
helix on the concentration. 

For  example, in the propagation of ultrasound in the 
CLC mixture, additional relaxation damping should be 
observed. This is connected with the fact that the peri- 
od of the mixture (or the inverse quantity q,) is deter- 
mined by the concentration. Thus, in the propagation 
of the ultrasound, in addition to the density fluctuations, 
there is a comparatively slow relaxation (connected with 
the diffusion) of the pitch of the helix. In the usual fa- 
~hion,['~ we find the following for  the complex wave vec- 
tor X :  

here w is the frequency o f  the ultrasound, r is the cha- 
racteristic diffusion time of establishing theequilibrium, 
c, and c, are  the velocities of ultrasound at wr<< 1 and 
w7>> 1, respectively. 

We note that the diffusion times 7 differ significantly 
for directions along and transverse to the axis of the 
helix, while the natural anisotropy of the elastic pro- 
perties of pure CLC is very small ("lo-'). In corre- 
spondence with this, the dispersion curves for propa- 
gation of ultrasound along and transverse to  the axis of 
the CLC helix should also differ. 

The presence of an additional (in relation to pure 
CLC) hydrodynamic variable (concentration) leads to a 
change in the spectrum of the collective modes. A more 
detailed consideration of this question goes beyond the 
framework of this paper. Here we shall only shown the 
qualitative consequences. Along with ordinary sound 

and second sound, which is connected with the compres- 
sibility along the axis of the CLC (the modulus K2,q2) a 
damped diffusion mode appears. Depending on the rela- 
tion of the constant of interaction between the compo- 
nents of the mixture, the character of this latter mode 
can change from purthermodiffusion of the slipping of 
one component relative to the other. The structure of 
the modes also depends on the orientation of the wave 
vector of the mode relative to the axis of the CLC. All 
these effects can be observed in principle experimen- 
tally, for example, by Brillouin scattering. The real 
estimate depends on the values of the many parameter 
of elasticity and viscosity, which a re  unknown at pre- 
sent for most of the CLC mixtures. 
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On the possibility of existence of a spin-glass phase in 
amorphous magnets 

S. L. Ginzburg 
B. P. Konstantinov Leningmd Institute of Nuclear Physics 
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Zh. Eksp. Teor. Fiz. 74, 2331-2341 (June 1978) 

It is shown that in amorphous magnets with "rotating" anisotropy of the easy-axis type of a spin-glass 
phase can exist. The conditions for the existence of such a phase are discussed. The phase diagram for the 
ferromagnetic, paramagnetic, and spin-glass phases is derived. 

PACS numbers: 75.50.Kj, 75.30.G~ 

1. INTRODUCTION attain the maximum possible value. To explain these 
phenomena a model was proposedcl3 according to which 

In this paper we consider the properties of one class each magnetic atom i s  acted upon by a crystal field 
of amorphous magnets-alloys of rare-earth (Tb, Dy, that is random in direction but constant in magnitude, 
Ho) and transition (Fe, Co) metals. These alloys leading to anisotropy of the easy-axis type. We shall 
possess a number of unusual magnetic properties; call this anisotropy rotating anisotropy. Subsequently, 
e .  g., the magnetization at zero temperature does not M6ssbauer-effect experimentscz3 on these substances 
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basically confirmed this model. At the same time it  
was found that the anisotropy constant is large com- 
pared with the exchange forces. 

In a paper by Harris and zobinC3] i t  was concluded on 
the basis of numerical calculations that a spin-glass 
phase can exist in such magnets. However, i t  was 
concluded incorrectly that the existence of this phase 
depends only on the magnitude of the anisotropy con- 
stant and does not depend on the other parameters of 
the system. Since the problem was solved numerically, 
the physical mechanism leading to the appearance of 
such a phase remained unclear. In the present paper 
we shall consider this problem analytically and shall 
discuss in detail the physical mechanism leading to the 
appearance of the spin-glass phase. It will be shown 
that i t s  existence depends not only on the magnitude of 
the anisotropy but also on the number of nearest neigh- 
bors in the lattice, this dependence being different near 
the Curie point and at low temperatures. Since these 
substances are  amorphous, i t  is almost certain that the 
exchange integral in them also fluctuates. If we take 
this into account, i t  turns out that the existence of a 
spin-glass phase also depends on the size of these 
fluctuations. The phase diagram of the existence of 
the paramagnetic, ferromagnetic, and spin-glass 
phases is also considered in the paper. The properties 
of the ordered phases, especially near the phase 
boundaries, are  studied. 

