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A method is proposed for calculating radiative effects in quantum electrodynamics in an intense constant 
field; it is based on the use of eigenfunctions of the mass operator and the localization of this operator. A 
compact expression for an eigtnvalue of the mass operator of an electron in an arbitrary constant electric 
field is found, and the corresponding elastic scattering amplitude is calculated. The imaginary part of the 
amplitude determines the rate of decay of the various states of the electron in the field, and the real part 
contains the mass shift, including the anomalous magnetic and electric moments of the electron as 
functions of the field and the momentum of the electron. Quantities found and studied in detail include 
the anomalous electric moment which appears in a field for which the pseudoscalar E-H is not zero, the 
anomalous magnetic moment in an electric field, which approaches twice the Schwinger value as the field 
increases, and also the mass shift and the rate of decay of the ground state of the electron in an electric 
field. For a weak field the mass shift contains the classical term, linear in the absolute value of the field 
strength, which charact& the effect of acceleration on the structure of the electron. 

PACS numbers: 12.20.D~ 

1. INTRODUCTION as  the Fourier transformation does in the quantum elec- 
trodynamics of vacuum. 

The interactions of electrons with an electromagnetic 
In Sec. 4 the elastic scattering amplitude, or  the 

field whose intensity i s  of the order of the characteristic 
quantum-electrodynamical value change Am of the electron mass, in a constant field i s  

found, This quantity fixes the probability amplitude for 
F,-mzcSleA-4.4. 10'' Oe . an electron to preserve its state a s  i t  passes through 

i s  of fundamental interest for quantum electrodynamics 
owing to the important part played by nonlinear radia- 
tive effects. Such fields exist near pulsars, and they 
can be produced in the laboratory in the rest system of 
an electron when ultrarelativistic electrons pass through 
intense laser fields and magnetic fields. The radiative 
corrections to the motion of electrons and protons in an 
external field are  described by mass and polarization 
operators and modified Dirac and Maxwell equations. 
One method for calculating these operators is diagona- 
lizing them by using exact eigenfunctions. 

In Sec. 2, based on arguments of a general nature,'g2 
a complete set of operators i s  found which commute with 
the exact (in both external and radiation fields) mass 
operator of an electron in a constant electromagnetic 
field. This means that a representation i s  found in 
which the exact mass operator i s  diagonal. This radi- 
cally simplifies the study of radiative effects in an ex- 
ternal field and reduces the integrodifferential equations 
for the wave function and the exact Green's functionto al- 
gebraic equations. The eigenfunctions of the complete 
set of operators are  derived in explicit form and their 
properties are studied in detail. By means of them var- 
ious representations of the propagation function of an 
electron in a constant field are  obtained. A similar pro- 
gram has been carried out for a plane wave and a con- 
stant crossed field (see Refs. 1,2). 

In Sec. 3, the eigenfunction method i s  used to find the 
eigenvalue of the mass operator of the electron in a con- 
stant field. The key point in this i s  the use of the inte- 
gral representation (43) of a four-dimensional Gaussian 
function. This integral transformation plays the same 
role in the quantum electrodynamics of a constant field 

- 
the field, which i s  given by exp( - i~mr) ,  where T i s  the 
proper time of the electron's presence in the field. Ac- 
cordingly, - 2 I m ~ m  is  the probability of emission of 
radiation per unit proper time (more exactly, the rate 
of decay of the state), and R e ~ m  fixes, for example, the 
change of velocity of the electron in the field. The two 
terms of Am depend linearly on the polarization of the 
electron and determine the anomalous magnetic and 
electric moments (AMM and AEM) of the electron as  
functions of the field intensity and the momentum of the 
electron. The electron's AEM in nonzero only in a field 
for which the pseudoscalar E .H to. A detailed investi- 
gation of the AEM i s  made in Sec. 5. 

The AMM which is found i s  studied in the case of an 
electric field in Sec. 6. It i s  shown that in the ground 
state (and in not too highly excited states, with the elec- 
tron's transverse momentum smaller than or  of the or- 
der of its mass) the AMM first decreases with increase 
of the field and then increases, approaching twice the 
Schwinger value. This behavior i s  radically different 
from those found previously for the AMM in crossed or  
magnetic fields. However, in states with large trans- 
verse momenta, and also in weak fields, the behavior 
of the AMM i s  the same as  in the case of crossed fields. 

