls, and the dispersion curve has a discon- 
tinuity a t  the momentum q,. The last effect can be ob- 
served in principle in experiments via inelastic scatter- 
ing of neutrons in W-TaSe, o r  IT-TaE&. 

As to quasi-one-dimensional compounds, the fore- 
going analysis cannot be applied to them directly, be- 
cause of the factors noted in Sec. 2. The most substan- 
tial factor is that on going over to the described quasi- 
commensurate state the "extra" electrons must occupy 
positions above the gap. When these extra electrons a re  
taken into account, in an approximation in which the 
modulus of the order parameter is constant in space, 
there is added to the free energy (2) a term 

with a large coefficient a >>l(a! = r , / ~ ) ~ ' ~ .  AS a result, 
the form of the equation for p (x) remains unchanged 
(see (4)), nor does the solution (5) change. However, 
the minimum of the free energy (6), (7) will be reached 
when the constant C>>1, i.e., the solution is in fact al- 
ways close, with high accuracy, to the function p ( ~ )  
= x  (simple noncommensurate wave). 

The situation becomes different in systems of the 
TIF-TCNQ type, in which the electrons can become re-  
distributed among the donor and acceptor chains and 
there is no need to locate them above the gap when the 
period of the superstructure changes. The NCDW struc- 
tures and the NCDW-CCDW transitions a re  possible 
in principle if the noncommensurate structure is close 
to the commensurate one. In experiment, however, no 
such transitions have been observed a s  yet, apparently 
because of the strong difference between real CDW and 
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commensurate ones. 

We note that all our results were obtained in the self- 
consistent field approximation and we did not take phase 
fluctuations into account. In a purely one-dimensional 
system, such fluctuations a re  important; allowance fo r  
them jointly with consideratio! of commensurability ef- 
fect is reported by Brazovskii et al.c201 In quasi-one- 
dimensional compounds with sufficiently strong inter- 
action of the CDW on different chains o r  in layered com- 
pounds, the phase fluctuations a re  not s o  important, es- 
pecially far from the temperature at which the three- 
dimensional CDW structure appears. 

We note in conclusion that our results can apparently 
be used not only for compounds with CDW, but also to 
other systems in which structural transitions to a non- 
commensurate phase a re  observed..c211 

In conclusion, we a re  deeply grateful to L. V. 
Keldysh, as well a s  to V. L. Ginzburg and to the par- 
ticipants of his seminar, for useful discussions. 

l )~acmil lan 's  analysis is in fact fully equivalent to Dzyalo- 
shinskips earlier investigation of helicoidal magnetic 
structures .[121 

2 f ~ e  note that a relation similar to that in Fig. 1 was observed 
numerous times in different systems; e.g.,[". 

3 )~ imi la r  results a r e  arrived at also by a consistent quantiza- 
tion procedure.c171 
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Continual theory of tunnel self-trapping 
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A theory is developed for tunnel self-trapping of electrons (or of Frenkel excitons) as they interact with 
acoustic and nonpolar optical phonons. It is assumed that the electron-phonon interaction is strong enough, 
so that the size of the self-trapping barrier exceeds greatly the lattice constant and the continual theory 
can be used. It is shown that in these two cases the tunneling picture is entirely different. In the 
interaction with the optical phonons, the decisive contribution is made by quasiclassical trajectories with a 
spatial scale on the order of the barrier size. In interaction with acoustic phonons, on the contrary, the 
optimal trajectories have a scale much smaller than the barrier size. Explicit expressions for the 
transparency of the self-trapping barrier are obtained for both cases. 

PACS numbers: 63.20.Kr 

A sufficiently strong electron-photon interaction pro- 
duces in a crystal self-trapping of electrons (excitons) 
into states with scale dimensions equal to the lattice 
constant. They a re  called small-radius polarons, con- 
densons, and polarizing o r  deforming excitons. The 
character of the resultant final states (for example, 
single-site or  quasimolecular formation) a re  determined 
mainly by quantum-chemical considerations and i s  prac- 

tically independent of the type of the phonons with which 
the dominant interaction takes place. On the contrary, 
the process of formation of a self-trapped state from a 
band state is decisively affected by the type of the elec- 
tron-phonon interaction. Thus, for example, in a po- 
larization interaction with optical phonons the self-trap- 
ping, i. e. , the transition to the polaron state, always 
takes place without a barrier. On the contrary, if 
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