
the following expression: 

(A.1) 
Bearing in mind the overestimation of the integral 
(2.19) in Ref. 1, let us also write the formula (A.l) for 
a spherical Fermi surface in the case when p 3  =(Bo/l 
+ B0)/4n : 

where SZ = l e I B/mc, m being the electron mass on the 
spherical Fermi surface, 

In order for the frequency shift to exceed the frequen- 
cy decrement, the second term on the right-hand side 
of (A.1) should be greater than the third term. This im- 
plies that the inequality 

should be fulfilled. In the case of bismuth, when it is 
assumed that p 3  = 0.1, the latter inequality implies 
that, in fields of intensity B = 10 Oe, 1/7< lo9 sec-'. 
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Theory of nonradiative processes in the "non-Condon" 
approximation 
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The exact solution of a model with shifted and distorted terms is obtained by expressing the transition 
probability in terms of a correlation function and applying the functional differentiation method. The 
nondiagonal terms are allowed for within the perturbation theory framework. It is shown that the 
dependence of the matrix element of a transition on the nuclear coordinates gives rise to an additional 
factor in the correlation function. In some specific cases an analytic expression can be obtained for this 
factor by solving an appropriate differential equation. The expression for the transition rate constant 
reduces to quadrature in the case of an arbitrary dependence of the matrix element of the transition on 
the nuclear coordinates if this matrix element can be represented as a Fourier integral. The validity 
criterion of the Condon approximation is obtained. The results may be used to describe various 
multiquantum processes. 

PACS numbers: 32.50.+d, 33.50.H~ 

In studies of multiquantum processes-such a s  radi- 
ative and nonradiative transitions in impurity centers 
in crystals or  transitions in polyatomic molecules, 
neutron scattering by lattice vibrations, vibrational 
relaxation of impurity molecules, and chemicaI reac- 
tions-it is necessary to isolate two subsystems between 
which energy i s  exchanged in the course of a quantum 
transition. In such processes the matrix element of the 
first subsystem generally depends on the coordinates 
of the second subsystem. This dependence may become 
unimportant for large separations between the terms 
and then the Condon approximation may be used to des- 

cribe multiquantum processes. This case has been in- 
vestigated quite thoroughly. t1-5' However, there a r e  
certain optical phenomena which cannot be explained 
employing the Condon approximation.[617' It i s  also 
known that, in contrast to optical transitions, the in- 
fluence of the dependence of the matrix elemedt on t h ~  
nuclear coordinates i s  much more important in non- 
radiative transitions since such transitions occur in 
the case when the nuclear codfiguration i s  far from 
equilibrium and the dependence of the matrix element 
near the term quasicrossing point i s  of resonant nature. 
Moreover, in the case of a strong electron-vibrational 
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interaction the representation of a matrix element of 
a transition in the M/dR form i s  generally invalid for 
nonradiative processes because it leads to an unphysical 
oscillatory dependence of the terms on the nuclear coor- 
dinates.[*] 

The published papers c9-'21 on the calculation of the 
matrix element and probability of a nonradiative tran- 
sition caused by a change in an equilibrium position 
of the nuclei in the "non-Condon" approximation a re  
limited to the case when a transition occurs far from 
the term quasicrossing point. For transitions due to 
the frequency e f fe~ t , "~]  the frequency change i s  assumed 
to be small and the generating function has been cal- 
culated by decoupling correlation functions, which i s  
difficult to justify. The calculations carried out have 
shown that in the range of their validity the deviations 
from the Condon approximationmay increaseby 2-3 
orders of magnitude the rate of transitions to higher 
vibrational levels of the final state. 

Thus, the results obtained in the theory of nonrad- 
iative transitions indicate the need to go beyond the 
Condon approximation framework. However, rigorous 
calculations of the rate constants in the most impor- 
tant practical case of high temperatures and large term 
shifts have not yet been carried out. 

The present paper reports a calculation of the proba- 
bility of nonradiative transitions in the "non-Cond~n" 
approximation. Allowance i s  made for the t ehn  shifts 
and for the frequency effect. The results obtained can 
be used to describe various multiquantum processes. 
In particular, they give directly the exact solution of 
the model of multiphonon relaxation of an impurity 

2. MODEL 

The total Hamiltonian of the system will be repre- 
sented in the form 

where r and R are ,  respectively, the coordinates of 
electrons and nuclei. The adiabatic approximation will 
be used to separate the variables; then, \Ir,,jr, R) 
=$,(r, R)cp,,(R). The functions I), and cp,, are  found 
from 

[H.(r)+V(r, R)l$.(r ,  R)=E,(R)f . ( r ,  R ) ,  

[ K , ( R )  +E,(R) Iq,.(R) =E,,,qan(R). 

