
on the asymmetry of the magnetic field and is deter- 
mined mainly by the effective value of the parameter x 
on the drift shell. 
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nonequilibrium electrons 
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The distribution function and the mean values are obtained for a system of noninteracting electrons 
situated in a strong electric field, whose momentum is scattered by ionized impurities (in semiconductors) 
or ions (in a plasma) and whose energy is dissipated as a result of extreme inelastic scattering at E > E ~ >  T, 
E, (where E, is the characteristic energy of the electron-ion interaction and depends on the model and on 
the cutoff radius r, of the Coulomb scattering cross section). It is shown that the dependence of the 
averaged quantities (the conductivity u, the average energy E, and others) on E and on the parameters of 
the material is determined by the value of E, and by the form of the "Coulomb logarithm" AWE,). For 
a quite realistic form of A ( E / ~ )  and not too small E,, the conductivity and the average energy have 
power-law dependences on e , , S a ~ : ' ~  and La&:'2, with both u(E) and WE) constant. For some cutoff 
models it is shown that the dependence of the conductivity of the nonequilibrium electrons on the ion 
concentration N and on the longitudinal magnetic field intensity H can differ noticeably from the standard 
relations. The relations obtained for u(E, N, H) are in satisfactory agreement with the available 
experimental data. 

PACS numbers: 72.20.Dp, 52.20.F~ 

1. INTRODUCTION. FORMULATION OF PROBLEM 

It i s  known that the calculation of the transport scat- 
tering cross section ut,(&) and of the pair-collision fre- 
quency T~-'(&) in the case of Coulomb scattering of elec- 
trons by ions (in a plasma) or  by randomly distributed 
ionized centers (in semiconductors) encounters a char- 
acteristic difficulty, namely the logarithmic divergence 
of utr(&) and T*- ' (E)  at  small scattering angles. This 
difficulty is avoided by assuming that the Coulomb po- 
tential acts only up to  distances r<r,, so that i t  is  pos- 
sible to introduce a minimal scattering angle B,,,(c, r,) 
that depends on r, and on the energy &. This yields 

a,,(.,-+ (f)' " ( ' + C Q ' ~  "" ) 

( x i s  the permittivity). This relation is valid in both 
classical and quantum theory, except for the different 
connection between 6,- and Y ,  (Ref. 1). Different val- 
ues a re  chosen for the Coulomb-potential cutoff radius 
r, frequently on the basis of intuitive physical consid- 
erations, e.g., the Debye radius X,, the Larmor radius 
r ,  (in the presence of an external magnetic field), o r  
half the average distance between the ions $ N ~ "  (N i s  
the ion con~entra t ion) ."~ '  In all the foregoing cases 
the logarithmic factor (hereafter designated A(&)) which 
enters in utr(tz) and rfl(&) can be represented a t  & 2 &, 

in the form 

where v>> 1 and &, is a quantity on the order of the en- 
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ergy of the electron- ion interaction &, = c,(r,), and i s  
different for the different models. (Thus, in the case 
of classical scattering we have cc=e2/xrc ,  and in the 
case of quantum scattering & , = t i 2 / m r ~ ,  s e e  Ref. 1.) 
However, in theories that describe the kinentic proper- 
ties of the quasi-equilibrium electrons (see, e.g., Refs. 
1 - 3 and 5 - 7), i t  customarily assumed that the par- 
ticular choice'of the cutoff model, r, o r  &,, i s  of no 
special significance, and it can be assumed that A(&) 
on the premise that the electron gas i s  nearly ideal, 
i.e., that most electrons have energies & - E m  greatly 
exceeding the energy c, of the electron-electron or  
electron-ion interaction[']: 

e,,,>n"ez/x, e,WNhe'/x 
(1) 

(n i s  the electron concentration). The inequalities (1) 
a re  sufficient (but apparently not necessary, see Sec. 
3) conditions for the applicability of the Boltzmann 
equation. In addition, it is  customarily assumed that 
satisfaction of the inequalities (1) a s  E - 0, when 
&,= T/2, F= ST, E,-5,  guarantees their satisfaction in 
a strong field, since E ,  and F customarily increase 
with increasing field and a r e  close in order of magni- 
tude ( E  i s  the average energy, T i s  the temperature in 
energy units, and E i s  the field intensity). This i s  
apparently why the choice of r,, E,, and A(&) was not 
discussed when nonequilibrium electrons were consi- 
dered in the case T>> &, or E(E) >>&,, and it was as- 
sumed that A(&) = const. Moreover, even in the study 
of electron-runaway effects and of the influence of in- 
elastic scattering on the distribution function, 16p8191 

when the form of ri(&) (and hence of A(&)) i s  particular- 
ly important (see Refs. 8 and 9), it was also assumed 
that A(&) = const. 

