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The excitation of an atom in the first stage of resonant multiphoton ionization is considered within the 
framework of the adiabatic passage through resonance. General formulas are obtained for the position of 
the resonance point on the curve representing the dependence of the ionization probability on the radiation 
intensity. The shape of the dispersion curve is found for a spatially homogeneous field with the Lorentzian 
profile of the spectrum. The representations developed in the present paper make it possible to explain 
qualitatively the experimental results on four-photon resonant ionization of the cesium atom. 

PACS numbers: 32.80.Fb, 32.80.Kf 

1. INTRODUCTION. FORMULATION OF THE PROBLEM 

Multiphoton ionization of atoms is one of the elemen- 
tary effects in nonlinear optics which a r e  being inves- 
tigated actively a t  present both theoretically and exper- 
imentally. It is usual to distinguish direct and resonant 
multiphoton i~nization.~" In the former case an atom 
undergoes a transition from an initial bound state to a 
state in the continuous spectrum a s  a result of the ab- 
sorption of k, photons (k, > 1) and the intermediate ex- 
citation of quasistationary atomic states does not play 
any significant role in this process, a s  indicated by the 
smooth dependence of the ionization probability on the 
radiation frequency. Experimental investigations of 
direct ionization make it possible to determine the 
probability of the process and i ts  dependence on the 
properties of radiation, in particular, on its polariza- 
tion and correlation characteristics. The agreement 
with theoretical calculations is then on the whole satis- 
factory .['I 

In resonant multiphoton ionization an atom absorbs k 
photons ( k c  k,) and thus acquires energy close to the en- 
ergy of one of the excited quasistationary states. Con- 
sequently, the dispersion curve exhibits resonances 
which usually depend on the characteristics of radiation 
(polarization, intensity, etc .) because such quasista- 
tionary states a re  excited states of the "atom+ strong 
optical field" system. Clearly, the experimental in- 
formation obtained in studies of the resonant ionization 
is much more extensive and, in principle, i t  can be 
used to carry out direct spectroscopic investigations of 
the states of an atom in a strong field. 

The influence of intermediate resonances on the ion- 
ization probability has been investigated also in the 
f i rs t  theoretical papers on multiphoton i o n i z a t i ~ n . ~ ~ * ~ ]  
This description is based on the Breit-Wigner formu- 
las : 

where A s )  is the amplitude of the k-photon excitation 
of a resonance state b from the ground state a; 
W!amk) is the probability of (k, - &)-photon ionization 
of the resonance state; A is the detuning; 1: is the ef- 
fective resonance width. 

If Eq. (1) is valid, the theoretical description of the 
dispersion dependence of the ionization probability 
reduces to the calculation of A and r a s  a function of 
the characteristics of the incident radiation. If k 2 2, 
the detuning from the resonance between the levels a 
and b in a field i s  governed by the dynamic polariza- 
bilities of these levels a,,: 

where E is the energy of levels of a free atom creating 
given states of the "atom+field" system; F, is the amp- 
litude of the electric field of the wave; w is the radia- 
tion frequency; ti= l. 

Many investigations have been carried out since and 
in these Eq. (1) has been refined, particularly with the 
aim of allowing for the possiblity of saturation of a k -  
photon transition (see, for example, Refs. 4-6), but 
the results have been found to disagree even qualita- 
tively with the experimental data obtained in strong 
(2 lo7 v/cm) and weak (-lo5 v/cm) fields. 

In the absence of saturation of the a-b transition, 
Eqs. (1) and (2) can be validated by Low equations des- 
cribing the natural width of atomic statesc7] if allowance 
is made for the mass operator not only of the photon 
vacuum but also of the laser  radiation field.C81 HOW- 
ever, it is then necessary to assume that the electro- 
magnetic field is steady-state because otherwise the 
mass operator, which i s  a function of two four-points, 
depends on t and t' separately and not only on the dif- 
ference t-t', s o  that Eq. (1) cannot be derived. 