If a molecule i s  in an adiabatic state, nonradiative 
transitions a re  due to the operator (see, for example, 
the paper of Konoplev et uE.['~') 

The dependence L(R) can be found by determining the 
explicit form of the functions I),(r,R). This can be 
done exactly in a two-level m ~ d e l [ l ' ~ '  which i s  appli- 
cable if the levels in question a re  separated by a wide 
energy interval from the others. 

Let us assume that R,, a r e  the values of the COOK-- 

dinates minimizing the function E,(R). We shall use 

Jh(r, R )  = I$:') ( r )  + a ( ~ ) l p r '  ( r )  ] [ i + a Z ( R )  

br(r, R )  = [$id ( r )  -a (R)$.(" ( r )  I [ l + a Z ( R )  I-", (5 

where $,b' ( r )  is the solution of Eq. (2) for R=R,, . 

Then, we obtain the following equations for the deter- 
mination of a(R)  and of the exact adiabatic potentials 
E,(R) : 

where 

Next, we can adopt one of the two very different meth- 
ods. If we that V7,(R)= E VV6,R, (the origin 
of the coordinate system i s  assumed to be at the point 
R = R,), we find that Eq. (7) gives anharmonic poten- 
tials used earlier.[lO' It followsfrom Eqs. (5)-(7) that 

$. (r,R) =$:' ( r )  , E, ( R )  =E."' ( R )  for R < K ,  

$,(r,H) =$:' ( r ) ,  E.(R) -E:" ( R )  for R > R ,  
( 8 )  

where R* is the crossing point of the terms E (R) and 
E:' (R). Similar relationships apply also to I),(r,R) and 
E,(R). ~ o v a r s k i r ~ ~ l  calculated the transition proba- 
bility using the wave functions #,,(r, R) and the terms 
E',! (R), which correspond to one another-as is  seen 
from Eq. (8)-only if R < R*. Therefore, the model 
proposed by ~ o v a r s k i r  and ~ i n ~ a v s k i r [ ~ * ~ ~ ~  i s  valid 
only a t  low temperatures and for small term shifts 
when a transition occurs under a barrier and not too 
close to R*. At high temperatures a transition occurs 
near the point R*[18' and transitions between anharmon; 
ic terms must be considered in the model of Kovarskii 
and ~ inyavsk i r .~" '~ '  Clearly, at present this model can 
not be solved exactly. Approximate calculations a r e  
very cumbersome. In view of this situation i t  seems 
desirable to formulate the problem differently. We can 
follow Gregory and SiebrandC'" in assuming the terms 
E7(R) and E:' (R) to be harmonic and we can determine 
V,,(R) and u(R) from Eqs. (6) and (7). This approach 
i s  justified for processes with small term shifts. If 
the shift i s  sufficiently large, it i s  desirable to de- 
scribe the terms E7(R) a s  the sums of an harmonic part 
and a function A(R,R*) which depends strongly on R near 
the quasicrossing point, thus reflecting the strong 
anharmonicity of the problem. Information on E7(R) 
makes it possible to determine the dependence a(R) on 
the nuclear coordinates. It then follows from Eqs. (6) 
and (7) that 

where 

AEp,==E,-E,-Eo+XAPq+XBqq,R,R,,+2h ( R ,  Rj, 

Eo=Ep(O) -E,(O), AE,=E.'"-E,=ZC~,,R~~,+A (R, R') --AE,, (10) 
A = - o ~ ~ R ~ ~ ,  B- (a,'-o.'). C- ( ~ ~ ~ ) ' - a ~ ' ,  
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R,, is the shift of the minimum of the term /3 relative to 
R,, , *, i s  the vibration frequency in a state y ,  and 
9, - w; i s  the change in the frequencies due to the elec- 
tron-vibrational interaction. It finally follows from 
Eqs. (9) and (10) that 

For A = O  this expression i s  inapplicableLIB1 in the case 
of a large shift of the terms when the quasicrossing 
point lies between their minima. In such problems it 
i s  necessary to consider a transition from one min- 
imum of a potential curve to another, including the upper 
term, where the nonadiabatic scattering may terminate. 
In this case the rate of the reaction i s  governed by the 
probability that the system remains at the lower term. 

