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We investigate the electron spectrum and the conductivity of a two-dimensional electron gas (quantum 
film, inversion channel) with impurities in a strong magnetic field perpendicular to the plane of the system. 
The cases of a quantizing and a classical magnetic field are considered. For the first case, the spectrum of 
the system with pointlike impurities is considered. It is shown that at an impurity concentration n less 
than 1/2wa (a is the magnetic length) the state with energy ho,(N + 1/2) is infinitely degenerate 
[multiplicity (1/2aa - n)S, where S is the film area]. The static conductivity of such a system vanishes, 
and the dynamic conductivity at the cyclotron resonance o, has an infinitesimally narrow peak. In 
classical magnetic fields the conductivity is investigated for the case of scattering by impurities whose 
characteristic dimension is much larger than the electron wavelength. The limits of infrequent short-range 
centers and of a continuous random potential are considered. It is shown that for both limits there is a 
percolation level 4, determined by the magnetic field, and the electron trajectory becomes infinite above 
this level. The conductivity of the system at zero temperature vanishes if the Fermi energy is less than 
ccH. It is shown that in the limit of infrequent impurities the expansion of the current in powers of the 
electric field E begins with the term qq. 

PACS numbers: 72.10.Fk 

1. INTRODUCTION The states of the second group a r e  localized near the 
impurities (Sec. 2). This leads absence of static con- 

Attention was called in a number of recent papersr'-6J ductivity in a weak electric field (Sec. 3). It is also 
to the properties of a two-dimensional electron gas in a shown in Sec. 3 that the cyclotron-resonance spectrum 
strong magnetic field perpendicular to a film plane.') contains a discrete line. We discuss its broadening due 
The most interesting property of such a system is the to simultaneous account of the finite dimensions and fi- 
discrete energy spectrum nite density of the impurities. 

~ s = h ~ n  ( N f ' I I ) ,  (1) 

where oH i s  the cyclotron frequency. It would be natural 
to expect the collisions of the electrons with one another, 
with impurities, and with phonons to lead to a broaden- 
ing of the discrete The question of the broad- 
ening of the electronic states is essential for the deter- 
mination of the cyclotron-resonance line shape and of 
the static conductivity of the system. It is known, how- 
ever, that electron-electron collisions produce no 
broadening of the cyclotron-resonance line.17' 

We consider in this paper the interaction of "two-di- 
mensional" electrons with impurities in a strong mag- 
netic field. For a quantizing magnetic field, this ques- 
tion was considered earl ier  in Refs. 3-6. All the cited 
studies reduce to summation of certain partial ser ies  of 
the perturbation-theory series.  It can be shown, how- 
ever, that in our problem there is no symbolic param- 
e ter  with respect to which the discarded part of the se -  
r ies is  small (see Sec. 3)- The reason lies in the infi- 
nite multiplicity of the degeneracy of the Landau levels. 
The construction of a perturbation theory must s tar t  
with a choice of a correct combination of unperturbed 
states. In the present paper we draw definite conclus- 
ions concerning the spectrum and the conductivity of a 
two-dimensional system of non-interacting electrons in 
a strong magnetic field (quantizing and classical), with- 
out the aid of a diagram technique. It will be shown that 

Section 4 deals with the conductivity of a two-dimen- 
sional classical electron gas in a continuous random 
field of impurities and in a field of infrequent short- 
range impurities. It turns out that some of the electrons 
move along finite trajectories, and this can lead to zero 
conductivity in the case of degenerate electrons a t  zero 
temperature. It i s  shown that in this limit, for the case 
of short-range impurities, the expansion of the current 
powers of the electric field E begins with the term EIEI. 