In reality, naturally there is no such thing a s  steady- 
state laser  radiation if only because of the existence 
of a period in which it is turned on. When the field 
amplitude depends on time, the probability of ionization 
of an atom given by Eq. (1) is also a function of t and the 
total number of ions formed by a laser  pulse can be 
found by integration of Eq. (1) with respect to time. 
This procedure corresponds to the adiabatic limit and 
it i s  generally not objectionable in the absence of satur- 
ation, at least for sufficiently smooth functions F,(t), 
provided there is no crossing of levels with A = O  when 
the field is varied. Ln the latter case the situation is 
radically different from that described by the resonance 
formula (1) and it is close to the cases of adiabatic 
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transitions between quasimolecular terms in collisions 
of atoms[91 and to spin flip particles a s  a result of 
adiabatic fast passage through resonan~e .~ '~ '  

The problem of level crossing in an alternating field 
was considered by Melikyan and ~aakyn~"]  and by 
~ a k o v l e n k o , ~ ' ~ ~  the treatment in the latter case being 
applied to resonant multiphoton ionization. Yakovlenko 
was the first  to study the analogy between multiphoton 
excitation of an atom when the field amplitude varies 
with time and the problem of the adiabatic transitions 
in atomic collisions. 

We shall investigate the influence of level crossing 
on the probability of multiphoton ionization. This method 
makes it possible to derive adiabatic quasienergy terms 
without restriction to the two-level approximation. It 
i s  shown that the frequency dependence of resonant ioni- 
zation i s  large governed by the spatial inhomogeneity 
of the field which occurs under real  experimental con- 
ditions and, therefore, information on the resonance 
position deduced from measurements of the dependence 
of the ionization on the intensity of radiation i s  physi- 
cally more meaningful. The general formulas obtained 
will be illustrated by a numerical calculation for four- 
photon ionization of a cesium atom in the case of a 
three-photon intermediate resonance investigated ex- 
perimentally by Morellec et The results of 
Morellec et al. a re  in qualitative conflict with Eq. (1) 
but they can be accounted for within the framework of 
the representations described below. 

2. ADIABATIC APPROXIMATION 

We shall assume that after the beginning of action of 
laser radiation an atom i s  in one of the states la) which 
belongs to a fine o r  hyperfine multiplet. Let us  assume 
that the states of this multiplet resonate at a frequency 
kw with states Ib) of another higher multiplet. The two 
multiplets a re  localized in the atomic spectrum: the 
multiplet splitting allowing for the perturbation by the 
radiation field i s  much less than the separation to the 
next multiplet. 

In this case we may consider resonance between a 
finite number of atomic levels. The quasienergy opera- 
tor z, which i s  the effective Hamiltonian of the atomic 
states belonging to the multiplets a and b, is['41 

Here, d is the dipole moment operator, 

is the Green function of a free atom, and the wave i s  
assumed to be linearly polarized along the z axis. 

The diagonal matrix elements allow for the contri- 
bution of the conventional dynamic polarizability and 
perturbation of the atomic spectrum. The quantities 

- 
Ha,,  assumed to be real, a r e  identical with the ampli- 
tudes of the k-photon excitation of Ah:'. 

The wave functions of quasistationary states a re  of 
the form: 

where N and N' are  the numbers of states in the multi- 
plets a and b, respectively, and the quantities f i j )  are  
the components of the eigenvector of the matrix cor- 
responding to the eigenvalue E. The time dependences 
of E and f, are  related to the time dependence of the 
field amplitude F,(t).  When the field is turned off slow- 
ly, N eigenvalues &,, . . . , &, tend to E,,, . . . , E,, and 
N' eigenvalues E,,, , . . . , r,,,, tend to E, - k  w ,  . . . , E,,. 
- kw.  Consequently, we find that the coefficients trans- 
form in accordance with fz'. Thus, the function (4) 
changes after the end of action of the field into eigen- 
functions of a f ree  atom, s o  that it can be classified in 
terms of the same quantum numbers: 9 ,  ,(t) a re  the 
functions (4) which transform after the end of action of 
the field into the functions exp(-iE, ,t) la, b). 

If the amplitude of the field is constant, the functions 
(4) a re  the quasienergy solutions of the SchrSdinger 
equation with a time-periodic ~amiltonian.[ '~ '  In accor- 
dance with the adopted resonance approximation, each 
quasienergy state has zeroth and k-th harmonics. How- 
ever, if the amplitude is time-dependent, the functions 
(4) a re  the approximate solutions of the secular SchrS- 
dinger equation. They a re  the quasienergy analogs of 
the "stationary" states of the Hamiltonian whose para- 
meters vary adiabatically with time. 

