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Electrostatic waves are considered in an inhomogeneous plasma with an arbitrary degree of spatial 
dispersion. The problem is solved analytically for the case of an exponential dependence of the electron 
density on the coordinate. The wave field distribution in the plasma is found in the form of a contour 
integral. The absorption of energy in the plasma is calculated. 

PACS numbers: 52.35.F~ 

1. INTRODUCTION the determination of the power absorbed in the plasma. 

A kinetic theory of longitudinal (electrostatic) waves 
with a potential electric field in a monotonically in- 
homogeneous electron plasma is constructed in the 
present work (the inhomogeneity i s  one-dimensional, 
along the X axis). Division of the waves into purely 
longitudinal and purely transverse is generally speak- 
ing, impossible in an inhomogeneous plasma; however, 
under the condition k >> w/c (k is the characteristic 
wave vector, w is the frequency), which we shall as- 
sume to be satisfied, the field of the wave i s  described 
by the electrostatic potential and, consequently, such a 
wave is longitudinal. 

Excitation of longitudinal oscillations in a plasma can 
take place either a s  a result of the action of an external 
field, or under the action of foreign charges located in- 
side the plasma itself. The classic method of external 
excitation i s  the formation of natural oscillations in a 
plasma placed in a homogeneous high-frequency field of 
a capacitor. Another example i s  the action on the plas- 
ma of the field created by a decelerating system. In 
both cases, the field i s  potential throughout the entire 
space. We alsc note that the longitudinal waves arise 
upon oblique incidence on the plasma of a transverse 
electromagnetic wave provided that the plasma pos- 
sesses  a weak spatial dispersion and the effective fre- 
quency of collisions i s  small. The field here is not a 
potential one throughout the entire space, but only in 
the vicinity of the singular point. 

Excitation of the oscillations by foreign charges takes 
place upon the presence of electron o r  ion beams in the 
plasma Theoretically, the presence of these charges 
i s  equivalent to the assumption that the electron distri- 
bution function i s  initially perturbed (initial-value prob- 
lem). The condition that the field be potential means 
here that only natural longitudinal waves are  consid- 
ered, which are  not radiated but are  spatially damped 
outside the plasma. 

Analytically, the distribution of the wave field in the 
plasma i s  determined in the present work for an expo- 
nential distribution of the density of the electrons in 
space, while the temperature i s  assumed to be  uniform. 
Both excitation by an external field (Secs. 3 ,4)  and by 
foreign charges ( ~ e c .  5) i s  considered. In both cases, 
the field of the wave is found in the form of a contour 
integral. The fourth section of the paper i s  devoted to 

It i s  known that the absorption takes place simultan- 
eously with the so-called transformation of the electro- 
magnetic waves into plasma waves (see the review, Ref. 
1). In our case, the transformation i s  distributed in 
space, since arbitrary values of the parameter aw/v, 
are  permitted (a i s  the size of the inhomogeneity, vT is 
the thermal velocity of the electrons). In the limit of 
weak spatial dispersion of the waves, the consideration 
reduces to the well-known problem of transformation 
near the point at which the dielectric constant of the 
cold plasma ~ ( x )  vanishes. Thus, the present work 
turns out to be closely related to the well-known prob- 
lem of the behavior of the field of an electromagnetic 
wave near a singular point (see Refs. 2-5). 

The investigation is carried out on the basis of the 
se t  of Vlasov equations. The results in the limiting 
case of weak spatial dispersion agree with the results 
obtained by means of the macroscopic e q ~ a t i o n s . ~ ' ' ~ '  

2. EQUATION FOR THE POTENTIAL OF THE FIELD 
OF THE WAVE IN AN INHOMOGENEOUS PLASMA 

The initial set  of equations i s  of the form 

af e a$ af e cip af, 
- g - i o f + i k , ~ j + v . ~ - ~ ~ . ; - - - - ; - -  ;---ik,{ 