The matrix element of the nonadiabaticity operator 
for the adopted wave functions is 

where Pa is the momentum operator and tan 8= a@). 

3. CALCULATION OF THE PROBABILITY 
OF A NONADIABATIC TRANSITION 

The adopted model leads to the Hamiltonian 

where the first  term describes the positions of the elec- 
tron levels, the second the vibrations of the nuclei in 
the initial state, the third i s  the term shift, and the 
fourth is the change in the frequencies in the forms of 
the vibrations in the course of an electronic transition. 
Here, without loss of generality, we can assume that 
Ar=B,O,,=O. 

In the first  approximation of the nonstationary per- 
turbation theory the transition rate constant k =  k (E  =0)  
can be obtained from the expression for the spectral 
function"@~20' 

where (. . . ) denotes averaging over a Gibbs ensemble 
with the vibrational Hamiltonian of the initial electronic 
state, and nu= aia,. We shall calculate the corre- 
lation functions in Eq. (14) by the method of functional 
derivatives, introducing the T exponential 
in the density matrix: 

where Q i s  the normalization factor which depends 
functionally on classical fields u,(t). This approach 

makes it possible to reduce the calculation of the higher 
correlation functions, containing the nuclear coor- ' - 
dinates, to the functional differentiation of G(t) 
=(a*,aBJa;a,J. Calculation of the function ~ ( t ) l , = ,  is 
also of intrinsic interest because it governs the non- 
radiative relaxation rate constant in the Condon approx- 
imation. lS1 The question of the influence of the frequency 
term on G(t) 1 ,=, has been considered on many occa- 
s i o n ~ ~ ~ * ~ ~ ~ ~ ~  but the exact result has been obtained only 
recently without assuming the smallness of the diagonal 
terms Ba,.L301 

The functional G(t) satisfies the equation of motion1311 

d 
i  - G- [- (B.--E8) +X.4.$,+ZBqq,D,Bq,]G; 

dt 
B q ( t )  =( b q ( t )  +bq+ ( t )  )+6/6uqj t ) .  

The solution of Eq. (16) will be sought in the form of a 
functional ser ies  

It has been that, *or the Hamiltonian inves- 
tigated here,the ser ies  in Eq. (17) terminates a t  the 
second term in the zeroth order in respect of the non- 
adiabaticity parameter. This i s  due to the fact that the 
expansion (17) is, in fact, made in terms of the powers 
of the correlations between the particles in the vibra 
tional subsystem, which is described by the harmonic 
Hamiltonian but in such a system we can only have pair 
correlations. Substituting Eq. (17) into Eq. (16) and 
going to the limit Ua-0, we obtain 

The functions ~ , ( t )  and fa,, ( t ,  t,) a re  found from1321 

f,,,,(t, t , )  =6,, ,[Nq e x p ( i o , ( t - t , ) ) +  (A',+ l ) e s p ( - i o q ( t - t , ) )  1 

- 2 i z ~ " : , ,  j fqT2  ( t ,  f2) fT,q , ( t , ,  t2)(tt2,  (20) 

where Na= (b; b,) -(b>(bJ. 

The information in Eqs. (19) and (20) is  sufficient for 
a complete description of the behavior of a system in 
the Condon and non-Condon calculation schemes, so  
that we shall consider in greater detail the solutions 
of these equations. 

For impurity centers without local vibrations there 
i s  no frequency change a s  a result of an electronic tran- 
sition and the solution of Eqs. (19) and (20) i s  self-evi- 
dent. In the case of impurity centers with local vibra- 
tions and also for polyatomic molecules the frequency 
effect may be considerable and in some cases i t  may be 
the main cause of a nonradiative tran~ition.' '~' 

Equations (19) and (20) have an exact solution for the 
diagonal frequency effect. The final result can be 
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written in the form 

where 

Substituting these solutions in Eq. (la), we obtain an 
expression for G(t )  I,=, , which i s  identical with that 
obtained by O ~ a d ' k o . [ ~ ~ '  

The general case when the matrix B i s  nondiagonal 
cannot be solved exactly but i t  can be investigated by 
approximate methods or numerically. If we analyze 
Eq. (20) by the perturbation theory, we note that i t s  
solution can be represented in the form 

