
of the radiation intensity. A frequency and angle region 
can then exist, in which the vacuum radiation and the 
radiation from the medium are  in phase. We wish to 
call particular attention to this circumstance, since 
it can take place both in oblique incidence of the par- 
ticle on the sample and when the particle moves in the 
channel. 

This analysis is not restricted to the y-resonance re- 
gion, and can hold also at frequencies close to the na- 
tural frequencies of the medium (optical-transition 
frequencies, absorption edges,[lol and others)'). 

In  conclusion, the author thanks V. V. Fedorov for 
useful remarks, A. F. Tyunis for help with the numeri- 
cal calculations, and T. B. Mezentseva for  help in 
readying this paper for publication. 

)We neglect the imaginary part, which is smaller by almost 
two orders of magnitude than the real part in the frequency 
band of interest to us. 

')1n this case we omit the third component-the field of the 
dipole images in the medium a s  the particle moves in 
vacuum, since this component is small compared with 

IIiw and n2,. 
3 ) ~ h e  trajectory region in which the phases of the waves 

emitted from it differ by not more than r. 
4 ' ~ h e  y-resonance region was chosen because it was simplest 

to describe. 
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Interaction of two-level system with a strong 
monochromatic wave and with a thermostat 

T. K. Melik-Barkhudarov 
Erevan State University 
(Submitted 8 February 1978) 
Zh. Eksp. Teor. Fiz. 75, 97-103 (July 1978) 

An expression is obtained for the stationary distribution of a two-level system, produced as a result of 
interaction with the thermostat, in the field of a strong monochromatic wave; the times to establish this 
distribution are also determined. It is shown that when the external-field frequency is lower than a certain 
critical value the state of the two-level system is described by a Boltzmann distribution in the quasi- 
energy, and at high frequencies it contains matrix elements of the interaction with the thermostat. It is 
also shown that the corresponding relaxation constants are half as large in the resonant case as in the 
nonresonant one, so that it can be concluded that the presence of the signal suppresses the noise in a 
quantum amplifier. 

PACS numbers: 05.30. -d 

Progress in the theory of irreversible processes 
raises the question of the behavior of quantum-mech- 
anical objects that a re  coupled to a thermostat, i.e., to 
a system that has in the limit an infinite number of de- 
grees of freedom. Since this problem is extremely com- 
plicated, solutions can be expected for only the very 
simplest models, a s  was f i rs t  done by Weisskopf and 
Wigner in their classical work on radiative damping.['] 
In 1963, Gordon, Walker, and ~ o u i s e l l [ ~ ~  solved the 
problem for a damped harmonic oscillator coupled to a 
set cf independent oscillators distributed at the initial 
instant in accord with a canonic ensemble.[21 Glauber 
has shown laterc3' that "large systems not consisting, 
of course, of harmonic oscillators have very frequently 
collective-excitation modes whose amplitudes behave 
dynamically like oscillator amplitudes," so  that such a 

thermostat model is quite general. In the present paper, 
an attempt is made to develop further the Weisskopf- 
Wigner theory to include a two-level system in the field 
of a strong monochromatic wave, using the aforemen- 
tioned model of the thermostat. 

The first  questions raised when this problem is for- 
mulated are:  

1. Are there any memory effects whatever in the 
stationary distribution of a two-level system? 

2. Does this distribution depend on the details of the 
mechanism of the interaction with the thermostat, o r  
is the latter only a temperature, a s  is postulated in 
equilibrium statistical physics? 

We describe our system by the Hamiltonian 
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Am 
v = ( t ) )  GifIA1 ( t ,  t ' )  =6 ( t - t ' ) ,  ( . , - - a  - - a -  

2 s 2 
v, (I)  = 

k 

Am=oo-o, cijk=ok-o. 

Finally, with the aid of the quantities 
where w, is the level difference, w ,  is the amplitude of 
the monochromatic wave in energy units, a,, a,, and 
o, a re  Pauli operators. The interaction terms a r e  
written in the rotating-wave approximation. We assume 
that the interaction is turned on at the instant t=O. 

n,( t , -1 ,  t - t z ) = ( G A ( t t ,  t )aGR( t ,  t , )  V ( t , ) - V ( t , ) G A ( t , ,  t ) o c n ( t ,  t , ) ) ,  

n , ( t , - t ,  t - t , ) = ( c A ( t , ,  t ) o c n ( t ,  t , ) ) ,  
(7) 

we complete the mathematical formulation of the 
problem: 

The solution of the equation for the density operator 

where 
s - s F + s r ,  Ss(t-t')  --ll2s0ol Tr. o,n,(tr-t ,  t - t l ) ,  can be written in the form 

p=po-i U ( t ,  t ' )  [V, , ,  p o ] U ( t f ,  t ) d t l ,  i ST (t-t')  =-iTr. p0.IIr(t1-t, t-t') .  

which has thus been reduced to the calculation of the 
quantities in (7). where U(t, t') is the system-evolution operator 

Expanding the Green's functions in (7) in the interac- 
tion with the thermostat and using Wick's theoremc4] for 
the mean value of the products of an arbitrary number of 
Boson operators, we arr ive  at perturbation theory in 
diagram form. Some of the diagrams for the Fourier 
components of n,, 

1 
II,(t,-t. t - t2)= -----;I n F ( e - ,  e+)exp[-- ie-(t , - t ) - ie+(t-t , ) ]de-de+, 

(2n) (9) 

v , = v t ~ + v r ,  povmpr, 
(4) 

and p,= 1/2(l +souE) is the initial distribution of a two- 
level system with arbitrary overpopulation s,, while 
p,  i s  the initial distribution of the thermostat. 