2. ELECTRON SPECTRUM IN A QUANTIZING 
MAGNETIC FIELD 

Consider the interaction between electrons and a sys- 
tem of randomly distributed impurity centers: 

where ui  = U , ( S ( Z ~ ) ~ ~  (((2) is the wave function of the 
ground state for motion across the film), ri ={p i ,  2,) is 
the coordinate of the i-th impurity, Y = ~ S  is the total 
number of impurities in a film of area  S = L,L,. The 
wave functions of the longitudinal motion in a film with- 
out impurities, in a gauge A = I / ~ ( - H ~ , H x ,  O), is of the 
form 

- 
the states of a system of electrons with pointlike im- where X, (x )  a re  oscillator functions, p i s  the J-compo- 
purities break up into two groups. The states of the nent of the momentum, and the N-th level of the mag- 
first  group coincide with certain states of freeelectrons. netic quantization is  degenerate in p with multiplicity 
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We consider linear combinations of the functions (3) 
in the form 

which vanish a t  the points where the impurities a r e  lo- 
cated. This yields x homogeneous equations for CNPs 
Obviously, at J)r< S / 2 d  we can choose S/2n2 - Xinde- 
pendent systems of ~ 4 ,  satisfying these conditions. Con- 
sequently the functions (4) a r e  the eigenfunctions of the 
total Hamiltonian, and the corresponding eigenvalues 
coincide with (1): cN, = cN. The level degeneracy turns 
out to be ( ~ / 2 n d  -%)-fold. Thus, a t  an impurity -center 
concentration n < l/2naZ the level cN is not broadened, 
but the number of states having this energy decreases 
with increasing density of the centers2) and vanishes at 
n = 1/2r8.  It i s  natural to call these states unsplit, and 
the remaining Xsplit .  We shall investigate their prop- 
ert ies in more detail. 

Following ~ n d e r s o n , [ ~ ]  we regard a state a s  localized 
if i t  decreases rapidly away from a certain point-the 
localization centers. We shall prove that the unsplit 
states can be chosen to be the delocalized ones, In fact, 
assume that a se t  of unsplit states exists and includes 
no delocalized.states. Then their sum also belongs to 
the Landau level. On the other hand, in a large system 
a set  of localized state should be statistically homogene- 
ous, i.e., in a large part of the system there should 
land an identical number of localization centers, re-  
gardless of the location of this part. Therefore the sum 
of the states will not be a localized state, since this 
wave function will be finite in any place in the system. 

Let us now elucidate the meaning of the split states, 
We shall need hereafter a case of short-range centers 
more general than (2) with I<< a ,  where I i s  the charac- 
teristic dimension of the impurity potential), but not 
necessarily 6-like centers. In the limit 2md<< 1 we can 
retain only one center in the first-order approximation 
in the impurity density. The Hamiltonian of an electron 
in the field of an axially symmetric impurity, in an 
eigenfunction representation with a definite projection 
of the angular momentum m is diagonal in m There- 
fore, neglecting the transitions between the Landau 
levels, the wave functions of the electron in the impurity 
field coincide with the wave functions in the absence of 
impurities (Ref. lo)=) : 

where 

and the corresponding energies a r e  equal to 

&rm=hto, (N+'h) +Ax,, 

In particular, for a potential in the form u(p) = v ,  
x exp(-p2/2 1 2 )  

v l  (lml+n,,)! (+) -,""'+" 
Ann-- Iml! no! 

while f o r  a 6-like center only the level with m ='O is 
split: 

ANO-ulIa'. (u .=vk;  VI+-, F - L ~ ) .  (7) 

The condition for the applicability of perturbation theory 
(neglect of transitions between the Landau levels) is 

Owing to the random disposition of the impurities in the 
film, the split levels form an impurity band. In a film 
of thickness d, simulated by an infinite rectangular po- 
tential well, the density of the . - split states near the level 
N is given by 