It i s  shown in the present article that for non-inter- 
acting electrons that dissipate (at & <&,) the momentum 
on the ions and experience at E = E , > > E ,  extreme inelas- 
tic scattering, there exists a range of fields Em,,  
<cE << Em,, in which the electron distribution 

takes on a maximum value at E = E ,  S E , ,  and the a and 
F have a nearly power-law dependence on E , ,  namely 
om &:IZ and Lm &:I2, in contrast to the frequently en- 
countered logarithmic dependences. In this case 
h>> E,, &,(Fo(&) is the symmetrical part  of the momen- 
tum distribution function, p(&) i s  the state den- 
sity on the energy axis, po= ~ M 3 ~ ~ / 2 ~ ~ ~ ? t i ~ ,  and V i s  
the volume). In this case the electron gas in fields 
Em,,<< E << E,, is less  "ideal" when E ,  << T than a s  
E - 0. The condition of the validity of the approximation 
A(&)= const in fields Em,,<< E <<Em, is  found and turns 
out to be more stringentthan at E = 0. It i s  shown that 
the difference between the relations obtained for u(E) 
and F(E) in Refs. 9 and in my earlier paper[10' in this 
range of fields i s  due only to the different choice of 
A(&). By way of example, the dependences of o on the 
material parameters and on the external electric and 
longitudinal magnetic (H) fields a re  obtained for sev- 
era l  known cutoff models. A comparison of the calcu- 
lated values of u(&,, E ,  H) with the experimental ones 
makes it apparently possible, in principle, to assess  

the properties of the weakly nonideal electron gas, a s  
well a s  to estimate E ,  and r,. Conditions a re  discussed 
for the applicability of the kinetic equations in fields 
Ern", << E << Em=. 

2. PRINCIPAL APPROXIMATIONS AND EQUATIONS 

1. The equation used below for ri(e) has been ob- 
tained for a random disposition of the ions in the one- 
center scattering approximationL111: 

The form of A(&) in (3) depends on the cutoff model. 
Therefore a l l  we assume everywhere, except in the 
examples, i s  that A(&) a function of the ratio &/&, and 
that 

The reasons for the choice of the value k > $  will be 
made clear below. In estimates of A(&) it will be as- 
sumed that A(&,)= 1. We note that a t  k >% the quantity 
ri(&) (3) has a minimum at E-E,. 

We make one remark to clarify (4a). The function 
A(&) a t  & <<E, can be established for the following quite 
realistic model. Assume that: a) the ion potential U 
(r) i s  Coulomb-like only up to distances r < r ,  from the 
given ion, but a t  r >r ,  the value of U(r) falls off more 
rapidly than rm3; b) r, i s  independent of the electron en- 
ergy; c) &, can be regarded a s  the "characteristic depth 
of the potential well"(see Ref. 12). For the cross  sec- 
tion o, of the scattering of the "slow" particles with 
E << E ,  we obtain according to Ref. 12 a,= const, r i(&) 
, g - l ~ 2  , i.e., A(&) mz2. We note that a smiilar A(&) de- 
pendence is obtained at c << E ,  in two frequently em- 
ployed models-with exponential (Debye) s ~ r e e n i n $ ~ * ~ * ~ ]  
and with a sharp cutoff a t  r,= ~ A V - ' / ~  (Refs. 2 and 4). 

2. We now determine (using an n-type semiconductor 
a s  an example) the electric-field range in which the 
singularities of ri(&) and A(&) should manifest them- 
selves most strongly at & S &,. Assume that 

the scattering of electrons with E 2 c,, characterized 
by a frequency T;; (E)  i s  inelastic and i s  determined, for 
example, by spontaneous emission of longitudinal pho- 
nons of frequency so, while the scattering of the elec- 
trons with E <&, i s  quasi-elastic and is mainly from 
the ionized impurities. We assume furthermore that 

E,+.o, 
(6) 

and let the ratio of c, to T be arbitrary. 