Here v, i s  the component of the vetocity of the electron 
parallel to the (Y, 2) plane, @ and f are  the respective 
Fourier components of the potential of the electric field 
p ( r ,  t )  and the departure from the equilibrium distribu- 
tion function f, = f - f,: - 

g(z, k,, o ) = J  dtJ d2r, exp[iot-ik,r,)cp(r, t ) ,  (2.3) 
D - 

f (v,z, k,, o)= Jdt  ld2r,exp(iot-ik,r,)j,(v, r, t ) .  (2.4) 
0 

We shall assume the equilibrium distribution function of 
the electrons to be equal to 

We shall also assume that the potential $ ( x )  is a 
monotonic function, and i f ,  that e$(x) - r * a s  x - i *. 
The function g in Eq. (2.1), which i s  equal to 

1062 Sov. Phys. JETP 47(6), June 1978 0038-5646/78/061062-07$02.40 O 1979 American Institute of Physics 1062 



ar ises  when the initial-value problem i s  considered. 
Equation (2.1) i s  solved by the method of characteristics 
exactly as was done in Refs. 6 and 7. As a result, we 
find the charge density in the plasma: 

Here 
rn " 

2 ( x r .  s)=-u (-) ,nT. 2) j nrp (-%) dLrL j dudu; . 

0 

+ 2 e [ $ ( x )  -v(z')  ] /rn)- '"(exp[-4)  ( I ,  2')  I +  esp[-11) (re,  s') -@ (x ' ,  s )  I] ,  

(2.7) 

g+ ( x ) ,  vx'0 
g(v' " kL) - { g- ( s )  , u . 4 0  

the quantity x*(v,,x) is determined from the relation 

The equation for the potential is obtained upon substi- 
tution of (2.6) in (2.4). 

To test the resultant expression, we consider the 
transition to a homogeneous plasma: $ = 0, x* = -*. Cal- 
culating the Fourier transform 

under these conditions, we can then prove that the re- 
sult i s  represented in the formc8' 

In the other limiting case, which corresponds to a 
cold plasma (T, = 0), Eq. (2.4) reduces to 

The last equation i s  none other than V(<Vq) = 0. 

We shall assume that the equilibrium density of the 
electrons depends exponentially on the x coordinate, and 
substitute in (2.5) 

After uncomplicated transformations, the dimensionless 
equation for the potential takes the form 

iay +' 
+p j i ( E f ) e x p  ( T ) ~ ( f - g ' ) d g ' ,  (2.11) 

-* 

where 

(see also Ref. 7). 

Equation (2.11) is solved by the same method as the 
corresponding integral equation in Refs. 6, 7 and 9; i t  
reduces to the functional equation 

[ (k+i)Z-p21F(k+l)-a(l-M(k))F(k) - -Q , (k+ i ) .  (2.12) 

Here F(k) and Q,(k) bilateral Laplace transforms cor- 
responding to the functions f(5) and q,(t), 

another representation of M ( z )  is of the form 

3. SOLUTION OF THE HOMOGENEOUS EQUATION. 
THE BOUNDARY-VALUE PROBLEM 

In the consideration of the boundary-value problem, 
the right side of Eq. (2.12) must be se t  identically equal 
to zero. The solution of the corresponding homogeneous 
equation, according to Ref. 7, i s  of the form 

a" exp ( - ink )  
F ' (k )  = h ( k )  U ( k )  

I'(k+I+p)r(k+i--p) s i n x ( k - p )  ' 

Here 

I c + ' ~ l n ( l - ~ ( z ) ) s i n  kn  
U W )  =exp (z j 

<-,- sin zn s in ( z -k )n  dz 1' 
h(k) i s  a function with the period of unity which should 
be  so  chosen that the necessary analytic properties of 
the function F'(k) a r e  satisfied. The contour integration 
in (3.2) is carried out in such a way that 

the value of c i s  contained in the interval 

m a s ( - I ,  Re k -1 )  t c<ru in  (0, .Re k ) .  (3.4) 

In addition to the potential, we shall need the current 
jx(x, kL) in what follows. This current is most simply 
calculated by starting out from the equation of continu- 
ity. As a result, after nondimensionalizing and carry- 
ing out the Laplace transform, we obtain 

iw ( k - i )  (k2-p2)  
I ( k ) = -  4na pa-k(k-I)  F' ( k ) ,  
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J(k)  i s  the Laplace transformation of the function j (5 )  
=jr(a5,pa). 