We note that the statement that there is no smearing 
of the Landau levels is exact in the model of 6-like im- 
purities if 2ndn< 1. At the same time, expression (9) 
for the state density is valid only if condition (8) is sat-  
isfied and if the impurity density is small, 2n$n<< 1. 
We discuss now the question of the broadening of the un- 
split states a t  2n8n << 1. The levels with m + 0 for  a po- 
tential of finite dimensions stem from levels that a r e  
not split in the model of a 6-like center. We estimate 
the maximum value of m a t  which we can neglect the in- 
fluence exerted on the state of the electron by all but one 
impurity. For  simplicity we consider the case N=O. 
The characteristic distance from the impurity, for a 
state with angular-momentum projection m, is the quan- 
tity (2 lm 1)'I2a. From the condition that the remaining 
impurities be located farther from the maximum of the 
wave function, we find that (2 1 m 1)'I2a5; 1/2(7~n)l/~. The 
minimum splitting of the state with N=O is therefore 

where i3 is a numerical constant. Obviously, it is 6 
which describes the broadening of the zeroth level. The 
density of the unsplit states is obtained from (6) by dif- 
ferentiating m with respect to r,. As a result we get 

The constant ,9 in (10) can be determined from the con- 
dition that the total number of the states is 

1 
~ d e ~ ( & ) ~ ~ .  

Whence 8 = 4. The state density for the levels N- 1 has 
the same character a s  (11). 

Notwithstanding the continuity of the spectrum of the 
split states, these states a r e  localized in the approxi- 
mation in which the impurity density is low. In fact, the 
Anderson localization criterion[1z1 4 0 ~ ~  %/$d at  2nna2 
5; 1/5 to 1/7 is satisfied automatically, since the over- 
lap integral is 
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3. CONDUCTIVITY IN A QUANTIZING MAGNETIC 
FIELD (LINEAR RESPONSE) 

Within the framework of the linear theory, the con- 
ductivity a t  frequency o is described by the Kubo for- 
mulaCl3I. 

Here A a r e  the quantum numbers that determine the 
state of the electron in the field of the impurities (&, is 
the energy of this state), u p  i s  the operator of the p- 
component of the electron velocity ( p = x ,  y),f,=f(&,) is  
the Fermi function; the angle brackets denote averaging 
over the impurity configurations. We consider the con- 
tribution to the conductivity from the unsplit states 
B,,(w). . 

Using (4), we get 

In this formula, v~,,,,, a r e  the matrix elements of the 
velocity over the Landau functions (3): 

From (14) and (13) we find that al l  the components of 
the conductivity tensor can be expressed in terms of a 
single constant A : 

where 

It is easily seen that the conductivity 8,,(0) over the 
unsplit states a t  zero frequency vanishes, whereas the 
Hall component 8,(O) is finite, The contribution made 
at zero frequency to the conductivity tensor by the split 
states should vanish because of their localization.['21 
We ultimately arr ive  a t  the conclusion that o,,(O) = 0 and 
o,(O)=O,,(O). This result agrees with Ref. 1, in which 
a nonanalytic dependence of the current on the electric 
field, which leads to u,,(O) =0, was obtained in the Born 
approximation in the scattering. Our conclusion, in 
contrast to Ref. 1, is exact, At the same time the re-  
sult of Ref. 2, in which a finite value of the conductivity 
o,,(O) was obtained by taking phenomenologically into 
account the damping of the electronic states, i s  incor- 
rect, at least for the case of interaction with pointlike 
impurities. 

It is known that absorption of an electromagnetic wave 
is determined by Rea,,(w) and Imo,,(o). From (16) we 
have 

i.e., the absorption has an infinitesimally narrow peak 
a t  the cyclotron frequency. The physical cause of the 
vanishing of u,,(O) and of the width of the cyclotron- 
resonance line is that the nonseparated states a r e  exact 
igenstates of the unperturbed Hamiltonian, and there- 

-> re  the conductivity tensor B,, has the same properties 
a s  the conductivity tensor in the absence of impurities. 

Consider electromagnetic-wave absorption connected 
with the split states. In f i rs t  order in the parameter 
2ndn, the wave functions of the split states a r e  given by 
expressions (5). The only allowed transitions between 
the unsplit and split states a r e  those stemming from the 
neighboring Landau levels. Using (l3), (4) and (5), we 
obtain for the corresponding contribution to the real part  
of the conductivity a t  a frequency close to o, 

+ B N ~ N + I  (EN + fim) If N - f ( ~ N + I  - fia~ f ftm)l}, 
p ' (~*Np(~i)  TNP' (pi)) 

N c t N 4 - 1  

vN(&) i s  defined in (9). 