We consider qualitatively the electron behavior in 
fields such that the energy relaxation of the system is 
the result of inelastic scattering at & 2 E,, and the mo- 
mentum relaxation is due only to elastic scattering by 
ionized impurities. The corresponding range of fields 
can be obtained by solving the Boltzmann equation and 
will be given below (see also Refs. 9 and 10). 

We assume for simplicity that the scattering at c a E ,  
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i s  inelastic to the limit, i.e., T;:(&)- mat c =E,." Then 
the electrons, having acquired an energy c,, lose this 
energy instantaneously and land at the origin of the en- 
ergy axis, i.e., there i s  a "source" of electrons a t  
E = 0. The electrons can move from the source (e = 0) 
into the region of higher energies either under the in- 
fluence of the fieid or  upon absorption of deformation 
acoustic2' (DA) or  piezoacoustic (PA) phonons. [ ~ b -  
sorption of optical phonons i s  neglected, in view of 
(5)]. We consider for the sake of clarity two simple 
cases. 

Let E, >> T and k >$  (see (4)). Then in the region 
c << C, we have T,(&) ac3/2-k and i s  large, the field 
"drags out" the electrons rapidly from this region. 
Most electrons should be a t  c =cc,  where ri(c) has a 
minimum. One should expect a noticeable dependence 
of the distribution of the electrons (2) and of the mean 
values on E,. 

Let now E ,  - 0 and A(&) = const a s  c - 0. Then a s  
c - 0 we have T*(E) a c 3 I 2  and small, and the field near 
the "source" has little effect. In this case the ener- 
gies land in the region of higher energies most readily 
a s  a result of the absorption of DA o r  PA phonons. 
After reaching values c =c, such that T,(c,) i s  large 
and the absorption of the energy from the field i s  sub- 
stantial, the electrons a re  picked up by the field and 
move towards the sink E =E,. One should expect the 
average quantities to depend on the characteristic ener- 
gy c,, which in turn i s  determined, obviously, both by 
the field and by the interaction with the acoustic pho- 
nons. 

Thus, with the electrons frequently "produced" a t  the 
point E = 0 and then scattered by the ions, the distribu- 
tion (2) and the average quantities should be sensitive 
to the form of T*(E) and A(&) a t  low energies & << &,. 

It was shownc101 that for the considered scattering 
mecha'nism the relaxation of the momentum of the sys- 
tem i s  by scattering by ionized impurities in fields 

For such fields, the Boltzmann equation can be solved 
in the diffusion approximation, so  that we can obtain 
for E c c, the continuity equation 

f E ( ~ ) = i : ~ ( e ) + f ? * ( ~ ) + f ~ ~ ( E ) .  (a] 
In this formula 

i s  the field-dependent electron flux along the energy ax- 
is, and j,,(c) = const i s  the energy-independent flux of 
electrons due to inelastic scattering from the region 
c > E,, while the terms 

dF 
jip ( E )  =poe"~ . - ' (~ )GFo  ( e ) ,  iFd ( E )  -~,E"T.- '  ( E )  GT 2 

$E 

correspond to quasielastic acoustic scattering, with 
jy(c) corresponding to spontaneous emission of acous- 
tic phonon, and j:nd(&) to induced interaction with them 
(6 and T,(c) a re  the inelasticity parameter and the time 
of momentum relaxation for acoustic scattering). We 
note that jE(c) and j : ~ ~ ( & )  a re  directed from the lower to 

the higher energies, while j,,(&) and jy(c) from the 
higher to the lower. It was shown[101 that in fields E 
satisfying the condition 

the field flux j,(&) --j,,(c) and for the greater part of 
the region form 0 to c 0  the value of j,(&) i s  appreciably 
larger than jF(c). The principal energy-loss mecha- 
nism in the fields (9) is  inelastic scattering. Thus, the 
fields that satisfy the inequalities (7) and (9) satisfy 
the conditions formulated above. We point out that 
Em,, i s  proportional to the electron-phonon interaction 
constant. 