Substituting Eq. (23) into Eq. (ZO), we obtain a system 
of integral equations for cp and X, which i s  readily solved 
by the iteration method. We shall now give the results 
obtained in the approximation of short times, which a r e  
applicable a t  high temperatures and for a sufficiently 
strong dispersion of the vibrations: 

cp,,( t)  =8,q,Nq-it[6qq,oqNq+2B,,1\'q (2iVq,+ I) ] +. . . , (24) 
xsr.(t) =6qq,(Nq+i) +it[8, , ,oq(Nq+ 1) -2Bqq,(Nq+I) (2Nq,+l )  1 +. . , (25) 

;Wq(t) =-itAq(2iVq+l)+ ( i t )  '3 (2Nq+l)2Bqq,d,,(2iVq,+ 1) + . . . . (26) 

Clear results a r e  also obtained in the case of inter- 
mediate temperatures for a model of one local vibration 
w, interacting with a se t  of soft vibrations w,. If we 
assume that w,>>w, (q # I ) ,  Nl<<l, the only nonzero 
quantities a r e  B,, = B,, and A,; applying then the per- 
turbation theory to B,, we obtain a ser ies  which con- 
tains secular terms that result in divergences. These 
divergences a re  removed by frequency renormalization. 
It should be noted that in analogous cases the frequency 
renormalization has either not been carried outcm' or 
carried out incorrectlycs4' so that the resultant temper- 
ature dependence of the vibrational spectrum has no 
physical basis. The frequency renormalization can be 
made unambiguous by an additional requirement that 
the renormalized frequencies a re  independent of temp- 
erature. To within second order in B,,, the renormal- 
ized frequencies a re  given by 

Finally, we obtain the following expressions for cp and 
x :  

+ N , ( N , + I )  
[exp ( - i o q t )  -exp (-imq,t) ] }, 

0 , - 0 1 1  

+, 
(N,+I)N,,  + [exp ( i o $ )  -exp ( t o q $ )  ] 
o,-@,t 

The last terms in the braces in Eqs. (30) and (31) a r e  
secular if w, = w,, (q + q). In this case they have to be 
included in the frequency renormalization both in Eqs. 
(28) and (29) but excluded from Eqs. (30) and (31). The 
expression for Mu i s  found from Eq. (19): 

I -erp  ( - i o , t )  Nq esp ( i o , t )  - 1 esp ( i n , & )  -esp ( i o , t )  +-- )+A oq 
+- *, o , + o q  

In spite of the fact that the anharmonicity i s  impor- 
tant in local vibrations, the results obtained describe 
correctly the influence of the frequency effect also in 
the above case, because for transitions due to the 
frequency effect the cubic anharmonicity-which usually 
dominates the rate c o n ~ t a n t ~ ~ ' ~ - a ~ ~ e a r s  only in the 
second order because of the symmetry of the problem 
and it can be considered separately. 

4. ALLOWANCE FOR "NON-CONDON" 
CORRECTIONS 

We shall assume that the operator generating a tran- 
sition can be expanded a s  a Harzberg-Teller series 
in terms of the nuclear displacements: 

where R i s  a se t  of dimensionless normal coordinates + 
and R, = b,+ b,. The expression for the rate constant 
i s  then of the form 

where 

The indices of the boson operators a re  omitted for the 
sake of simplicity. They can be easily restored in the 
final result. 

We shall introduce a new function g,,,,, in accordance 
with the expression 

which has the following form in the harmonic approx- 
imation 
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where S(t)G(t)= (a; a, la; a,(b+ b')) and I i s  a unit 
operator. Using the general properties of the correla- 
tion functions, we can show that S ( t )  =M(t) in the limit 
U,(t)-0. The equality (38) follows from the definitions 
of the functions M(t) and S(t) and from their propertycg2] 

Representation of g,,?-,,(t) in the form (38) makes i t  poss- 
ible to obtain the recurrence formula for this function: 

s. . . ( t ) = M ( t )  I A I ( t ) s , - ,  , , - , + ( n - l ) f ( O ,  t ) g . - ,  ,,-, 
+ ( m - l ) f ( t ,  t ) s , - ,  ,-,+ 6..osm-, o I + ( n - l ) f ( t ,  t )  [ M ( t ) g n - z  ,-, 

+(11-2)f(07 t)&! - %  m-, - 1 ) f  ( t .  t)sn-2 nt-Z+6m"gn-? 0 1  

+rn/(O, t ) g , , - ,  , - ,+6, , ,1Jf( t )g , ,  ,-,+ (m- i ) f  ( t ,  t ) g o  m-r+6,,I. 

(39) 
where M and f are,  respectively, the functions M,(t) and 
f,,,(t, t,) defined in Sec. 3. 