Figure l a  shows the transition scheme. Transitions 
of the type 1-3 a r e  allowed. The transition of type 4 is 
forbidden by the angular-momentum conservation law; 
it becomes allowed only if a finite center density is con- 
sidered, and i t s  intensity is proportional to nd. Trans- 
itions of type 5 and 6 determine the harmonics of the 
cyclotron resonance. Transitions of type 5 a r e  allowed 
when account is taken of the finite density of the im- 
purities and of the higher-order corrections in the pa- 
rameter u,/a2d, and type-6 transitions a r e  allowed when 
account is taken a t  the same time of the finite dimension 
of the impurity. 

Figure l b  illustrates the cyclotron-resonance line 
shape. The central maximum is due to transitions be- 
tween the unsplit states. Its form is determined by ( l l ) ,  
and the a rea  under i t  is connected with the value of 
u,,(O) (formula(l6)). The side maxima a r e  connected 
with the square-root singularity of the density of the 
separated states (9) and a r e  broadened by an amount 
-(u,/a2d) (nu2) because of the fluctuation approach of the 
impurities. 

Thus, our results deviate substantially from those ob- 
tained in Refs. 3-6 by a diagram technique. In those 
reference they took into account only several of the 
simplest partial ser ies  of the diagrams (for example, 

FIG. 1. Transition scheme (a) and cyclotron-resonance line 
shape (b) in the model of pointlike attracting (uo <0) impurities. 
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FIG. 2. Diagrams for the self-energy parts. The lines desig-. 
nate total Green's functions. 

the diagram of Fig. 2a corresponds to the so-called re- 
duced SCBA approximation, while the diagrams on Figs. 
2a-2c and their like correspond to the DSA approxima- 
tion). Estimates show, however, that it is impossible 
to confine oneself only to the diagrams that were taken 
into account. In fact, consider for example the dia- 
grams for the self-energy part  Z(&) in the ultraquantum 
limit (N = 0) for scattering by pointlike impurities. The 
orders of the diagrams of the type shown in Figs. 2a-2c 
are, respectively 

nu' nzu' n'u5 

(e-eo-Z)aZ (e-e,-Z)'a' (E-eo-Z)'ae ' 

where n is the impurity concentration per unit film 
area,  u is the amplitude of the 6-function potential of 
the impurity, and a is the magnetic length?) In the re- 
gion where & - &, is of the order of the lower self-energy 
part  (diagram (a), we have c - &-n1/2u/a, Diagrams a 
and b then turn out to be of the same order, and dia- 
gram c differs from them by a factor (TZ$)-'/~. There- 
fore to calculate C in the region of high impurity density 
i t  is necessary to sum diagrams of any order in the den- 
sity (corresponding to the number of points), and confine 
oneself to the Born approximation in the interaction with 
each individual center?) At low and intermediate im- 
purity concentrations nu2 S 1, all  the more complicated 
diagrams of type c a r e  essential. It can thus be con- 
cluded that the results of Refs. 3-6 a r e  incorrect in the 
limit 722 a 1. 

4. CLASSICAL MAGNETIC FIELDS 

In this section we investigate the case of strong clas- 
sical magnetic fields, when the Larmor radius Y, >> a. 
We consider f i rs t  the motion of an electron in the field 
of short-range impurities ( A  << l<< r,, where A is the 
characteristic wavelength of the electron). When the 
electron mean f ree  path in the absence of a magnetic 
field L<<r,, the motion of the "two-dimensional" elec- 
tron does not differ substantially from that of a "three- 
dimensional" one. It encounters, with overwhelming 
probability, an impurity on the cyclotron orbit. As a 
result, the center of i t s  orbit shifts randomly in a plane 
perpendicular to the magnetic field, by an amount of the 
order of r,. This makes possible electron diffusion 
across the magnetic field. 