3. ELECTRON DISTRIBUTION AND MEAN VALUES. 
GENERAL FORMULAS 

1. We seek the solution of (8) satisfying the boun- 
dary condition F,(&J = 0. We introduce the variable 
x = E /T and the notation 

AI-- . I (E=T) ,  u=e0IT, p,=pA, (10) 
and for future convenience represent T,(E) in the form 

-T. (T)  ( E I T )  ~ z + Q ,  (11) 
where (Y = 1 and a! = 2 for DA and PA scartering, respec - 
tively. We then get from (8) 

The second term in the denominator of (12) i s  due to 
allowance for jY(&). The constant C is determined 
from the condition of normalization to the total concen- 
tration: 

c=II@,, T 3'aIi,,)-1, 

where 

We consider now a simplified solution of (12), 
P:'mp(x), obtained by neglecting the x dependence of 
A(x) and the term ~ ( x ' )  (p1xta)-' in (12). Physically 
this corresponds to the assumption that the energy of 
the electron-ion interaction E, and the electron-phonon 
interaction constant tend to zero. The function PS,'mp(x) 
diverges a s  x - 0, FS,imP(~) a ( x - ~  - ~ 1 - ~ ) ,  and the normal- 
ization integral (13) tends formally to infinity, s o  that 
it is impossible to calculate the average quantities 
(i.e., the electrons "accumulate" in the region E z 0). 
It is therefore necessary to take into account the differ- 
ences between the true function Fo(x) and the simplified 
F:imp(x); these differences a r e  significant either where 
the dependence of ~ ( x )  on x can not be neglected, o r  
where the term A(~)p , - ' x -~  in (12) i s  substantial. 

2. We assume E ,> 0 and an exponent k >  4 (see (4)). 
Then the divergence of F,(x) is weaker than a s  
x - 0, and (13) can be integrated by parts. This yields 

Let us  find the conductivity a and the average energy 
F of the system of nonequilibrium electrons. From 
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( 1 2 )  and (13),  integrating b y  parts, we get 

In the calculation o f  the integrals I ,  and I,, defined b y  
formulas (14) and (15),  the main contribution is  made 
b y  the region x - u  >> 1 and these integrals are not very 
sensitive to the choice of  the parameters r,, &,, and 
a .  Thus, for example, I ,  = u ,  and the partial contri- 
bution to the conductivity of electrons of  all energies 
i s  the same. The situation i s  entirely different when 
it comes to calculate the point of  the peak (or the lar- 
gest value) of  x ,  o f  the electron distribution n, (see 
( 2 ) )  and the integral I,, (13). Both quantities depend 
substantially on &,(i.e., on Y,) and on a .  

3.  W e  consider first the case when 
e.wee, z . ) ze ,  (1 6) 

where &,= ~ p ; " " .  From the definitions ( 9 )  and (10) of  
p and p, it follows that ( 1 6 )  can be realized at a high 
energy o f  the electron-ion interaction, at low temper- 
atures, and at a small electron-phonon interaction 
constant. The second term in the denominator o f  ( 1 2 )  
i s  in this case always smaller than the f irst  and can be 
neglected. Then Fo(x) and I,, do not depend on the field: 

n "dz'.\(z') dz'  
F " ( z ) =  -J;;--J-. 

POT -[in, 2' 'T~ ( Z  ) 

From (17)  follow the results obtained earlier from 
simple considerations, namely, at zc >> x >> x ,  the func - 
tion Fo(x) ax-' ,  and at x<xc  we have Fo(x) at 
k #  2 or a ln ( l / x )  at k =  2 ;  at k > $  the electron distribu- 
tion n(x)  has a maximum, with x ,  x,; at k < 4 the dis - 
tribution n(x)  increases with decreasing x in proportion 
at x-=IBk and assumes the largest value at x - x ,  <<x,. 
The resultant position o f  the point x ,, namely x ,  x,, 
i s  quite interesting. W e  recall that we assumed that 
&,<< T and x,<< 1. The conclusion x,s x ,  means that 
the maximum of the distribution in a strong field i s  in 
a region of  energies lower than at E = 0 (x,(E = 0 )  = i), 
i.e., the electron gas becomes less ideal in a strong 
field. 