In. Sec. 7 the mass shift and damping of the ground 
state of an electron in an electric field are  found. The 
dependence of the mass shift on the field strength is like 
that found in the case of a magnetic field; at first a de- 
crease, linear in the field strength, of order of magni- 
tude am, and then, at fields larger than F,, a monotonic 
increase. The mass shift term linear in the field gives 
a new structure constant of the electron; unlike the ef- 
fect of the AMM, this i s  an inherent effect for a spinless 
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particle. It i s  also interesting that there i s  no stable 
state for an electron in an electric field and that the de- 
cay rate of the ground state depends strongly on the 
field, owing to radiation and to the transition of the elec- 
tron to excited states. ?he necessity of change of state 
of the electron agrees with the general rule that a con- 
stant field cannot cause a process whose only effect i s  
the production of photons. 

The important part of the electron mass shift which is 
linear in the electric field and does not involve Planck's 
constant, a s  found in Sec. 7, is studied in detail in 
Sec. 8 and is there derived by a purely classical 
method. I t  i s  caused by a restructuring of the proper 
field of the charge, which i s  proportional to the accel- 
eration and has the sign opposite to that of the velocity 
relative to the acceleration, so that in the final state it 
i s  negative. 

2. THE ElGENFUNCTlONS OF THE MASS OPERATOR 

In general a constant field i s  either crossed o r  paral- 
lel, i.e., such that in some Lorentz coordinate system 
the electric and magnetic fields are  parallel. Here, be- 
ginning with Eq. (5), we a re  concerned with the latter 
case. We recall that in a parallel field, E (IH, a clas- 
sical electron moves in a helical path of constant radius 
and decreasing pitch, losing its longitudinal velocity, 
until this velocity component becomes zero, after which 
it  takes on longitudinal velocity in the opposite direc- 
tion, moving along a helical path of the same radius and 
increasing pitch, and rotating in the same direction 
(conservation of angular momentum!) (see Ref. 3). 

The quantum motion of an electron in an external 
field, with radiative corrections taken into account, i s  
described by a Green's function which satisfies the 
Dirac equation proposed by Schwinger4: 

The function M(x, x') which describes the self-energy ef- 
fects can be regarded as  the matrix element M(x, x') 
=(xlM(x1) of a mass operator M in the coordinate repre- 
sentation. The operator M i s  a scalar y-matrix function 
of the operator n, and the field FaR. For a constant 
field there are  only four independent scalar$: 

on which the operator M can depend. All other scalars 
can be formed from these four, for example: 

and so on. I t  i s  not hard to see that the operators (2), 
and along with them the mass operator also, commute 
with the squared Dirac operator (yll)' =112 - $ e o ~ ,  and 
therefore the operator M is diagonal in the representa- 
tion of the eigenfunctions E,(x) of the operator (yII)2: 

The eigenvalue p2 of the operator (YI I )~  can be any real 
number. It i s  obvious that E,(x) i s  also an eigenfunction 
of three differential operators that commute with yll 
and whose eigenvalues number the solutions $(XI of the 
usual Dirac equation 

Accordingly, for a general constant field for which the 
vectors H and E are parallel in a suitable coordinate 
system and directed along the axis 3, and will be de- 
noted by 71 and E, and the potential i s  taken in the form 
A, = (0, qx,, -ct, O), there are  four operators: 

which commute with each other and the mass operator 
and form, along with it, a complete set. We shall denote 
a set of eigenvalues 

of the operators (5) by the letter p. The operators (5) 
commute with Z, and y, [or with $OF = (7 + iey,)C,], and 
therefore their eigenfunctions can also be distinguished 
by the eigenvalues o =A,?  = & I  of the operators Z, and y,. 

In the so called spinor representation (see Ref. 5, Sec. 
17 -22; Ref. 6, Sec. 8), in which y, and C, a re  diagonal, 
the eigenfunctions Em(x) a re  of the form 

where may are  the eigen bispinors-of the matrices Z, and 
and y,; in the repre.o-,ntation considered the four bi- 
spinors w ,-,, w ,-,, w,,,w -,, form the columns 1,2,3,4 
of the unit matrix in the y-matrix space, i.e., w,,(cy) 
=Ias ,  if the set of eigenvalues oy i s  assigned column 
number @; D,(.z) are the parabolic cylinder functions 
with indices 

aeq 1 2leqlk-pf raee 1 n=k+--- i = - i - - - -  
21eql 2 ' 21eel 21eel 2 

and arguments 

Accordingly, for a given p the four bispinors (7) form 
a diagonal four-rowed matrix E,(z) made up of two di- 
agonal two-rowed matrixes a, and b,: 

whose columns a,,, b,,, a = i l  , are the two-component 
eigenspinors of the Pauli matrix a, and the solutions of 
the complex-conjugate equations (10). The spinors a,, 
and b,, transform independently according to conjugate 
representations of the proper Lorentz group and are  in- 
terchanged on inversion (so-called 4-spinors, see Refs. 
5,6). The functions (7) are positive-frequency functions 
in the sense that when the electric field i s  turned off 
(with E-0) they go over into functions with positive fre- 
quency over a wide range of the time t: I t +p,/ee ( 
s (2 le  el )'1/2. Therefore we supply them with a first 
subscript plus before the p: E, =E,. The corresponding 
functions E - ,  are  obtained from them by setting T --T.  