2. MECHANISM OF FORMATION OF THE SPIN 
GLASS 

In order that a spin glass can be formed, i t  i s  nec- 
essary (but by no means sufficient) that the Hamilto- 
nian of the system be constructed in such a way that 
in the ordered phase of the system there exist moments 
directed against the average magnetization. If there 
are  no such moments, there cannot be a spin glass. In 
ordinary spin glasses such moments arise because of 
the presence of negative exchange integrals. In our 
case we have only positive exchange integrals, and, 
therefore, i t  would seem that these substances should 
necessarily be ferromagnets. Nevertheless, as we now 
show, there is another mechanism, which i s  connected 
only with the presence of rotating anisotropy and which, 
even for ferromagnetic exchange, leads to the appear- 
ance of moments directed against the average magnet- 
ization. 

The interaction Hamiltonian for our system has the 
form 

where J,, is the exchange integral, D  is the anisotropy 
constant, and s, is the spin and n, the unit vector of 
the anisotropy axis for the I-th atom. We shall as- 
sume n, to be a random vector, and J,, to be a ran- 
dom, Gauss-distributed quantity with the parameters 

Since in the alloys studied the spins of the rare-earth 
elements a re  very large (e. g., we can have s = 6,15/2), 
we shall assume the spin to be classical. 

zero temperature and absence of fluctuations of the 
exchange integral; i. e., we shall assume that T = 0 
and Ji = 0. At T = 0 all the spins a re  completely fro- 
zen and a re  in a position of equilibrium, determined 
by the condition for the minimum of the energy 

where m, is the local magnetization. We shall show 
now that there exist moments for which it is energet- 
ically favorable to be directed against the average 
magnetization M. For  such moments it is obvious 
that 

We shall consider the energy of any given moment: 

In order to simplify the problem further, we shall 
assume that D = - .  In this case the moment m, will 
point along the anisotropy axis n,, but in such a way 
that h, . mi >O. We shall assume that i t  is energetically 
favorable for all the nearest  neighbors of the i-th mo- 
ment to be pointing parallel to M; i. e., for all j the 
quantity m, . M>O. If, for even just one moment, this 
is not so, we have already obtained the condition (4) 
for this moment and our statement is proved. If all  the 
m, . M >O, i t  is clear that hi . M >O also (see Fig. 1). 
We note that, because of fluctuations, h, is by no means 
parallel to M. Since it is the interaction with h,, and 
not with M, that appears in E, in (5), i t  is obvious that, 
for all directions of the anisotropy axis n, that lie in 
the shaded sectors formed by the perpendiculars to M 
and hi in Fig. 1, the condition (4) will be fulfilled for 
the corresponding moments mi. 

Thus, we see  that even at zero temperature there 
exist moments directed against the average magnetiza- 
tion. It is entirely clear that all our simplifying as- 
sumptions (T = 0, J ,  = 0, D= -) only make the picture 
clearer but do not affect the conclusion about the ex- 
istence of moments directed against M. It is easy 
to show that there a re  always such moments in the 
ordered phase. It is precisely the presence of such 
moments that leads to the formation of the spin glass. 
For the glass to be formed i t  is necessary, crudely 
speaking, that there be sufficiently many such mo- 
ments. The present paper is devoted to elucidating 
the conditions under which this occurs. 

FIG. 1. 

For simplicity we shall consider f i rs t  the case of 
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3. DERIVATION OF THE BASIC EQUATIONS 

We shall solve the problems using the method pro- 
posed in a paper by the authorLd1 for the derivation of 
equations for the distribution functions fi(m) and 
f(q) of the local moments and local molecular fields 
in the Bethe- Peierls approximation. The solution of 
these equations will give the answer to the problem 
posed. First  of all it is necessary to make one pro- 
viso. Previously, c41 the corresponding equations 
were written for the Ising model. Here we have a 
Heisenberg interaction. However, i t  i s  clearL4' that 
for Jo << T these equations go over into the usual mol- 
ecular-field equations. It is more or  less clear that 
in this region we can write the same equations for the 
Heisenberg interaction too. This is what we shall do. 