The situation is different in the limit of strong mag- 
netic fields, when r,<< L. In the three-dimensional 
case the diffusion picture remains the same, inasmuch 
as an electron moving along the magnetic field encoun- 
t e r s  an impurity sooner o r  later. A two-dimensional 
electron cannot move along the magnetic field, but only 
on two types of trajectory, either on a circle without 
colliding with impurities a t  all, o r  on a rosette of cir- 
cular trajectories around the impurity (Figs, 3a and 3b), 

t 
c 

FIG. 3. Electron trajectories in the field of shortarange im- 
purities. The dark circles represent the impurities, the solid 
lines the electron trajectories, and the dashed lines the rosette 
boundaries. 

When it moves over the rosette, the electron "sweeps" 
a circle of a rea  4m-i and remains within the limits of 
the rosette, unless i t  collides with another impurity. 
As a rule this does not happen if the impurity concen- 
tration n is much less  than (4m-;)-'. Thus, the motion 
of the electrons, whose energy satisfies the condition 
4 4 n  << 1, is finite. From the expression for the dif- 
fusion ~oef f i c i en t~ '~ ]  

1 
D,= lim - ( z ( t )  -2 (0))' 

,*a 2t 

(x(t) is the x coordinate of the electron trajectory) i t  fol- 
lows that the contribution of these electrons to D,, is 
zero. 

There is, of course, a probability of more than one 
impurity being present inside the rosette. Then finite 
motion around two o r  more impurities se ts  in, over a 
region constituting a union of rosettes, such that the 
center of one rosette falls inside another (Fig. 3c). The 
motion becomes infinite if an infinite cluster of rosettes 
is possible. This is equivalent to the problem of form- 
ation of an infinite cluster of circles of radius r, with 
random centers.[141 According to Ref. 14, an infinite 
cluster is produced under the condition win  3 0.68. This 
condition determines the energy boundary c,,, which as- 
sumes the role of the percolation level for the magne- 
tized electrons: c,, = 0.68m&/2nn. We emphasize that 
even if an infinite cluster were to be produced, the 
greater part  of the electrons, namely (1 - 4mHnl), would 
not collide with the impurities and would take no part  in 
the conduction. 

The conductivity of an infinite cluster can be esti- 
mated with the aid of a model of overlapping circles 
with concentration n, inside of which the conductivity 
has a value a, determined by the diffusion coefficient. 
This coefficient is of the order of the ratio of the square 
of the hopping length n-' between the rosettes and the 
relaxation time (nlv)-'. The conductivity of an infinite 
cluster can be expressed in terms of the conductivity of 
its element a,(&) and a dimensionless function F(&): o(t; )  
=u,(E)F(&), where F(&) - (C - E , ~ ) / c , ,  at E - c,,<< E,, (Ref. 
15) and F(c) = 1 at  & >> &,,. As a result  we get 

Here n, is the electron density and g is the chemical po- 
tential. If the condition ( 5 -  &J >> T i s  satisfied, we get 
from (19) 

at&,,-S>O and 
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at  &,.- < 0. As seen from (20), in the degenerate case, 
a t  T=O K, there exists a critical magnetic field 

such that at H > H, we have ox,= 0. If cCH- 1;> 0, then ccHde- 
termines the conductivity activation length. 