In spite of its cumbersome form, Eq. (39) has a sim - 
ple  structure and for some values of L,,(R) it allows 
exact summation of the whole ser ies  (35). In the sim- 
plest case of an exponential dependence of the matrix 
element of a transition on R ,  when L8,(R)~etR,  we have 
to calculate the sum 

Using Eq. (39), we obtain the following differential 
equation for W: 

a2w -- a IT' 
!(O. t ) E t T .  = ( d 1 2 ( t ) + i V ( t ) f ( 0 ,  i ) f ,  

a ~ ,  a;, a S, 

subject to the boundary conditions 

Equation (41) has an exponential solution of the bilinear 
form of the variables 5, and<,. Having determined the 
coefficients, we obtain 

W=esp { M ( t )  (f ,+ j,) + '12f ( f ,  t )  (g,'i3z') +f ( 0 ,  t )  ti'sz). (43) 

The solution obtained gives the correlation function 
explicitly 

(esp{i~Z~,~(b~+b~+))a,+a~Ia~+a. esp ( - i jXs2, (b ,+b,+))  > 
=erp {G.xN, ( t )  ( T,,-T,) -' /zg2Zlfqu,(t ,  t )  

-2!,,,(0, t )  T I , T ~ , , I ] G  ( t )  = g ( t ,  T , ,  T ~ ) G ( ~ ) .  (44) 

The recurrence formula (39) allows us  to obtain the 
differential equation for g( t ,  T,, 7,) and an arbitrary 
dependence of L,, on R but even Eq. (44) gives the gen- 
eral  solution of the problem by quadrature if we use the 
expansion of the matrix element of the transition a s  a 
Fourier integral: 

then, 

Although Eq. (46) i s  derived on the assumption that the 
function L,,(R) is regular in R ,  it has a more general 
validity. It i s  sufficient that L,,(R) can be represented 
a s  a Fourier integral. 

Substituting in Eq. (46) the actual values of G ( t ) ,  
Mq(t), and f,,,(t,t,) from the preceding section, we can 
investigate the influence of the "non-Condon" correction 
in certain special cases. 

5. VALIDITY CRITERION ON THE 
CONDON APPROXIMATION 

In practice, the matrix element of a transition i s  
usually calculated employing the Herzberg-Teller 
expansion (34) and, therefore, it isnecessary to find 
the conditions of convergence of the corresponding 
series (35). 

To estimate the parameter governing theconvergence 
of the ser ies  (35) in a clear form, we shalluse the limit 
of zero temperatures separately in the two cases when 
a transition i s  due to the term shift and frequency 
changes. 

Let us assume that a,= wq; then, the principal con- 
tribution of the n-th order term to the rate constant i s  

depending on the relationship between the parameters of 
the system. Applying the steepest-descent (saddle-poino 
method, we obtain 

where 

Hence, it follows that the ser ies  (35) converges begin- 
ning from the f i rs t  terms if 

p-n L;:) 
&= - - ( )L'"-l, ( 1 .  p-n>l* 

Pa 

The inequalities (49) and (50) represent the criterion of 
validity of the Condon approximation. If we assumec351 
that ~ , $ ' I ~ k - l ) x O . l ,  p = 10, = 0.1, we find that for 
small values of n we have E = 3  and =24, i.e., in this 
case the terms of the ser ies  (35) increase with n. For 
the same parameters but with y = 2 ,  we have E =  0.2 and 
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c, = 0.05. This estimate corresponds to the benzene 
molecule. It follows from the expressions (49) and(50) 
that if these inequalities a re  not satisfied for small - 
values of n, we have to include approximately n , = ~ - ?  
terms. However, for n > n  , the convergence of the 
series (35) becomes better than the convergence to 
zero of the sequence {L:'). 

Let us assume that A,= 0; then, 

- 
Using es tmi  ates of the Scharf  parameter^^^^ In- wlz0.l w, 
p=10, L::/L=)=O.~, weobtain 

However, beginning fromn=P the ser ies  again converges 
satisfactorily.It follows from the above formulas that 
the series (35) converges poorly for small values of the 
Franck-Condon factors (large values of p and small 
values of A and R-w). The physical meaning of the re- 
sults obtained i s  quite simple. It is  well known that 
on increase of p the rate constants decrease faster 
than exponentially. Then, k '",; has an additional, com- 
pared with k$, factor e-'nWt, which reduces P by n. If 
n i s  small, an increase i n n  causes the rate constant to 
rise rapidly because of the factor e-im' and such an in- 
crease may be greater than the reduction in the preex- 
ponential factor of the L t:,'y" type. The Franck-Condon 
factor increases more and more slowly on increase of 
n and for n>p-y it even begins to decrease s o  that the 
convergence of the ser ies  (35) i s  determined in the 
worst case by the convergence of the sequence {L:'}. 
If many modes participate in a given transition, then 
the energy P, carried by the q-th mode may be small 
for every mode and the Condon approximation becomes 
valid 