The equations written below for the local magneti- 
zations and molecular fields are simply the molecular- 
field equations for these quantities. However, as i s  
well known (see, e .  g., Ref. 5), the Bethe- Peierls 
approximation differs from the molecular-field approx- 
imation in this region in that the quantity z- 1 appears 
in place of the number z of nearest neighbors. There- 
fore, to simplify the account, we shall proceed as 
follows. First, we shall obtain all the results in the 
molecular-field approximation, and, in the section 
devoted to the discussion of the application of these 
results to real systems, we shall remember this 
difference and replace 2-1. We note also that, as can 
be seen from (3) and (5), our equations are also true 
for T = 0. Below we shall see that the results for 
T = 0 and for J,, << T << T, coincide. Therefore, they 
can also be extrapolated into the region T - J,,. 

The molecular-field equations for the local magnetic 
moments m, and local dimensionless molecular fields 
q, have the form 

The first formula in (6) gives the equation for the lo- 
cal molecular fields, and the second formula deter- 
mines the local magnetization in terms of the local 
molecular field and the local direction of the aniso- 
tropy axis. 

We now introduce the distribution functions f (q) and 
f,(m) of the local molecular fields and local magneti- 
zations, respectively, and their Fourier transforms 
~ ( k )  and F,(k): 

and analogously for f,(m). Then, 'by the method devel- 
oped in our previous paper,c41 we obtain from (6) the 
following equation for f (q) and F (k): 

Here the function m(q,D, n) is defined by the second 

formula in (6). Since z>> 1 always, (8) is easily solved. 
For z >> 1, F(k) in (8) is calculated by the method of 
steepest descents; as  a result, we obtain 

The formulas (9) a r e  written in a system of coordi- 
nates in which the z axis is parallel to the average- 
magnetization vector M. It can be seen from (9) that 
for z >> 1 the molecular fields are  Gauss-distributed 
with different variances parallel and perpendicular to 
M. This distribution is characterized by the three 
parameters 

which a re  the basic parameters of the theory, to be 
determined. We shall write equations for them below. 
If a s  a result of solving these equations we obtain 

this will imply the existence of a spin-glass phase. In 
the ferromagnetic phase all  three parameters a re  non- 
zero, while in the paramagnetic phase all  three para- 
meters a re  equal to zero. 

To solve Eq. (9) we need to know the explicit form of 
the integrals of m,(q, D, n), m:, and mi over n. To cal- 
culate these quantities it is convenient to introduce the 
distribution function of the magnetization in a uniform 
dimensionless magnetic field q and a random rotating- 
field: 

Then, from (9) and (11) we obtain 

M - j mzfl (m) dm, QO = j m.2fl (m) dm, 

Q~ = Jm.'j,(m)dnl. il(m) = j f l (m,  q ) ~  ((~)dn. 

It is clear that the function f,(m) appearing in (12) is the 
distribution function of the local magnetizations. From 
(9) and (12) it is clear that to solve Eqs. (9) we need 
to know the function f,(m, q). We turn now to its calcu- 
lation. 

4. CALCULATION OF f ,  (m,q) 

The calculation of f,(m, q) for arbitrary values of the 
parameters is difficult. Therefore, we shall calculate 
it for two particular cases: first, for arbitrary values 
of the anisotropy constant D and sq << 1, and, secondly, 
for D = m (y = DsZ/T >>qs, y >> 1) and arbitrary q. This 
will be sufficient for our purposes. 

First we consider the first case. For sq << 1 it is 

1212 Sov. Phys. JETP 47(6), June 1978 S. L. Ginzburg 1212 



possible to perform an expansion in q in the definition 
(6) of the function m(q, D, n). It is convenient to perform 
this expansion first  in a coordinate frame in which the 
z axis is parallel to the anisotropy axis and then trans- 
form to an arbitrary coordinate frame. As a result, 
from (6) and (11) we obtain 

X6 (mu-mo sin (gf yo)  } 6 {m,-'l,s2q (c  cos 6 - b  sin 6 cos c p )  }, 

b ( x )  =3/2(3a-  l )x ( l -x ' ) '" ,  c ( x )  =l+'12(3x2-I) (3a-I ) ,  

b sin cp  
tg'o(zt = c sin e+b  cos 6 cos cp 

m, ( q ,  x, c p )  =llls'q[Oz sin' rp+ ( c  sin 6+ b cos 6 cos c p ) ' ] " ,  
q= ( q  sin 6 cos l).. q sin 6 sin g, q cos 6 ) .  