W e  determine now I,,, o, and F .  Recognizing that 
A(&) is  a function o f  the dimensionless quantity &/&, 

and I L ( E ) E - ' / ~ -  0 as E - 0 (see (4)), we integrate (13a) 
b y  parts. W e  have 

where 

is  a numerical quantity that does not depend on x,. 
According to  ( 6 )  and (4)  we have zr/x,>> 1 ,  and i l (x)  i s  
a slow function at x>>x,. The first term of  (18) is  then 
the principal one, and from (14).  ( 1 5 ) .  and ( 1 8 )  we get 

--- 
~t follows from (19) and (20) that in the considered field 
range the conductivity and G are independent of the field 
but depend on the cutoff energy &, in power-law fash- 
ion.3' In addition, for the distribution function (17) the 
average energy and the maximum point E ,  of the dis- 
tribution d i f f e r  parametrically, c / & ,  a u1I2>> 1 (see  (5 )  
and (10)). W e  recall that Z-&, for exponential distri- 
bution functions. 

4. W e  determine now the conditions under which the 
approximation A(&) = const i s  valid in  the range o f  fields 
(7 )  and ( 9 ) .  In this case, to obtain a finite value of I,, 
( 1 3 ) ,  we must take into account in ( 1 2 )  the term 
A(x)pl-'x-", which i s  appreciable at x <p'lla , E  < ~ p - 1 ' ~ .  

Since A(&) i s  constant only at & >> E,, allowance for the 
t erm of  ( 1 2 )  presupposes in essence satisfaction of  an 
inequality opposite to (16): 

When ( 9 )  and ( 1 1 )  are taken into account, it follows 
from (21) that for nonequilibrium electrons the require- 
ment A(&) = const i s  more stringent than for equilibrium 
electrons. 

It i s  easy to obtain from ( 1 2 )  the values of Po(x) for 
DA (a! = 1 )  and PA ( a  = 2 )  interactions; at x>p-'"" these 
functions behave in analogous fashion: F f A ( x )  a FEA(x) 
E X - ' .  A study of  the electron distribution ( 2 )  for 
F : A ( ~ )  and P f A ( x )  shows readily that for the D A  inter- 
action n ( ~ )  has no peak and its largest value i s  at x -  0, 
while for the PA interaction we obtain approximately 
X m , p - l l z e - 2  << 1. Consequently, at &,<< ~ p - l l "  the max- 
imum of  the electron distribution in the fields ( 7 )  and 
( 9 )  shifts from its equilibrium value &,(E = 0 )  = ~ / 2  to 
the l e f t ,  towards lower e n e r g i e ~ , ~ )  i.e., in this case, 
too, the electrons are not heated but cooled in the fields 
( 7 )  and ( 9 ) .  The physical reason for this was explained 
in  Sec. 2 .  

Thus, the position o f  the peak (or  the largest value) 
&, of  the electron distribution n(r )  in fields ( 7 )  and ( 9 )  
i s  determined b y  the larger of  the quantities, &, on 
I'p-ll", i.e., by the maximum energy up to which a 
substantial role i s  played b y  the differences between 
the real function Fo(x) and the "simplified" one (see 
( 1 2 )  f f ) .  From (13) we can determine the normalization 
integrals I z A  and I:* for DA and PA scattering. The 
main contribution to Z z A  i s  made b y  the region x-P*', 
and to I:A b y  the region , Y - P - ' ~ ~ ;  in this case 

The formal analogy between these expressions and ( 1 9 )  
i s  readily discerned. 

From ( 1 4 )  we obtain for the conductivity the relations 
@ A  a E" and a P A  cc E-'I" which coincide with the re-  
sults of  Ref.  9 ;  there, however, the electron distribu- 
tion has not discussed. nor was the criterion ( 2 1 )  given 
for the applicability of  the approximation A(&)= const. 
The calculation of  the averages in accord with ( 1 5 )  
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yields results that agree with Ref. O: 

Just a s  in the case &,> ~ p - " ~ ,  the values of G D A  and 
cPA exceed significantly (by approximately (up)'12 and 
(up" 2)112 times for DA and PA scattering, respective- 
ly) the energy values that make the main contribution 
to the integrals I f A  and IEA.  Therefore the different 
validity conditions (say, for the expressions for a) 
should be verified not for electrons with energies 
e - F, but for electrons with the energies that determine 
Z i A  and I:A. We call attention also to the fact that the 
field dependence of the conductivity in the region of the 
fields (7) and (9) is determined not only by the relation 
between E ,  and Tp-" u ,  but also by which of the acoustic 
mechanisms of energy relaxation is significant a t  
& - ~p-1'0 << T. 