In the tw,o limiting cases we have to allow for - p 
terms if the Franck-Condon factors a r e  small. Hence, 
it follows that if both A, and B,,, differ from zero, we 
can use the Condon approximation if the ser ies  (35) 
converges in a t  least one case because the presence 
of the second mechanism increases the Franck-Condon 
factor for typical parameters of the problem. It follows 
from this discussion that the conclusions reached by 
~ c h a r f [ ~ ~ '  on the divergence of the ser ies  (35) a r e  
incorrect. 

At finite temperatures the behavior of the series (35) 
i s  quite different. In fact, Mn(t) occurring in Eq. (47) 
contains a time-independent term ynn! [N(N+ 1)]n'2/(n/2)! 
and the parameter governing the convergence of this 
branch of the ser ies  i s  

Hence, i t  follows that a t  sufficiently high temperatures 
and for large nuclear displacements when en 21, the 
Herzberg-Teller expansion i s  inapplicable because the 

corresponding series (35) diverges and the rate constant 
has to be calculated using Eq. (46). 

In spite of the fact that the actual form of L,,(R) 
affects greatly the rate constant, an investigation of the 
"non-Condon" effects can be carried out in general form 
because the time-dependent part of the integrand in Eq. 
(46) i s  independent of L,,(R). In this case we shall con- 
sider the integral 

where A, = - i  T ~ , ~ T ~ ~ .  In the absence of the frequency 
effect the influence of the "non-Condon" correction re- 
duces to an asymmetric change in the parameter of the 
electron-vibrational interaction, which gives 

According to Eq. (54), the transition rate constant may 
vary by several orders  of magnitude for large values of 
a, if y is  small. For large y ,  the influence of a, de- 
creases. Moreover, a s  the temperature rises,  the in- 
tegrated probability of the transition becomes greater. 

In the presence of only the diagonal frequency terms 
the expression for gG at  zero temperature becomes 

2 a t o q  ( I -A.  ep(-2ill.t) +Xu,' expi---ioqt) +Z- 
Q,+uq I-Aq2 eup (-2iQ,t) 

Hence, it follows that the behavior of the rate con- 
stant a t  low temperatures changes qualitatively if 
allowance i s  made for the "non-Condon" corrections. 
When this i s  done, the spectral function includes the 
frequency of the initial state whose intensity depends 
weakly on temperature. In the Condon approximation 
such frequencies appear only a t  finite temperatures 
and their intensity depends strongly on temperature. 
The appearance of anew frequency in the "non-Condon" 
approximation i s  due to the fact that vibrations of the 
initial state occur in L,,(R). In those cases when the 
spectral function has a pronounced vibrational struc- 
ture, the appearance of additional frequencies i s  part- 
icularly important because they reduce strongly the 
dips between neighboring resonances. It i s  then 
necessary to allow for the "non-Condon" effect also 
a t  low temperatures. 

We shall now consider the case of high temperatures 
and short times. A calculation of the zeroth moment of 
the integrand of Eq. (53) shows that i t  differs from zero 
and is equal to exp{2~a:(2~,+ I)}. The f i rs t  moment 
i s  given by the expression 
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i.e., the changes a r e  slight. The  second moment 
changes by an amount 

and decreases in the case  of the large frequency effect, 
i.e., the dependence of the r a t e  constant on the elec- 
tronic transition energy becomes stronger. On the 
other hand, in the case  of the smal l  frequency effect, 
the "non-Condon" corrections increase somewhat the 
second moment. 

At intermediate temperatures the argument of the 
exponential function has a t e rm proportional to the 
f i r s t  power of B,,, which i s  absent in thecondon approx- 
imation, and the quantity gG i s  described, to within the 
principal te rm of the f i r s t  order in B,,, by 

In this case the broadening of the vibrational resonances 
i s  greater  than in the Condon approxlmatlon and the r a t e  
constant may increase considerably. The last  te rm in 
the exponential function (56) results  in a temperature 
dependence of the integrated value of the spectral  
function. 
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