Relation (3 )  can be verified by differentiating both its 
parts with respect t o  time and taking (4) into account. 
We shall be interested hereafter in the reduced density 
matrix, and for this purpose it is necessary to take in 
( 3 )  the trace over the variables of the thermostat. 

a r e  shown in Figs. l a  and l b ,  where the solid lines 
correspond to  the Green's functions averaged over the 
thermostat 

Making the transformation 

U ( t ,  t') -L+ ( t )  U 1 ( t ,  t ' )  L ( t ) ,  
V - L + ( t )  V ( t ) L ( t ) ,  L ( t )  =exp [i(1/2ma.+Hr)tl .  

we obtain for the reduced density matrix (the term 
"reduced" will henceforth be omitted for brevity) the 
following expression: 

and the dashed lines correspond to the thermostat func- 
tions 

Trbp='l~exp (-'/zioo,t) (i+sa) exp ( ' l2 ioa. t ) ,  

where s = ( sX,sY,s3  a re  the components of the density 
matrix in the rotating coordinate system 

Calculating the irreducible energy part c ~ ( ~ ' ( E )  in 
f i rs t  order in t h e  interaction with the thermostat, 
we get 

(gnlA1 ( t )  ) - ' = ~ - ' / ~ A m a ~ - ' / ~ o , a ~ - Z ~ ' ~ )  ( E ) ,  (10) 
a and b under the trace sign designate the variables with 
respect to which this operation is carried out. where 

The retarded and advanced Green's function introduced 
in (5) a re  determined by the relations 

Here 

We shall not write out the expressions for the level 
shifts, since they a r e  not needed in the subsequent cal- where 
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FIG. 1. 

culations. We have used in fact the Weisskopf-Wigner 
theory, assuming the thermostat spectrum to be almost 
continuous and the interaction with it to be weak. 

We proceed now directly to the calculation of n, and 
consider for this purpose first x s y,,,. In this case the 
integration of the products of the two Green's functions 
go and gR, which have close arguments, offsets the 
smallness of the interaction with the thermostat, so 
that it becomes necessary to sum aUladder" of diagrams. 
The latter lead to the integral equation shown graphic- 
ally in Fig. l c  for II,. 

It is convenient, however, to solve the equation not 
for II, but for the vertex function connected with II, by 
the relation 

We write the equation for A in the form 

uus, +- {u2(y,-ix) (i-2v8As)-vz(yl-ix) (i-2~'Aa)}.--n1;, 
r,-ifi 

UVS0 
(1 7) 

Sr ( % l a - -  {(ys- ix)  ( i -  (u'-vs)A;) +(y2-ix) ( I +  ( U " - V ' ) A , ) } ~ - ~ I Z  
rs-ix 

U V k  -- ( (yl- ix)  ( 1 -  (ua-vz)Aa) + ( y ¶ - k )  ( i +  (ua-v') As) ).--WZ, 

r2-k 

where S,(X) is the Fourier component of the function 
SF(t - t'): 

S, (t-t ')  = - J S,(x)e-'"'-'"dx. 
2n 

Substituting (14) in (17) we arrive after algebraic 
transformations. at 

where 

(18) 

ST i s  calculated analogously. Figure 2 shows the 
diagram form of nT, whose analytic form i s  

After integrating with respect to c we arrive at an 

A-=A,O+~-+  A~o-o+. (13) expression for 
ST== (ZuvS,, 0, (uZ-v')S,),  

where A',(%) ='lr(u'(i+so) (A,-ylX) +v2(i-so) (-4t-y=X)).-nit 

+ ' / 2 { v ~ ( l + s o )  ( . i t -y lY-)+u2(f-so)  ( .L-- f*Y)) , - - f i  2, (20) i 
A I ( ~ - ,  e t ) - -  I at(€-e')  (gA(e-') (o+A(e-', E + ' ) ) ~ ( E + ' ) ) ~ ~ ~ E ' ,  2n 

i 
and finally 

A ( & - ,  8,)- - j d-(e-e') (g*(e-'1 @+A(&-'. e + ' ) g ( e , ' ) )  , ,def ,  
2R ~ . ( ~ ) = ~ ~ l c ~ l ~ ( ~ ~ a ( n + a ) - ~ ' ~ ( ~ - ~ . ) ) ( ( 2 ~ ~ + i ) ~ ~ + ~ ) .  