4. DISCUSSION OF THE VALIDITY OF THE 
APPROXIMATIONS AND OF THE RESULTS 

1. In the foregoing determination of the electron dis- 
tribution and of the conductivity in strong electric field, 
the classical kinetic equation was used. For this equa- 
tion to be valid i t  sufficesCll to have the electron kinet- 
ic  energy much higher than the energy of the interaction 
with the ions 

ewe,, (22) 

and the energy uncertainty of the electron must be 
smallCl4] : 

A / e r ( e ) c i .  (23) 

Scattering of electrons by ions was considered in the 
approximation of one-center scattering, which i s  valid 
(see Ref. 11) if 

h,rA/ (2me)"tN-".  (24) 
In addition, i t  was assumed that the electron concen- 
tration and the frequency of the interelectron collisions 
a r e  s o  low that the corresponding flux j,,(&) can be 
neglected in the continuity equation (8), and the elec- 
tron scattering a t  E > E ,  is inelastic to the limit. The 
latter is equivalent to the assumption that the charac- 
teristic "depth of entry" As  of the electron into the r e -  
gion E > &, is less than the energies &, and Tp-'la, and 
can be readily satisfied in the fields (7) and (9) (see 
Ref. 10). More significant a r e  the remaining assump- 
tions. We shall now discuss their validity for the case 
&,> Tp-'la. 

One of the main results of the work is, in our opin- 
ion, that in the fields (7) and (9) the maximum of the 
electron distribution is in the energy region of the o r -  
der  of the interaction energy &,, i.e., &, S &,, with 
&,<< G .  Then (22) is violated for most electrons; in 
addition, (23) and (24) should be satisfied as applied to 
electrons with E -E,-E,. We begin the discussion with 
the condition (22). When (22) is satisfied, the system 
of electrons and ions is an almost ideal plasma, and 
only for this plasma do we have theoretical proof of 
the validity of the Boltzmann equation (see c151). It is 
known, however, that the application of the results of 
the solution of this equation to systems with a Max- 

weIlian energy distribution 
F,(e)-cap(-e/T') 

and with a strong interaction (the ratio &,/&,-E,/F - &,/T * amounts to several units) provides a good 
qualitative and quantitative d e s c r i p t i ~ n ~ ~ ~ * ' ~ ~  (T* i s  the 
effective temperature, T*2 T). Therefore, according 
to Ref. 15, the inequality (22) is not necessary for sys-  
tem characterized by T* (or for equilibrium systems, 
i.e., with T*= T), and can be replaced by the much 
weaker condition E,/E,- &,/E& 5 (see Refs. 15 and 16). 
The question of the necessity of (22) for systems with 
power-law distribution functions (see (17)) and with 
E , - E ,  <<5 has not been discussed in the literature. It 
appears that it can be answered by comparing the re -  
sults of calculations (such a s  (17) and (19) with approp- 
riate experimental data. One such comparison will be 
made below (see (2a) and Fig. I) ,  and i t  will be shown 
that the conductivity values obtained from (19) agree 
quantitatively with the experimental ones in the case 
&,/&,-4. This allows us  to conclude that for  the situa- 
tion considered in Secs. 2 and 3 the inequality (22) is 
likewise not necessary and can be replaced by a much 
less stringent one. 

We now examine the restrictions that follow from 
(23) and (24) a t  & -&,. We use for E, an expression ob- 
tained in the Conwell-Weiskopf (CW) modelC4] 

It follows then from (3) that 

where a =xA2/me2 i s  Bohr radius of the hydrogenlike 
impurity; the quantity Nu3 is frequently called the de- 
gree of doping. Thus, the CW formula can be used for 
T * ( & )  in the range of fields (7) and (9) only in the case 
of weakly doped semiconductors. 

The interelectron e-e collisions in the range of fields 
(7) and (9) a r e  important in two respects: they lead to 
an energy flux j , , (&) ,  not accounted for in (8), from 
the region c < E ,  into the region E > E , ,  where it is rap- 
idly transferred to the latticeC1']; the frequent collis- 

I I I 

5 10 2 5 N.,o-P CAP: 
FIG. 1. Mobility of nonequilibrium electrons in InSb vs. the 
ion concentration: 1: p t b Q ( ~ )  calculated from formula (26), 
-experimental datafi9*201; 2-standard relation pat (N) = cN-', 
C=p*m(N= 5 x1013 cm9) - 5  x lot3 ~ m - ~ .  
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ions of the electrons of the region of low energies 
& - E , < < E ~ ( O ~  E - T P ? ' ~  <CEO) can lead to a change of 
Po(&) in this region compared with the value obtained 
above.5) It appears that neglect of the e-e collisions 
is valid only if  n << N, i.e., for example in compensated 
semiconductors. 