We estimate now thenon-ohmic increments to the cur- 
rent j, along the electric field in the case H >H,, when 
the ohmic conductivity is negligibly small. In a weak 
electric field the electron moves along a helix with a 
small pitch 2r  ( E  (c/Hw,. If the helix pitch is much less  
than the cross section for the electron scattering by the 
impurity -I, then the electron will collide with all  the 
impurities that a r e  contained in a band 2r, wide and per- 
pendicular to the electric field. The encounters with the 
impurities occur a t  time intervals 7, -~/2nr, ,  I E I . After 
encountering an impurity, the electron will describe 
around it a rosette for  a time &/c ( E  1 << 7,  (since I << Y,). 
It will then move away from the impurity in a band 
shifted a distance -r, away from the old impurity. Thus, 
7s plays the role of the relaxation time in the usual ki- 
netic energy, and to estimate the conductivity we can 
use the known formula ox, = n,ez/mwi7 with 7 =TE. We 
see therefore that in the region of weak electric fields 
we have a,,- IE 1. This means not only a non-ohmic but 
also a non-analytic dependence of the current on the 
field. When E i s  increased to a value larger than ~w,,1/  
2nc, the drift manages to carry  the electron away from 
the impurity, s o  that i t  experiences only one collision 
with the given impurity. Therefore the conductivity is 
determined by the usual relaxation time and ceases to 
depend on the field (if the field E * = H W , ~ / ~ U C  is less  
than the field a t  which electron heating se ts  in).6' 

We consider now another limiting case, when the im- 
purities produce a large-scale potential relief 

with a single characteristic dimension l(rn122 1). For 
electrons with energy such that Y,, <C I we can use the 
drift theory.C161 According to this theory, when the con- 
ditions 

a r e  satisfied the electron motion constitutes revolution 
along a circle and slow drift along a level line of the po- 
tential U ( p ) .  The trajectory of the orbit center will be 
finite o r  infinite, depending on whether o r  not the level 
lines a re  closed. For sufficiently small and large values 
of the potential, the level lines a r e  obviously closed (in 
analogy with a section through a mountain o r  with the 
shore of a lake). Unclosed level lines a r e  possible for 
potential values between the upper and lower percola- 
tion levels cc and E; (Ref. 15). In the two-dimensional 
case, however, simultaneous percolation over the r e -  
gions U > & and U < c is impossible, since these regions 

must intersect.[15' It follows therefore that &, = c; and 
all  the electron trajectories, with the exception of one, 
a r e  finite?) The latter  means that such electrons make 
no contribution to the conductivity. We consider now the 
motion of an electron a t  r, >> I. In a time 2r/wH the 
electron will experience 2vrH/l collisions and be scat- 
tered each time through an angle -8, & << 1. As a result, 
after the first  revolution the electron trajectory is 
shifted by an amount 

The last inequality means that during the succeeding 
revolutions the displacements will be the same, until the 
total displacement is of the order  of the characteristic 
dimension I of the potential. Further displacements 
will not be correlated with the initial ones and thus, the 
motion of the center of the orbit acquires the character 
of diffusion with a diffusion coefficient -12(2ryAx/l). 
Since the electrons make no contribution to the conduc- 
tivity when r, << I, the condition r, - I determines the 
percolation level G,-mil2 .  We note that, in contrast to 
the usual percolation level &,, the value of &';I i s  deter- 
mined only by the dimension of the potential, and Ee'n is 
much larger than the characteristic amplitude of the po- 
tential iS - E,. 

For the conductivity we obtain a formula similar to 
(19). In limiting cases we get ( ( 6  - & & I > >  T): 

e'U (mlz)  * 6"- (emf)" 
a,--- 

A' on" E 
if F;,- < 0. The critical magnetic field is HL- (c/el) 
x (rnc)'/'. 

We emphasize that the results of this section can not 
be obtained with the aid of the usual kinetic equation. 
The point is that in the derivation of the kinetic equation 
it is assumed that the scattering is fully stochastic, 
i.e., that there is no memory of any preceding scatter- 
ing act. In the present problem, an electron on a finite 
trajectory "remembers" the "starting" point for an in- 
finitely long time, and on infinite trajectories it re-  
members for a long time the preceding collisions. 