We now return to the expression (3.1). The function 
M(z) has singularities at the points z,,, = - i r  (t+p2)1'2, 
whence we see that the function (3.2) has singularities 
a t  k=z, -nand k = z , + n + l  (n=O,1,2 ,... ). As k - * i - ,  
the function U ( k )  can be majored by an exponential. In 
the boundary-value problem, FJ(k) should be such that 

Taking these conditions into account, and also the regu- 
larity of F'(k) at k = i i m, we find, without ambiguity, 

2n'ap exp (-inp) 
h(k)--i 

[ 1-exp (-2ni(k+p)) I U(-p) r(2p)p 
f. 

The factor that i s  independent of k i s  so  chosen that the 
function f(5) which i s  found from the inverse Laplace 
transform formula, 

takes a s  5--m the asymptotic form 

i(F)=(flp)erp(-pg). (3.8) 

4. ASYMPTOTIC FORMULAS. ENERGY 
ABSORPTION 

1. We first  investigate the integral (3.7) under the 
condition 

For this, we start  from the representation (3.1), and 
transform Ff(k)  to the form 

i '+'" y' i-M(z) I sin nk 
xexp .- 

{Pi c-#- I l o [ ~  Z ( ~ + I ) - ~ '  sinnzsinn(z-k) dzl ' (4'2) 

where 

apexp(-inp) r ( l +  z,)I'(l+&)sin nz, 
f'=2if 

U ( - P ) ~ ( ~ P ) P  

and call attention to the fact that the function (2.13) sat- 
isfies the identity 

in which cT(k) is the wave-vector-dependent longitudinal 
permittivity of a homogeneous Maxwellian electron 
plasmac8] under the condition that the Langmuir fre- 
quency of the oscillations i s  equal to w (compare with 
Ref. 5). At Y = m ,  the value of rT vanishes, so  that 
exp(. . -)= 1 in (4.2). The remaining expression is the 
Laplace transform of the potential of the field in the 
cold plasma. This expression could have been obtained 
directly by solving Eq. (2.9) under the condition (2.10). 
Then, calculating the integral (3.7), we could have es- 
tablished the fact (which was to have been expected) that 

i t  diverges logarithmically at 5 = 5, = -2 ln(w,/w). In the 
subsequent approximation in Y-', we set  " ln(1- cT) 
= -cT, after which we consider the behavior of the func- 
tion f(5) near 5,. Then the values / Imk I >> 1 are  impor- 
tant in (4.2), and the expression in the curly brackets 
in (4.2) is equivalent to the integral 

Then, transforming in (4.2) from the Laplace compo- 
nent to the Fourier component, we find complete agree- 
ment with Ref. 5 (see Eq. (5.2) in Ref. 5). Such a result 
i s  entirely natural; near the singularity to, the con- 
dition of weak inhomogeneity of the plasma i s  satisfied; 
therefore, the behavior of the field does not depend on 
the specific profile of the electron concentration. 

In the other limiting case, which i s  the opposite of 
(4.11, 

we can neglect the integral term in the expression (2.6) 
in the zeroth approximation in y, so that the problem 
reduces to Debye screening in an inhomogeneous plas- 
ma. For  an exponential concentration profile, we find 
the following solution: 

Naturally, these formulas could have been obtained by 
calculating the intergral (3.7), but such a method turns 
out to be too complicated, although it does allow u s  to 
find the corrections to the solution (4.4) to a higher 
order in y. We shall not pause to set down the corre- 
sponding expressions here. 

2. We now consider the asymptotic behavior of f (5)  
a s  5 - - ". Calculating the residues in (3.7) at the 
points -p, -p + 1 and p,  we find 

In the particular case p = 0, the asymptotic form of (4.5) 
is linear: 

where C i s  the Euler constant and the function A,(?') i s  
defined below. We use the expansion (4.5) for calcu- 
lation of the power absorbed per unit area  of the plasma 

We first  assume that 

~ h e n i  is the plasma i s  proportional to n,(x)E,(x) a s  x - -m; therefore, j:rp -exp[(l - 2p)x/a)], which enables 
us to discard the second term in (4.7). Then the first  
term leads to the result 
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where 

Thus, the absorption i s  on the whole determined by the 
outer asymptote of (4.5). The graphs of the function 
Xp(y) are  shown in Fig. 1. 