2. The singularities of the conductivity for the case 
&,> ~ p - ' / ~  (see (19)) will be illustrated here with sev- 
era l  concrete cutoff models. We note first  that for any 
model the conductivity o and the mobility p= o/en in 
the fields (7) and (9) do not depend on the electric field 
o r  the temperature. Such sections of the field E where 
p(E, T) = const have already been observed in several  
experimental i t  was shown in Refs. 19 and 
20 that the corresponding fields satisfy relations (7) and 
(9). It follows also from (19) that an appreciable depen- 
dence of o on E, can alter  the usual dependences of o 
on the parameters of the material (and on the external 
longitudinal magnetic field H t t E , see  below). This 
question, to our knowledge, has not been discussed in 
the literature. On the other hand, i t  appears that a 
comparison of the experimental values of o with the 
calculated ones makes i t  possible in principle to deter-  
mine &, and r,, and to a s sess  the applicability of the 
kinetic equation. We consider now several  examples. 

a )  Let the electron scattering be classical in accord 
with the CW model,c41 and 

rCIC1/2~-1i*,  eC=2e'NbI~.  

Then A(&)= In[l+ (&/E,)~] and a numerical solution of the 
equation obtained for & , from (17) yields c , = 0.256,. 
For pCW we get from (19) 

The p C W ( ~ )  relation differs from the usual one p(N) 
EN-' and turns out to be close to kCW Z N - = / ~ .  It i s  
shown in Fig. 1. In the calculations we used the InSb 
electron parameters. For comparison, the figure 
shows the "standard" function pat(N)= CND' with a value 
of C such that at N = 5 x 1013 cm-3 the values of pCW and 
pat coincide. 

The cited references 19 - 22, only the energy and 
momentum relaxation mechanisms were investigated 
and the k(N) relation was not discussed; values of N 
a re  given only in Refs. 19 and 20. The measurements 
in Refs. 19 and 20 were made for electrons in n-InSb 
with &,> T,Na3<< 1 ,  n = ( 0 . 2  -0.4)N. The values of p in 
the field regions (7) and (9), where p(E) is constant, 
a re  shown in Fig. 1 for several samples from Refs. 19 
and 20. It is seen that they a r e  close enough to the cal-  
culated curve (26). Consequently, under the conditions 
of Refs. 19 and 20, the characteristic cutoff energy can 
be taken to be E,= 2 e 2 ~ ' l 3 / ~ ,  and violation of the in- 
equality (22) does not al ter  the expressions for o. 

b) In a strong magnetic field H (w,~,  >> 1 ,  a,= e ~ / m c )  
there appears one more characteristic length, namely 
the Larmor radius 

and a sharp cutoff of the Coulomb potential a t  r=r, is 
frequently used in the calculation of T, and a of equil- 
ibrium electrons if r, i s  smaller than the other char- 
acteristic lengths. The dependences of a and 7, on H 
then turn out to be logarithmic (see,  e.g., Refs. 1 , 3 ,  
24). Let us find o(H,N) in the region of the fields (7) 
and (9) for the case of a longitudinal magnetic field, 
HIIE. At HIIE the expressions (17) - (19) obtained above 
a r e  valid for Eo(c) and u. At r,=rL the characteristic 
energy &, can be determined from the relation E, 

= e 2 / q  (E,), which yields &,= (me4w,2/2%2)1/3, with 
A(&) = ln[l + (E/E,)~]. 

For the case c,> ~ p - ' l ~  we obtain from (19) 

i.e., the conductivity should increase with the magnetic 
field in power-law fashion: U ( H ) ~ H ' / ~ .  A considerable 
increase of the conductivity of the electron with increa- 
sing magnetic field in the electric fields (7) and (9) was 
observed in Refs. 23, where n-InSb crystals with NA3 
<< 1 were used a t  T- 4 K. It is seen from the plots of 
Ref. 23 that in fields H= 1 - 4 kOe the a(H) dependence 
is close to (27). 