CONCLUSION 

We have demonstrated, using several models, the 
feasibility of a phase transition into a state with zero 
conductivity in a two-dimensional electron +impurity 
system under the influence of a magnetic field. A singu- 
larity is observed in the conductivity in the case of a 
classical system, and additionally in the electron spec- 
trum in a quantum system. The reason for these phe- 
nomena lies in the unique property of two-dimensional 
"magnetized" electrons-in their finite motion (or lo- 
calization of the states). This distinguishes our prob- 
lem from either the two-dimensional problem without a 
magnetic field, o r  the three-dimensional with a mag- 
netic field, where the electron motion is finite. 
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We present, using an inversion channel as an ex- 
ample, estimates of the applicability of the different 
proposed models. The limit of pointlike impurities is 
realized when the electron gas in the channel is not only 
quantized but also degenerate (n,- 10'' cm-', T - 4 K). 
The screening radius of the charged impurities then)e- 
comes of the order of the channel thickness dh  - 30A 
(case of n-channel, silicon), and A- 300A. In a mag- 
netic field -lo5 Oe, one Landau subband is filled. The 
limit of Sec. 2 is thus realized. The requirement 2 n d  
< 1 means that n<  2x 10" cm-'. (By n we must mean 
here the impurity concentration in the channel and on 
the surface of the semiconductor.) 

The limit of the classical large-scale relief. corre-  
sponds to an extremely low ca r r i e r  density in the chan- 
nel (n, a log cm-') and to the absence of degeneracy .["I 
The characteristic dimension of the potential is deter- 
mined in this case by double the thickness of the dielec- 
tric, -1x 103A, which is twice as large as Y, at 2'- 70K 
andH-3x104G, withr,,/b-lo. 

Vanishing of the conductivity of the inversion channel 
in a strong magnetic field -100 kG at T = 1.4 K was re- 
cently at certain values of the voltage on 
the field electrode. Without going into a detailed dis- 
cussion of this paper (which calls for  allowance for  the 
level splitting due to spin, the presence of many valleys, 
etc,), we note only that this phenomenon can be ex- 
plained by our results. 

We emphasize in conclusion that the results  apply not 
only to quantum films and inversion channels. They are 
obviously valid also in cases when the sca t terers  have 
a potential that does not depend on one of the coordinate. 
Such a situation is realized, f irst ,  in the case of a cry- 
stal that contains oriented edge dislocations, and second 
in the case of a classical inversion channel, when many 
subbands of quantization are filled while the potential is 
produced by impurities located in the depletion layer. 

The authors thank A. V. Chaplik for valuable dis- 
cussions. 

')For the sake of argument, we refer hereafter to electrons 
with a quadratic dispersion in a quantizing film with one 
filled size-effect quantization level. The result apply also 
to other two-dimensional systems-carriers in an inversion 
channel, o r  electrons over the surface of liquid helium. 

*)we note that our deduction is valid, strictly speaking, only 
in the case of quadratic dispersion. If account is taken of 
deviation from a quadratic law, the degeneracy is lifte 
but the corresponding level broadening is quite small. 

S ) ~ e  take the opportunity to point out that the corresponding 
formula in Ref. 11 (formula (2), p. 526 of Russian original) 
is incorrect. 

4, The estimates of the diagrams were obtained under the con- 

dition &-&,, <<Ha,. 
5 ) ~ n  attempt to solve the problem for nu2 >>I, undertaken in 

Ref. 3, seems unsatisfactory to us. The author replaces the 
contribution made to 2 by s-point diagrams witha power-law 
expression with one fit parameter, and bases himself here 
only on a calculation of diagrams with s = 2, 3, and 4. 

6)The presented qualitative arguments are confirmed by an 
exact solution of a model problem in which the impurites are 
replaced by circles of radius I with diffuse surfaces. 

T ) ~ h e  condition (23) can be satisfied at  any point. Condition 
(22), generally speaking, is equivalent to the condition rB 
<< I ,  but is violated in a region of size rB near the stationary 
point U ( p ) .  The percolation path must of necessity pass 
through such a point. It can be shown, however, that the 
exact trajectory of the orbit center differs from the level 
line U(p) by an amount much smaller than rH, i.e., it coin- 
cides with the level line to the same degree of accuracy with 
which the center of the orbit is determined. The result of 
the drift theory thus remains valid. 
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