In the case of weak spatial dispersion [condition (4.1)] 
i t  is possible to take into account in the absorption the 
corrections due to the collisions (see footnote 1); a s  a 
result, the formula takes the following form: 

X 1+- ( 4py 
) sin 2p(x-ve,,/o-~), 

where 

2.'(ny)". sin 2pn I = -  
3", 

P ex.[- 3 (7) ' ip1(?) "'1 . (4.10.) 

This formula i s  valid under the condition y2l3 >>p + 1. In 
the absence of collisions and dispersion (ueff = yY1 = 0) 
the expression (4.10) remains finite. The presence of 
absorption in this case i s  connected with the excitation 
of plasma waves at the singularity. If p=O, then the 
formulas (4.8) and (4.10) transform to 

respectively. In these formulas, E: = 2J/a i s  the uni- 

FIG. 1. Dependence of x,, on = w a ( 2 r n / ~ , ) ~ ~ ~ .  The values 
of p= k,a are indicated by the numbers on the graph. 

FIG. 2. 

form field outside the plasma. 

In the other limiting case, when yc< 1, we find 

where 

(see Fig. 2). At p=O, (4.13) transforms into 

We discuss in detail the behavior of the absorption 
curves in a collision-free plasma (Fig. 1). [It is con- 
venient to set the origin of the coordinates a t  the point 
t o ,  when oo = w and the dependence of the absorption on 
the wave vector k,is entirely determined by the func- 
tion X,(Y).] As i s  seen from Fig. 1, in a cold plasma 
(Y = m) the absorption decreases with increase in k, 
This i s  explained by the fact that, upon an increase in 
the parameter p =k,a, the wave is damped more rapidly 
in the interior of the plasma and therefore the amplitude 
of the electric field in the vicinity of the singularity de- 
creases. We note that a t  Y-' =ve f ,  = O  the absorption, 
which i s  determined from formulas (4.10) and (4.12), 
agrees entirely with the value of the absorption given in 
Refs. 1 and 5. 

We now consider large but finite values of y. It is 
seen from this same drawing that the absorption a t  p = O  
falls off with increase in y while the absorption increa- 
s e s  for the remaining values of p. Such a qualitative 
difference is explained by the appearance a t  weak spat- 
ial dispersion, of two competitive effects, which have 
different affects on the absorption. 

Actually, i t  i s  clear first  of all that upon decrease 
in y the resonance conditions deteriorate in the vicinity 
of to .  In the case a t  hand, the spatial dispersion, a s  
well a s  the collisions, decreases the coefficient of 
transformation of the electromagnetic wave into a plas- 
ma wave, thus leading to a corresponding decrease in 
the absorption. At weak dispersion, the corrections 
that a re  obtained a re  exponentially small. They are  
connected with the excitation of plasma waves with k, 
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- a - y l 3  (see Ref. 2. p. 339), the value of the correction 
is given in formulas (4.10)-(4.10') and (4.12). 

Another effect of spatial dispersion i s  the increase 
in the plasma frequency, which i s  connected with the 
spatial inhomogeneity of the field: AW,,,, - ($)w,(k~,)~ 
- w0(l +p2), /t2. In other words, the density of electrons 
in the plasma effectively increases, which, in agree- 
ment with (2.5), i s  equivalent to a displacement of the 
entire plasma to the left, closer to the source of the ex- 
ternal field. If k, + 0, than the amplitude of the field in- 
creases  a s  a result in the vicinity of [,, and conse- 
quently the absorption becomes greater. The corres-  
ponding correction has a power-law dependence; i t  i s  
easy to estimate i t  by adding the quantity AW,,,, to w0 
in (4.8). Exact calculation leads to the factor (1 + ( 4 ~  
+8pS)y2), see the formula (4.10). As is seen from these 
considerations, the absorption increment i s  connected 
with the spatial change of the field outside the plasma. 
It vanishes if p = 0. At p > 0 this increment i s  more im- 
portant than the exponentially small correction (4.10). 