In the derivation of (13) we assumed the spin to be 
classical, i.e., we put s = sp,  where p is  a unit vector. 
Everywhere below, we also assume the spin to be 
classical. The formula (13) is  written in an arbitrary 
coordinate frame. The Cartesian coordinates of the 
vector q in this frame a r e  written out for convenience 
in the last line of (13). We note that cp and arccos x 
are  the polar coordinates of the unit vector of the ani- 
sotropy axis in a coordinate frame in which the z axis 
points along the vector q. The integration over x runs 
from 0 to 1, and not from -1 to +1, because the aniso- 
tropy axis is  not a vector and a l l  x <O a r e  equivalent 
to the corresponding values x > 0. 

We now write f,(m, q) for the important particular 
case when the z axis is  parallel to the vector q; then 
9 = #I= 0 and in (13) we can integrate over rp . As a 
result we obtain 

Below we shall be interested in the function fi(m), 
which i s  obtained by averaging fi(m, q) over the dis- 
tribution function (9), which depends only on 1 q1 and 
the angle 9 between the vectors q and M but does not 
depend on the azimuthal angle J,. Therefore, i t  is 
convenient to average (13) over J I  immediately; as a 
result we obtain 

~6 (m,-'i,s2q (c  cos 6 - b  sin 0 cos cp)}. 

If 9=0 ,  then, naturally, (15) goes over into (14) (to 
within a factor 27r). 

We now consider the second case: D= .o and arbi- 
trary q. In this case the problem is simplified by the 
fact that the local moment is parallel to the local- 
anisotropy axis but lies at an acute angle to the local 
molecular field. Then from (6) we have 

(16), is equal to stanh (sqx), where x i s  the cosine of 
the angle between q and n. This dependence is easily 
understood, since the large anisotropy makes the spin 
"Ising-like" and the spin magnitude depends, naturally, 
on the projection of the magnetic field on the direction 
of the moment, which coincides with the direction of the 
anisotropy axis. 

Rewriting (16) is an arbitrary coordinate frame, we 
obtain a formula analogous to (13) for our case: 

( 1 - 2 )  '"sin cp  
tgyl(x")= xsin6-i (1-x')'" cos it cos cp  

m, ( q ,  x, c p )  =s th (qsx)  ( ( 1 - s t )  sin2 r+c 
+ [ z  sin 6+ (1-2')" cos 6 cos cp]'}'". 

In the case sq << 1, (17) goes over into (13) when 
a =  1, which corresponds in (13) to D=m. For 9=J,=O,  
from (17) we obtain 

After averaging (17) over J ,  we have 
I" i ' 
j d y f l ( m , q ) = - j d c p ~ ~ 6 ( m , - m ~ ( q , ~ , c p ) ?  

2nm 8 8 

x 6{m,-s th(qsz)  [I cos 6- (1-zS)"sin 6 cos cp]}. (19) 

Using the explicit form of f(q) in (9), fi(m) in (12) and 
fi(m, q) in (15), (19), i t  is easy to show that fi(m) is 
nonzero for m, <O, even if we assume that a f ~ ,  = a ; ~ ' ,  
i. e . ,  if we assume that all q, >O. The characteristic 
values are  

where I mc,, 1 is the characteristic value of I m 1, dif- 
ferent for (15) and (19). The fact that fi(m) is non- 
zero for m, < 0 is the mathematical expression of 
what we talked about in Sec. 2. 

To conclude this section we shall consider the mo- 
ments of the distribution functions (14) and (18) and 
the relations between them. From (14) and (l8), in 
the case of q s  << 1 and arbitrary anisotropy, we have 

while for  y >> q s  >> 1, 

We note that s2q/3 is the usual Langev in magneti- 
zation. From (13) i t  can be seen that as D-0 the 
quantity a - 1/3 and the variance of the magnetization 
vanishes. We note that for y >> qs >> 1 the quantity 
(m,) by no means reaches i ts  maximum possible val- 
ue s. (m,) acquires this value only for D= 0. 