We point out, without presenting the calculations, 
two other consequences of the arguments given above 
and of (19). First ,  analysis of scattering in strongly 
doped semiconductors (NA3 >> 1) shows that the relations 
between Om,,, r, and E, must be obtained by a quantum 

This leads to the function A(&) 
= ln[l+&/&,], where E,= ( 2 ~ ' / ~ F i ) ~ / m ,  and gives for p 
and for the function p(N) a formula different from (26), 
namely, @(N) rn N-/'. The second example pertains to 
semiconductors with correlated disposition of impuri- 
ties. Allowance for the correlations yields for T,(E) 
formula (3), but with A(&) and E ,  that depend on the 
character and radius of the correlation. For the cor- 
relation model in compensated semiconductors,c251 with 
&c=F?(nn)2/3/2m, it is easy obtain from (19) a conduc- 
tivity ~ 7 - n ~ ' ~  and a mobility p cc n'13 rn (1 -K)'/~ (K is the 
degree of compensation). 

The author is grateful to E. M. Gershenzon for useful 
remarks and to Yu. A. Gurvich for stimulating discus- 
sions and valuable advice during the performance of 
this work. The author is also indebted to I. B. Levinson 
for a review of the first  draft of the section on the form 
of A(&). 

i ) ~ o r  plasma electrons (just as for a semiconductor), such a 
"threshold" character is possessed also by excitation of 
neutral atoms by electron impact.13 

2)In a plasma this mechanism corresponds to elastic scattering 
by neutral atoms. 

3 ) ~  formula similar to (19) was obtained earlierci0' for the 
cutoff model. l4] There, however, principal attention was 
paid to the independence of u of E ;  the conditions for the 
validity of (19), for the dependence of u and E on &,, and the 
distribution of the electrons were not discussed in Ref. 10. 

4)~onsequently, at &,<< T the diffusion approximation should 
be valid for the fields (7) and (9) both at &Z T and at & 
 ma^(&^, ~ p - ~ l ~ } ,  and this calls for sufficiently small 
values of 6.  

5 ) ~ t  must be borne in mind, however, that a-e collisions do 
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not necessarily bring F (&I closer to a Maxwellian function: 
it  was shown recently that the e-e collision integral can 
be equal to zero also for power-law distribution functions 
that describe, just a s  021, distribution with flows of 
particles and of energy from a ccsource" (c  = 0) to a "sink" 
(c=co). 
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A derivation is given of a dispersion equation from which the spectrum of electrons, light holes, and heavy 
holes can be obtained in the three-band Kane model in which the interaction between the three bands is 
included rigorously but the interaction with the other bands is allowed for by the k-p approximation. 
Overlap integrals governing the Auger recombination rate are calculated. The overlap integral between the 
conduction and heavy-hole valence bands is zero for threshold values of the particle momenta if the 
interaction with the higher bands is ignored. Consequently, the preexponential function in the expression 
for the Auger recombination rate has a different temperature dependence from that obtained in the case of 
simple parabolic bands. This theoretical calculation is in good agreement with the experimental 
recombination time reported for InSb at 300'K. 

PACS numbers: 72.20.Jv, 72.80.Ey, 7 1.25.C~ 

1. INTRODUCTION 

The  Kane model[" allows r igorously f o r  t h e  interac-  
tion between the  s and p bands, w h e r e a s  t h e  interaction 
with higher  bands i s  included by the k. p approximation. 
However, in  the  case of narrow-gap semiconductors ,  
such  as InSb or Hg,-,Cd,Te, t h e  spin-orbit splitting is 
l a r g e  compared with the band gap E ,  a n d  the spectrum 
of electrons and ho les  c a n  be  determined using just the  
three-  band approximation, i.e., by making r igorous  al- 
lowance for  the interaction with the conduction band 

with the  light- and heavy-hole valence bands. T h e  inter-  
action with the spin-orbit-split band c a n  also b e  in- 
cluded within t h e  f ramework  of t h e  k. p approximation. 
T h i s  m a k e s  it  possible  to allow simultaneously fo r  the 
band nonparabolicity and t h e  cor ruga ted  n a t u r e  of the 
constant-energy surfaces.  

Allowance f o r  t h e  band nonparabolicity i s  essen t ia l  in 
the calculation of the rate of t h e  Auger recombination of 
e lec t rons  and holescz1 within t h e  f ramework  of t h e  Kane 
model. The  expression f o r  th i s  rate includes overlap 
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