In the other limiting case, a t  small y, the coefficient 
of transformation of the wave into a plasma wave should 
be obviously proportional to y. Moreover, the field in 
the plasma, according to (4.4), begins to differ appreci- 
ably from the field in the vacuum at  x - -2a lny and 9 
-a: therefore, the amplitude of the potential in the ab- 
sorption region i s  of the order of $~ /p  [see Fig. 1 and 
formula (4.13)]. 

The shape of the curves in Fig. 1 becomes under- 
standable from the discussions above. If k,# 0, then the 
absorption has a maximum at  y=  1.5-2. But if k, = 0, 
then the absorption curve is monotonic. 

We call attention to the fact that if v,,,=O, then the 
expression (4.12) fo r  the absorbed power remains en- 
tirely valid in a plasma with an arbitrary concentration 
profile. In fact, Eq. (2.9) at k, = O  describes a cold 
plasma placed in a uniform field; therefore the solution 
a t  the given point 2 does not depend on the distribution 
of E&) throughout all space, but i s  completely deter- 
mined by the local dielectric constant ~ ( 2 ) .  For  the 
same reason, the behavior of the field near the singu- 
larity i s  determined by the derivative I d(ln<)/dx I = d' 
at the singularity. The exponential correction in (4.12), 
which i s  connected with the presence of dispersion, i s  
also valid for an arbitrary density profile, since the re- 
gion of space in which are  excited, the waves that con- 
tribute to this correction (the transformation region) is 
much smaller than the dimension of the inhomogeneity 
(k;'-ay-213 = 1 d ln</dx I-'). As to the collision correc- 
tion in (4.12), i t  i s  valid only for the given case of an 
exponential distribution of the electrons in space. This 
is connected with the fact that the collisions influence 
the absorption a t  all points in space where the electric 
field i s  significant. Consequently, the region of col- 
lision absorption turns out always to be of the order of 
the size of the inhomogeneity. The corresponding cor- 
rection to the absorption for another concentration pro- 
file can even have a sign opposite to (4.12). This is 
the case, for example, i f  the electron density increases 
in the positive x direction in power-law fashion. 

We note that all the formulas relating to the wave 
with k,=O, (4.61, (4.11), (4.12) and (4.14), can be used 
for the case of excitation of a longitudinal field of the 
plasma of a plane wave incident obliquely to the surface, 
provided that k, < w/c << a-' and, consequently, the field 
in the plasma i s  a potential one in the zeroth approxi- 
mation in w/c. The transverse wave that is generated 
upon oblique incidence cannot of course be described by 
a potential field. The problem of the transverse wave 
i s  a problem of the skin effect, and was considered in 
Refs. 6, 7 and 9. The absorption in the case of oblique 
incidence i s  determined by the total absorption of the 
longitudinal wave (4.11) and of the transverse wave.c7' 

3. We shall now assume that 

~ 2 ' 1 2 .  

In this case, the results obtained by us, which refer to 
the energy absorption, are  incorrect. Actually, calcu- 
lation according to (4.7) shows that the terms we have 
discarded now become divergent at 5 - -". This means 
that the basic contribution to the absorption i s  made by 
the "tail" of the spatial distribution of the electrons in 
the plasma at - 5  >> 1, and not by the vicinity of the 
singularity in the interior of the plasma. Let the po- 
tential of the wave be specified at a point located at a 
distance L to the left of the coordinate origin (for ex- 
ample, the wall of the waveguide i s  located at this 
point). If L i s  sufficiently large, 

exp ( W a )  Pa+ (oo/o)', 

then the field near the wall does not differ from the 
field in the vacuum, since the effect of the plasma can 
be neglected. " The problem of the absorption can be 
solved as before by the aid of the asymptotic form of 
(4.5) at any p. 