'5. DERIVATION AND SOLUTION OF THE EQUATIONS 
FOR M, Q, , and Q, 

We turn now to the derivation of the basic equations 
for our theory, for the parameters M,Qo, and Q, of The magnitude of the moment, a s  can be seen from 
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the distribution function of the molecular fields. For 
this we make use of the formula (12). We consider 
f i rs t  the region near T, (by T, we shall mean the 
temperature of the transition from the paramagnetic 
state to the ordered state, whether this be the ferro- 
magnet or  the spin glass). Near T, the characteristic 
values of q << l/s, and we can make use of the formul- 
as (13) and (15) for  f,(m, q). 

From (12), (13), and (15) we obtain the following 
equations: 

The averaging of (q3, etc. is performed with the func- 
tionflq). All the calculations a re  performed in a 
coordinate frame in which the z axis is parallel to the 
average-magnetization vector M. In the derivation 
of (21) the identities (m:) = 2(m:), (q:) = 2(q,2) have 
been used. From (9) and (21) we obtain 

Eqs. (21) are written in the linear approximation, and 
therefore they are  valid only near To. 

In the ferromagnetic phase the f i rs t  equation deter- 
mines T, and the other two equations give expressions 
for Q, and Q, in terms of M ~ :  

The expression for Do in (23) is written in generalform, 
while the formulas for A, and 4 axe written neax the 
point of the phase transition to the ferromagnetic state, 
where the condition 1 = s2zcud3 is fulfilled, since these 
quantities a re  of interest only in this region, inasmuch 
as M#O there. 

From (23) it can be seen that Do vanishes when 

The second formula is written in the ferromagnetic 
phase near T,. 

From (23) i t  can be seen that when Do vanishes Qo and 
Q, can be positive and finite quantities only when M= 0, 
as is required of them by their physical meaning. Thus, 
the condition Do = 0 corresponds to the spin-glass phase. 
If we approach the point Do = 0 from the ferromagnetic 
region, then, as can be seen from (23), Qo and Q, be- 
come large conpared with M ~ .  Thus, the ferromagnet 
gradually loses i t s  properties, as i t  were, inasmuch 
as M becomes a small quantity compared with the 

standard deviation of the l o c i  magnetization, and, 
finally, M vanishes a t  some point. In the spin-glass 
region, T, is now determined not by the condition 
s2z(uo/3 = 1 but by the condition Do = 0, i. e . ,  by the f i rs t  
equation (24). 

It is easy to show that allowance for the nonlinear 
terms in Eqs. (22) will change nothing in the elucidation 
of the conditions for the existence of the ferromagnetic 
phase and the spin-glass phase and will only make i t  
possible to determine the absolute values of M, Q,, and 
Q, (Eqs. (22) did not determine them). Allowance for 
the nonlinearity will also determine for us the critical 
index p, which in the ferromagnetic phase is, naturally, 
/3 = i, while in the spin-glass phase p = 1. Therefore, 
we shall not write out Eqs. (22) with allowance for the 
nonlinear terms. 

We shall consider now the region of low temperatures 
T << T,. As we have already said, on the one hand our 
equations can be used for T>> J,, and, on the other, they 
they a re  also valid, as is easily shown form (3) and (5), 
for T=O. The results a re  the same. In fact, we shall 
calculate the trace over 8 in m, in (6) for T =  0 by the 
method of deepest descents. The expression obtained 
coincides with the condition for the minimum of the 
energy E, in (5). Clearly, therefore, i t  is reasonable 
to assume that these results a re  also true for all 
T << T,. 

In this region we consider only the case of strong 
anisotropy y > > p .  Since for T << T, the local magneti- 
zations a re  close to saturation, we have qs >> 1. Then 
from (12), (17), and (19), for y >>qs>> 1, we obtain 

In (25) (cos 9) denotes the average of cos9 over the 
distribution function f(q) in (9). The modulus of q has 
dropped out in (25), since at low temperatures all the 
local moments are  completely saturated. For the 
same reason, Qo and Q, a re  equal to their values in 
(20). Thus, (25) is an equation for M only. Putting 

cos %=q,/q=q./(q,'+q,') ", 

from (9) and (25), after straightforward transforma- 
tions, we obtain 

In the last formula of (26) the asymptotic forms of f(M) 
are  written out; in deriving them we have used the fact 
that Qo = Q, = s2/3. 