The function !PC describes the time evolution of the 
system if there is  no second state !P,,violating the in- 
equality 

where 7 i s  the characteristic time for the transit of an 
atom across the region where the quasienergy levels 
come closer together and the parameter 5 acts a s  the 
Massey parameter in the theory of atomic collisions.[g1 

We shall assume that one-photon ionization is possible 
from the multiplet b. Then, the matrix elements (3) are  
complex and the quasienergies E experience ionization 
broadening. If this broadening predominates over other 
possible decay mechanisms, the probability of ioniza- 
tion of an atom which i s  in the state a before turning on 
of a field i s  

Thus, if the condition (5) i s  satisfied, Eq. (6) repre- 
sents the solution, in principle, of the problem of prob- 
ability of resonant multiphoton ionization of an atom 
allowing for the field nonchromaticity when a complex 
structure of the resonance depends, in i ts  turn, on the 
radiation parameters. 

In considering the multiphoton ionization of an atom 
from states in the b multiplet (k, > k + 1) it is necessary 
to allow additionally for the multiphoton ionization 
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broadening in the matrix elements g,,., which presents 
no additional difficulties. In particular, such broaden- 
ing may be associated with resonant multiphoton ioniza- 
tion of the states b in the presence of some third multi- 
plet c. If the multiplet c i s  localized in the atomic spec- 
trum, the matrix (3) should be expanded to allow for the 
states of this multiplet. We shall not consider this 
problem here. 

We shall discuss the simplest example when only one 
state from each multiplet, la) and Ib), can resonate. 
This may occur if the energy of the interaction between 
an atom and the field i s  low compared with the multiplet 
splitting. We then have 

- a ,  ~ab'~Eb-kO-'/rab~, 

R.b = A:;' , I = F,'. 

Assuming that one-photon ionization from the state Ib) 
i s  possible, we shall separate in a, the real  and imag- 
inary parts: a, = P + iy. Then, ignoring the imaginary 
parts E ,  ,, we obtain 

e,b = E. + Eb - X.O - '/; (aD + ab) I ]  

* {Az + 4~::" - '/,,y2P + k/ziy~I)'",  

where A is  defined in Eq. (2). 

Let us assume that the detuning from resonance in the 
absence of the field is, for example, positive: A, = E,  
- E,+ kw>O. Then the eigenvalue c ,  corresponds to the 
plus sign in front of the square root. If tyZ is a small 
quantity, we obtain 

i 
h e e = - -  

A 
8 y l { ' -  (A?+4A2Z)'la]' (a] 

For  A>O, which i s  true for any field intensity if a,- j3 
<O or  in a limited range of intensities where a,- P >O, 
we find assuming that 4~f:"< A', that 

Since by1 is the probability of ionization of an atom 
from the state lb) per unit time, Eqs. (6) and (9) give 
the Breit-Wigner formula (1) corresponding to large 
detuning, naturally if the total ionization probability of 
an atom is low, so  that the exponential function in Eq. 
(6) can be expanded a s  a power series. On the other 
hand, in the range A<O, we have 

Irn ~.*-'/,yl (10) 

and the probability of ionization of an atom no longer 
depends on the probability of excitation of the state b 
from the state a. The change in the sign of A occurs 

FIG. 1. Time dependence of the field (a)  and behavior of the 
terms as a function of the field intensity (b). 

in the region of the exact resonance when the field 
amplitude varies with time in such a way that Z(t) = 4 ~ , /  
(a, - p). When the field continues to r ise  away from the 
resonance, an atom is found in the state b, in accor- 
dance with the adiabatic term. 

Consequently, if, according to Eq. (I), the prob- 
ability of ionization of an atom assumes high values of 
the order given by Eq. (10) only in a narrow time inter- 
val when A =2Ah:', the probability (10) during adiabatic 
motion applies in that time interval a s  long a s  A <0,  
which i s  shown in Fig. 1. At a moment t, the terms 
come closer together and for t> t ,  an atom i s  excited 
to the state b and then i ts  probability of ionization is 
high. At a moment to the field reaches i ts  maximum 
value, which corresponds to the extreme right-hand 
point of &(I). For  t > t o  an atom moves between the 
terms from right to left and for t>t,, after the second 
approach of the terms, the probability of ionization i s  
again low. 

3. PROBABILITY OF A NONADIABATIC TRANSITION 

The adiabatic approximation discussed above i s  dis- 
turbed by transitions between quasienergy levels. The 
probability of such transitions can be calculated, in par- 
ticular, by determining the time 7 in Eq. (5) from the 
familiar results of the theory of atomic collisions. We 
shall assume that at a moment t, a pair of terms comes 
closest together and the square of the separation be- 
tween them is found from Eq. (7): 

Line broadening in the quasicrossing region i s  ignored 
because, a s  shown by several authorsc161 the quasi- 
stationary nature of crossing terms has practically no 
influence on the probability of a transition between 
them. The probability of a nonadiabatic transition i s  
given byC 

where t, is the root of n2(t) lying in the upper half-plane 
of the complex quantity t. 