Before we proceed to the calculation of the absorp- 
tion from (4.7), we must find the asymptotic behavior of 
the current j ,  at -x>> a. Applying the inverse Laplace 
transform to the function (3.5), we find that a s  5 - -" 

The calculation according to (4.7) must now be carried 
out with -m substituted for -L, and we obtain 4' 

(4.17) 
Here h = L/a and cp =fep' is the fixed potential at the 
point x = -L. In (4.17), we have kept a s  the second 
term the already known term that determines the ab- 
sorption near the singularity. It i s  necessary to take 
into account both terms in Eq. (4.17) in the case in 
which 12p-1 [ h  2 1; if (2p - 1) h >> 1 or  (1 - 2p)h >> 1, then 
i t  suffices to limit ourselves to only the first  o r  second 
term (at p >  i, this i s  valid if the spatial dispersion i s  
not too weak, so that the factor in front of e-X in (4.17) 
i s  not anomalously small). In this case, when 12p - 1 I h 
<< 1, the absorption contains the factor x ,  since (4.17) 
transforms to 
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If 2p = 2,3,4, .  . ., then the calculation with (4.17) gives 
erroneous results, since we have omitted in the deriv- 
ation all terms that fall off more rapidly than e-'. An- 
alysis shows that these terms have singularities a t  2p 
= 2,3 ,4 , .  . . and such that they cancel the singularities 
in (4.17). We can write down the formula for the power 
that i s  suitable for all p,, by artificially canceling the 
singularities of the function r(-2p): 

In this case, if the dispersion in the collision can be en- 
tirely neglected, then the tail of the electron distribu- 
tion makes no contribution to the absorption. The en- 
t ire absorption, a s  in the case p < +, i s  determined by 
the neighborhood of the singularity. This i s  also seen 
from the fact that the expression (4.10) will not have a 
singularity at any finite p if we se t  v,,,=y-'= 0. 

4. The power absorbed in the plasma can be connec- 
ted with the energy flux of the wave outside the plasma 
P = k,S. Here k, i s  the damping coefficient of the wave 
per unit length (in the direction of k,), S is energy flux, 
taken in the direction perpendicular to x and h). This 
flux i s  equal toC103 

It is not difficult to note that in our case 

whence, at p < $, we find the damping coefficient (in 
cm-') from Eq. (4.8): 

We can find k, at p > + also in similar fashion. 

In the case in which k, =0,  the absorption can be de- 
scribed conveniently with the help of the specific impe- 
dance 

Here j i =  -iw(4n)-'(a(p/ax) = iw(4n)-'E: i s  the current den- 
sity in the interior of the plasma at x =+*, cp(-L) is the 
potential of the capacitor plate o r  of the probe which 
produce a uniform field Ez outside the plasma at -x>> a. 
Equation (4.19) describes the impedance of the plasma 
of unit cross section in the (Y, 2 )  plane. The real part 
of the impedance, as  i s  easily seen [see (4.6)], does not 
depend on L,  and the resistivity is equal to 

while at y<< 1, it turns out to be independent of frequen- 
c y: 

p=40.07a2/v,, v,= (2T.lm.)'". 

The absorption (4.11) can be represented in the form P 
=plj;l2/2. 

Equation (4.20) can be used in the study of the absorp- 
tion in a plasma layer with diffuse boundaries, located 
in a uniform high-frequency field inside a parallel-plate 
capacitor. In this case, the frequency should be suf- 
ficiently low that the field does not penetrate into the 
interior of the plasma and the absorption takes place on 
the boundaries of the layer with the assumed exponential 
decrease of the density. The total active resistance of 
the plasma capacitor i s  determined by the sum of ex- 
pressions of the form (4.20) corresponding to each 
boundary of the layer. 

In the problem of oblique incidence, on the plasma, 
of a wave with vector E, lying in the plane of incidence, 
the absorption, a s  has already been pointed out, i s  de- 
termined by the sum of the "transverse" and "longitud- 
inal" absorptions: 

Rll  I' p l j  ' I z  
9 = 2 + = ~ ( c z R + o n n X ,  sinZ p)  . 

2 2 8n1 

Here p is the angle of incidence, R is the "transverse" 
surface resistance, which is determined by the expres- 
sion (3.1) in Ref. 7, while the "transverse" current I, 
is equal to  

(Eo i s  the amplitude of the field of the wave). 