It can be seen from (26) that for z >> (c~,/(u,)~3n/2 we 
have the solution M= s/2 which corresponds to the 
magnetization in (20) (even a t  T =  0, the strong aniso- 
tropy loosens the system so strongly that the satura- 
tion magnetization is equal to s/2 and not s) .  With 
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decreasing z the quantity M decreases and, finally, a t  

the magnetization vanishes. At lower values of z we 
have the spin-glass phase. We note that, near the 
critical values of the parameters, we already have 
M << Q,, Qi, i. e., the situation in analogous to that 
which obtained near T,. 

6. DISCUSSION OF THE RESULTS. THE PHASE 
DIAGRAM 

We now discuss the results obtained and draw the 
phase diagram. Firs t  of all we remember that, as we 
have already said in Sec. 3, in the Bethe- Peierls 
approximation i t  is necessary to replace z by 2-1. 
This means that i t  i s  necessary to make this replace- 
ment in all the formulas of the preceding sections. 
For z >> 1 this is not important. However, for the 
substances being studied, z = 4-6, and therefore 
this replacement is important. We now write out the 
criterion for the existence of a spin-glass phase with 
allowance for this replacement. Then, from (24) and 
(27) we obtain 

a,' 1 1 
z - I = - [ I  tT (3a-1)' , -s2(z-!)ao=l, 

a02 u I 3  (28) 
33 az2 a 

2-1 =--~4.714. 
2 aa2 a. 

The first  two equations a re  written for I T,-TI << 1; 
the first  equation determines T, in the spin-glass 
phase while the second is valid in the ferromagnetic 
phase and determines the parameter values a t  which 
the transition from the ferromagnetic phase to the 
spin-glass phase occurs. The last  equation determines 
the same parameter values, but for T << T,. From 
(28) i t  can be seen that for large anisotropy (a= 1) and 
in the absence of fluctuations of the exchange integral 
( a ,=  a,) the critical values of z are  equal to 

Since we have z = 4-6, there is certainly a region of 
existence of the spin-glass phase. Furthermore, de- 
creasing the anisotropy leads, naturally, to a narrow- 
ing of this region (in this case a becomes < 1  and as 
D - 0 the quantity a - 1/3). But fluctuations of the 
exchange integral, naturally, s t i r  up the system and 
thereby expand the region of existence of the spin-glass 
phase. For large anisotropy (a= 1), from (28) and 
(9) we obtain 

The f i rs t  two equations determine TOE for the transi- 
tion from the paramagnetic to the spin-glass phase 
Tf for the transition to the ferromagnetic phase. The 
third equation determines the point of coexistence of 
all three phases; when this equation is fulfilled, T, 
= Tcf . The last  equation determines the line separat- 
ing the ordered phases a t  T << T,. The phase diagram 
for z = 6 and a fixed J, is shown schematically in Fig. 
2. In Fig. 2 the numbers 1, 2, and 3 correspond to 
the paramagnetic phase, the glass, and the ferromag- 
net. We note that for z =  4 and large anisotropy there 
is no ferromagnetic phase; the spin glass or  the para- 
magnet i s  realized for all values of Ji and Jo. For 
z = 5 the ferromagnetic phase exists only at tempera- 
tures higher than a certain To. 

We consider now, for z  = 6, a specific value of Jo/J, 
in the range 1.22-4.03. Then, i f  we change the tem- 
perature, we f i rs t  have the spin glass, then the ferro- 
magnet, and then the paramagnet. The dependence of 
the magnetization of the temperature is depicted sche- 
matically in Fig. 3 .  We note that the phase diagrams 
depicted in Figs. 2 and 3 a re  very similar to the cor- 
responding phase diagrams of Ref. 6. However, for 
z = 4, 5 the phase diagrams already have a different 
form. 

We note, that since, in reality, J:/J~ 51, the spin- 
glass phase can be realized with not very large values 
of z .  However, a s  can be seen from (30), even for 
z = 8 at  T << T, we should have 4/J; EJ 0.49, which is 
entirely realistic. For sufficiently large values of 
z there will be no spin-glass phase. 

In conclusion the author would like to express his 
gratitude to I. Ya. Korenblit for discussions on the 
work. 
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