(. . .)22ata--aA(. . . )a- ,  (. . .) ,,a-&=a-(. . .)a+. 1-1% h 

(21) 

Since the kernels of the integral equations differ sub- At I X  I >> r the calculation of S is very simple, since 

stantially from zero only in the narrow region in this case the poles of the Green's functions are fa r  

- yl,,, while A, and A, are functions that depend little from one another and the only contribution to S is made 

on E ' ,  we arrive at the system of linear equations by the term (Fig. l a )  

n, (e-, e t )  = g A ( ~ - ) ~ g f l i e + ) .  
A= (2uvA, 0. (u'-v') A ) ,  

(22) 

A,-Xvadi (6-912) f Yu2d+(e+9/2) ,  (I4) After integrating (22) with respect to c we have to- 
A,-Xu'd-(a-912) +YvZd- (e+9/2) ,  gether with (18) and (21) 

rl=a+c,  r2-b+c. 
a-u'd+ ($2) +u'd- ( Q ) ,  b=uSd+ (-9) +u'd- (-S2), c= (uu)' (dt  ( 0 )  +d- ( 0 ) ) .  

(23) 

From (14) and (15) we obtain for X and Y the expres- 
sions St' )  ( x )  = i 

a-b+ix a-b-ix 
(16) 

- 2 s u ( u v ) z ( X + Q + i b  x - i ! + i A  
X- 

i x ( a + b - i ~ )  ' 
- 

i ~ ( a + b - i ~ )  ' 
-- - IIr= r - m +A-L 

the y-th component of A vanishes in the limit of weak 
interaction with the thermostat, and will not be con- --- 
sidered here. A = ,' WA '\. 

Integrating II, with respect to E,  we get FIG. 2 .  
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where A = (I', + r,)/2 and 

Rewriting (8) in terms of the Fourier components 
S ( x )  

we obtain ultimately 

s.0~80 (t) = - w 
(e-" - cAf cos Rt) + -2 s, (1 - c r ' ) ,  

52' n 
0' A m  

s'" (t) = s,e-=I - + (e-=' - e - A ' ~ ~ ~  Rt) + - s, (1 - e-=f), 
(26) 

o n 

which goes over into the Weisskopf-Wigner resultc1' in 
the limit a s  wl-0 and T--0.  As seen from (26), the 
stationary distribution, in the limit a s  t - m ,  is equal to 
s, and i s  directed along the "effective field." 

We can now answer the questions raised at the begin- 
ning of the article. First ,  there a re  no meinory effects 
in the stationary distribution, i.e., it does not depend 
on the initial distribution of the two-level system; 
second, there is a critical frequency 

such that a t  w c w, the second delta-function vanishes 
and we have 

which corresponds to a Boltzmann distribution with 

quasienergy w +St. At o > w, the terms with 6(51+ h,) 
begin to play an essential role and we find that a t  these 
frequencies the stationary distribution i s  determined by 
the matrix elements of the operator of the interaction 
with the thermostat. 

Turning to a practical application of (26), we note 
that it can have a bearing on the theory of quantum 
amplifiers. It is known that the relaxation processes 
due to interaction with thermal radiation a re  the cause 
of the noise in quantum amplifiers. The corresponding 
relaxation constants 

(29) 
A = 2n lc,I2(2N, + 1) ('l,u66 ( 8  - a,) + '/,v66(52 + a,) f (uv)'G (a,)), 

assume in the resonance case AW << W, << W, the values 

where r, is the reciprocal decay time in the absence of 
a signal (the Weisskopf-Wigner constant in the optical 
region), s o  that without a signal the noise in the amp- 
lifier i s  double the noise in the resonant case. 
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The linear and nonlinear responses to an external perturbing field in a plasma are considered. It is shown 
that, apart from the usual fluctuation-dissipation relation connecting the binary correlation function for 
the charge-density-fluctuations with the linear electric susceptibility, there also exist a number of 
additional relations connecting correlation functions of higher order with the nonlinear susceptibilities. A 
number of integral relations between the linear and nonlinear susceptibilities in a plasma are established. 

PACS numbers: 52.25.Gj, 52.35.M~ 

1. INTRODUCTION mined by the macroscopic coefficients in the linear re- 
lationship between the induced charges o r  currents and 

As is well known, in linear electrodynamics, for  sys- the fields, specifying these coefficients determines 
tems in thermodynamic equilibrium, a fluctuation-dis- completely the spectral distributions of the fluctuations 
sipation relation establishes a general connection be- of the electrodynamic quantities.['-*] For an equili- 
tween the dissipative properties of the system and the brium plasma the spectral distribution of the electro- 
fluctuations of various quantities. Since the dissipative magnetic fluctuations is determined by specifying the 
properties of an electro-dynamic system a re  deter- permittivity tensor. Conversely, knowing the spectrum 
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