5. In conclusion, we write down the asymptotic ex- 
pression for the field in the plasma a s  5 -+m: 

Cl ( p )  aP+'*yerJ~-", y t"ap+ i  
f ( f ) =  { C,(p)aP+..r.e", T p > P + i .  

We shall not give the formulas for the coefficients C, 
and C,. 

5. FIELD EXCITED BY THE FOREIGN CHARGES 

We shall seek a solution of the inhomogeneous equa- 
tion (2.12) in the form 

where Fr(k) i s  an arbitrary solution of the correspond- 
ing homogeneous equation. As a result, we obtain the 
equation 

Solving the above equation (see Ref. 7), we find 

1  'C1" Q p ( y + i )  sin nk  
~ ( k ) = ~ ' ( k ) { r ( k ) - - I  2ic-,_ dy  [ ( y+ l )1 -p2 ] lF ' ( y+1)  s innys in (y -k )n  

The location of the contour i s  determined a s  before by 
the conditions (3.3) and (3.4), r(k) i s  a periodic function 
with a period of unity, Fr(k)  i s  determined by the form- 
ula (3.1), also with accuracy to an arbitrary periodic 
factor. It is necessary to find h(k) and r (k)  from the 
conditions imposed on the analytic properties of F(k). 
We shall seek the characteristic plasma oscillations 
brought about by the presence of the foreign charges; 
we therefore require that the field be damped in space 
a s  5 -im. We shall also assume that Q , ( k )  i s  an entire 
function. As a result, we obtain the formula 
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F (k) --F1 (k) . - "('+ I) [ ~ t ~ ( ~ - k ) n - i ] .  
1 (~+l) ' -p ' l~ '  ('+l) (5.1) 

Here F f ( k )  i s  determined by the equation (3.1) with h ( k )  
= const. As 5 - -*, we can determine the asymptotic 
form of the field from Eq. (5.1): 

The integration is car r ied  out along the contour C ,  
which coincides with the contour determined by the con- 
ditions (3.4) at k = p  < 1 o r  p > 1, i s  obtained by distort- 
ing the initial contour in such a way that the locations 
of the singularities relative to it remain unchanged. 
The asymptotic form as 5 - +* can also be found and 
has a form s imi lar  to (4.19). Equation (5.1) allows us  
to consider plasma waves which develop at y >> 1 near  
the point 5,. The basic contribution to the integral of 
the inverse Laplace transform in the calculation of the 
field in  the vicinity of 6, is made by the values I Imk I 
>> 1. If the characteristic s ize  b of the perturbation 
G(x,  k,) i s  much greater  than the zone of diffuseness of 
the field near the singularity: b >> a y 2 l 3 ,  then Eq. (5.1) 
reduces to the form 

where B(x) i s  the Heaviside theta function, 

Then, transforming in (5.2), as was done in the prev- 
ious section, to large values of 11mk [>> 1, and replac- 
ing the Laplace transform by the Fourier  transform, 
we obtain complete agreement with Eq. (5.2) of Ref. 5. 

The author i s  grateful to L. P. ~ i t a e v s k i r  for  atten- 
tion to the present work and for  useful observations. 

The author expresses  his  thanks to M. A. Liberman, 
who manifested interest  in  the research  in the course 
of i t s  completion and who made a number of vguable 
s u g ~ e s t i o ~ s .  The author also thanks P. A. Vainshtein, 
B. E. Meierovich and A. N. Vasil'ev fo r  discussion of 
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the can take the collisions into account here by replacing eT 
by ET+iv a/w, which leads to the following correction in 
(4.2): w e / w 2 ~ w ~  [wZQ civ ,  f/wlld. 

)Under the condition w/c <<a*{, tfie two polarizations can be 
regarded a s  independent. 

'It is also necessary that the distance from the wall d, at 
which the densiw distribution of the electrons is significantly 
distorted, be small: (2p - 1) d<< a. 

4!Equation (4.17) is valid if 12p-nlXz1, where n=2, 4, 4, . . . . In addition, see (4.18). 
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