We shall now consider the dependence of the excita- 
tion amplitude on the field intensity: Ah:'= gh;'~;. In 
the Landau- Zener approximation we can expand d ( t )  
a s  a ser ies  and retain only two terms: 

n 2 ( t )  =n,2+v,2(t-t ,)r,  

Here, t, i s  the root of the equation 

a [  A. - 'lia1(t) ] - 8 k q 2 " ~ - i ( t )  = 0. (1 4) 

Substituting Eq. (13) into Eq. (12), we find that 

The value of v i s  the rate of passage through the region 
where the terms approach time is 

In the limit &(t,) >>A;:'(t,), when 
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Eq. (15) gives the same result a s  that obtained by 
~ a k o v l e n k o . ~ ~ ~ ~  

The relationships in Eq. (17) can be used to  obtain 
qualitative estimates of the probabilities of nonadia- 
batic transitions. If Z = 81, where 8 is the width of the 
radiation spectrum, we find that 

~ = 2 ~ ~ . : ~ ? ~ ~ 0 = n r ~ / 2 ~ ~ 0 .  (18) 

This formula contains the field width r,, which deter- 
mines the width of the dispersion curves of resonant 
ionization under saturation  condition^.^^] 

For k = 2, the atomic matrix elements governing 
the polarizability and amplitude of the two-photon excit- 
ation can be regarded a s  quantities of the same order of 
magnitude. We then have (=A,/@ and we can justifiably 
ignore nonadiabatic transitions because the static 
detuning from resonance i s  considerably greater than 
the spectral width of the incident radiation. For  k > 2, 
the quantity 5 depends on the actual atomic transition 
because multiphoton matrix elements generally vary 
over very wide limits. For  the case of the cesium atom 
considered in Sec. 5, we have k = 3 and 5 - 1 for fields 
Fo 2 3 x lo5 ~ / c m .  

4. SPATIAL INHOMOGENEITY OF THE FIELD 

The spatial inhomogeneity associated with the need 

c 

FIG. 2. 

a) The surface S, i s  contained entirely inside the 
surface S,. In this case the parameter 5 i s  small in 
the quasicrossing region, the adiabatic approximation 
does not apply, and on passing through the term-ap- 
proach point an atom jumps from one adiabatic term to 
another. The excitation does not occur and the prob- 
ability of ionization of an atom i s  relatively low. 

b )  The surface S, is entirely inside the surface S,. 
In this case we may assume that the condition (5) is 
satisfied and that an atom is excited when the terms 
approach one another. The ionization occurs inside the 
surface S, . 

to focus laser radiation under real  experimental con- 
c) The surfaces S, and S, intersect. In this case the 

ditions complicates the relatively simple physical pic- 
atoms in the parts of space shown shaded in Fig. 2c a r e  

ture of ionization of an atom moving between adiabatic e x i t e d  and then ionized. We shall calculate the total 
terms. We shall find the resultant differences by con- number of ions formed in this case. For  each value 
sidering the simple case of a resonance between two of r we have to find the moments of approach of the 
isolated states. We shall also assume that only excited terms t,(r) and t,(r) which lie inside S,. Then, the ' 

atoms become ionized; this corresponds to the time number of ions is given by 
interval t, < t < t, in Fig. 1. This approximation is quite 

h { r )  

satisfactory because the probabilities of ionization from ~ , = ~ i d r { l - e ~ p  [-5 Z(r,t)dt]) . 
:,(.I 

(21) 
the ground and excited states differ by an order of mag- 
nitude (see a numerical sample in Sec. 5). 

In general, the field amplitude i s  a function of time 
and of spatial coordinates. If the widths of the levels a re  
ignored, the square of the separation between the terms 
a and b is given by Eq. (11). The surface S, in the four- 
space on which the approach of the terms takes place 
is given by [compare with Eq. (14)) 

1 
Ao- - BI (r, t) -% q$12 Ih-I (r, t )  . 

4 6 

The excitation of atoms on passing through this surface 
occurs if the condition (5) is satisfied. Qualitatively 
correct results can be obtained by assuming that the 
excitation occurs in a region whose boundary i s  a 
different surface S,: 

[Ao-1/,6Z(r, t) ] z + 4 q ~ 1 z ~ R ( r ,  t )  >v(r, t ) .  (20) 

Several possible situations a re  shown in Fig. 2, 
where x i s  some spatial coordinate. It is assumed that 
the field i s  in the form of a single pulse whose maximum 
corresponds to x =  0 and t = to = 0. 
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where n i s  the density of neutral atoms assumed to be 
constant in the focusing region and the integral with 
respect to d r  i s  calculated within the limits x, < x  < x,, 
x;< x<x;, and within similar limits for other coordi- 
nates on which the field may depend (Fig. 2c). 

General relationships governing the dispersion depen- 
dence of the probability of resonant multiphoton ioniza- 
tion can be deduced from the above discussion. The 
maximum detuning a t  which the excitation still takes 
place follows from Eq. (19): 

where I, is the maximum intensity, i.e., the value of 
I(r, t) corresponding to r = O  and t =O. We recall the 
assumptions that A,, > 0 and 5 > 0. 

The surface S, expands with decreasing A, and the 
number of ions formed the increases. The value of Lo 
corresponding to  the maximum ion yield can be found 
for a spatially homogeneous field. In this case the sur- 
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faces S, and S, a r e  planes orthogonal to the t  axis. The 
following equation is obtained for t,, from the condition 
that these planes coincide: 

The substitution of t ,  into Eq. (19) gives the value of 
A,. If the conditions of Eq. (17) a r e  satisfied, the f i rs t  
term on the left-hand side of Eq. (23) is much less than 
the second. If, moreover, we can assume an exponen- 
tial time dependence of the intensity, I(t) = ~ , e - ~ '  " , then 

Figure 3 shows qualitatively the corresponding disper- 
sion curve. It is interesting that in this model the value 
of A, i s  independent of I,. Naturally, we should bear in 
mind that for other types of the dependences of the rad- 
iation intensity on the coordinates and time the curve, 
and particularly the value of A,, may change. However, 
the value of A,,,,, given by Eq. (22) remains unaltered. 

5. COMPARISON WITH EXPERIMENTAL RESULTS 

The spatial inhomogeneity and the multipeak time 
structure of laser radiation complicate considerably the 
interpretation of the experimental data on resonant 
multiphoton ionization and, therefore, the most suitable 
results for comparison with the theory a re  those obtain- 
ed using single-mode laser radiation. Such results 
a r e  now available for the four-photon ionization of the 
cesium atom from the ground state 6s by neodymium 
laser  radiation involving a three-photon intermediate 
resonance of the 6f We shall compare the 
results of Morellec et al.[13' with the theory because, 
in contrast to Grinchuk et u Z . , [ ' ~ ~  the spatial inhomo- 
geneity of the field was less in the former case and the 
data on the resonance position were deduced from the 
dependence of the ionization probability on the radiation 
intensity and not on the radiation frequency. This was 
most important in view of the discussion given in the 
preceding section. 

The 13=Cs isotope has the nuclear spin and cesium 
has no other stable isotopes. The hyperfine splitting 
of the ground state i s  4 . 3  cm-'. The 6f resonant 
level has a doublet structure because of a fine splitting 
amounting to  ~ 0 . 1  cm-l. We shall calculate the matrix 
elements of the quasienergy operator (3). In a linearly 
polarized field[13] the quasienergy levels a re  degenerate 

FIG. 3. Dispersion dependence of resonant multiphoton 
ionization for a spatially homogeneous pulse with the 
Lorentzian profile. 

in respect of the sign of the M projection of the total 
momentum of an atom F. The polarizabilities of both 
components of the hyperfine doublet a r e  the same and 
independent of M: 

Here, F= 3 o r  4. The nondiagonal matrix element I? 
between different hyperfine sublevels vanishes. 

The polarizabilities of resonant levels depend on the 
total momentum of the electron shell J =  8, 5: 

where a r e  the scalar and tensor polarizabilities 
of the resonant level.['g1 The spin of the nucleus in the 
6f state can be ignored because of the smallness of the 
hyperfine splitting in the state with a large orbital 
momentum of the valence electron. The projection of 
the momentum of the electron shell of an atom in a 
resonant state i s  assumed to be 112 =*h in accordance 
with the selection rules applicable to a linearly polar- 
ized field. 

The values of the nondiagonal matrix element be- 
tween the components of the fine doublet depend on the 
sign of 112 : 

The matrix elements fi relating the ground and reso- 
nant sublevels depend on M and 172: 

The above matrix element can be calculated ignoring 
the spins of the nucleus and valence electron: (6s), (6f) 
a r e  the coordinate numbers of the wave functions of the 
atom. 

The matrix I? i s  thus characterized by the values of 
M and for each M there a re  two possible values of m. 
In general, when IM 1 +4,  it is found that 5 i s  a sym- 
metric six-order matrix. For  (12.1 ( =4,  we find that 
I? is a third-order matrix. 

The numerical values of the polarizabilities and ex- 
citation amplitudes were found in the approximation of 
the quantum defect The quantities expressed 
in atomic units a r e  

Morellec et al.[13] used fields F o <  lo6 V/cm. In such 
fields the second term in Eq. (22) i s  small and the rate 
of the field-induced shift of a singularity (kink) of the 
dependence of the ionization probability on the radiation 
intensity i s  3.811, cm-l GW'l cm2 for the numerical 
parameters given above. The experimental value of this 
quantity i s  4.31, cm-' GW-' cm2, which i s  in satis- 
factory agreement with the theoretical estimate. 

An important qualitative result of the experiments of 
Morellec et al.[13] was the resolution of the structure 
of this singularity in weak fields 2 4 X lo5 V/cm. They 
found two kinks of the dependence of the ionization 
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FIG. 4. Quasienergy terms of the cesium atom. 

probability on the radiation intensity and these were 
separated by ~ 0 . 1 7  cm-l,  whereas the theory predicted 
four such points because of the doublet structure of the 
lower and upper levels. The result obtained can be ex- 
plained on the basis of the results  derived above. 
Figure 4 shows the behavior of the quasienergy t e rms  of 
cesium in a field. On application of the field, the levels 
1 and 2 correspond to the initial state 6s, F =  3, and 
F =  4, whereas the levels 3 and 4 correspond to the 
resonant state 6f, J = %  and 5; the resonant levels are 
doubly degenerate in respect of the sign of the projection 
of the electron-shell momentum 172.  The qualitative 
behavior of the levels at the quasicrossing points is the 
same for all values of M and it i s  shown at the bottom 
of Fig. 4 on an enlarged scale. 

If the adiabaticity parameter 5 is large in the quasi- 
crossing region, an atom is excited when the terms 
come closer together and it i s  then rapidly ionized. In 
this case for each of the hyperfine structure sublevels 
( terms 1 and 2) there is only one singularity and the 
dependence of the ionization probability on the radiation 
intensity has two kinks, as found experimentally. If 
the parameter 5 i s  large even for the f i rs t  c ross  sec- 
tions of the t e rms  1 and 2 with the t e r m  3, the separa- 
tion between the kinks is 0.3 cm-'. However, we may 
assume that for  the t e r m  1 crossing the t e rm 3 the 
parameter 5 i s  insufficiently large and there i s  no exci- 
tation of the atom to the t e r m  3. In the case of the sec- 
ond crossing with the t e r m  4, the parameter 6-which 
is  proportional to ~4,-increases approximately by a 
factor of three and the transition 1 - 4 takes place, 
whereas further increase of the field produces the 
transition 2 -3. In this case the separation between 
the kinks i s  0.2 cm-l,  which i s  close to the experimen- 
tal value 0.17 cm". 

The theoretical adiabaticity parameter 5, obtained 
using the above numerical values of the atomic matrix 
elements, i s  0.16 in a field of 4 X lo5 v /cm if it i s  as- 
sumed that the field i s  an exponential function of time. 
This value increases and reaches the required interval 
5 =1 if allowance i s  made for  the smooth time depen- 
dence of the radiation intensity at the maximum of a 
pulse. 

This interpretation can be checked by investigating 
experimentally resonant multiphoton ionization of 
cesium in stronger fields of - (5 - 6) x lo5 v/cm,  which 

can be done by selecting a somewhat greater initial 
resonance detuning. In this case there should be again 
two kinks but the separation between them should be 
0.3 cm-'. In weaker fields 5 10' v / cm we may observe 
only one singularity: an  atom in the term 1 jumps 
ac ross  the terms 3 and 4 without excitation. 

The author i s  grateful to G. A. Delone, N. B. Delone, 
A. A. Samokhin, M. V. Fedorov, and S. I. Yakovlenko 
for discussions and helpful comments. 
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