These assertions follow from the asymptotic formula 

(11) 
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which holds f o r  I X I  - w ,  bounded T, and arg(-A) s n / 2 .  

In the presence of an electr ic  field, because of pair  
production, each of the solutions E,, contains both posi- 
tive and negative frequencies. The solution E, contains 
only the positive-frequency semiclassical  wave efS+ for 
t- +w, and the solution E,, contains only the negative 
wave eiS- fo r  t--a; here S, a r e  the quasiclassical ac- 
tion functions 

We note that for  the classical  time dependence i t  i s  
essential that the  action be large,  i.e., that 
max(v 1 5 1 ,  v t2)  >> 1. This  condition is equivalent to the 
requirement that the t ime be la rge  compared with char- 
acterist ic  quantum t imes  

the las t  relation i s  written on the assumption that -p2 - m2. 

The matrix functions E,(x) a r e  orthogonal and a r e  nor- 
malized by the condition (E, = y4Eiy4, and w i s  the sign 
of the frequency) 

j E..,. (z) E., (z)d'z= (2x)'6 (p"-pz) 6 (PZ'-PJ 6 (PSI-PS) 6r,r6-r. (13) 

They satisfy the completeness condition 

If we apply the operator yII to the matr ix  E,, we ob- 
tain the valuable relation 

in which the four-vector ji,, has  the components 

Po-sign(ee)PS=o (2 1 ee I )". 2pAg-=2 (eq (k-pz, 
p-=jjo-ps, p+='/ r ( -  po+Ps), (1 6) 

and i t s  square is ji2 = p2. Thus  this vector depends only 
on the dynamical quantum numbers p2, k, w and does not 
depend on the numbers p2,p3 which fix only the origin 
relative to which the coordinates xi and the time t a r e  
measured. A s  will be seen from Eqs.  (48) and (49), ji 
is the quantum analog of the kinetic momentum of the 

al, and the propagation function of the electron in the 
field i s  of the form -i(m+iyp)-'. In  the coordinate rep-  
resentation i t  can be written in any of the following 
forms (j d4p s C LZO dp2dhdpQ,  and summation over  the 
sign w is to be understood throughout): 

The  path around the pole p 2  = -& has  been specified 
only in the las t  (causal) expression, where i t  is as-  
sumed that m2 - ma - i6 .  The  l a s t  integral, which is a 
diagonal y matrix, can be expressed in t e r m s  of ele- 
mentary functions. T o  d o  s o  we represent  i t s  mat r ix  
elements in the form 

where 

leql ' 2  D*(p)Ds(pf) , DE= erp ('/,in (i-h") ) D - -  
m - ( n )  n! 

r (-&I r (-A'.) 
(21eel)'" 

t 

noting that in the y matrix EZ there a r e  products both 
of spinors with the same sign o = o f = * l  and of those 
with opposite s igns y = -y' = *l. Therefore  we have the 
respective values 

k 
n-nr - {k-, * I ,  

leql 
- iv oree (8') 

)"= ):. = {Z-' --Ti, { -iv-1' IeeI 

[cf. Eq. (811. 

T o  calculate the integral over  p2 we use the repre-  
sentation" 

where t = (2 ( ec 1 )lI2 (% +p,/ee) is a rea l  variable, per- 
form the integration of the Gaussian integral over p 2 ,  
and then that over the variables y, y' of the representa- 
tion (21). We then get 

- 
electron at  the point of natural symmetry of the motion. 

- %- I t  follows in particular from Eq. (15) that the solution 
of the Dirac equation (4) is obtained by applying the op- i(t+t')' eezOa 

oyees - - - 
4 th ees 

i21 eq I ks) . 
4 Bcthleels 

(22) 
e ra tor  m - iy If to the matrix E,, taken for  p2 = -m2: 

where 
(17) 

t+tr-(2 1 ee 1 ) "(zO+z,'+2p,/ee), z,=(z-st).. 

and accordingly is of the form $ ( x )  =E,,(x) u,,, where 
ww" The  next integration, that over p,, gives 

u, is a spinor which sat isf ies the freeJ' Dirac equation 
r .  

(m + iyp)  u, = 0, and the matrix E,, and the vector ji, - d p  dpZ ee j ~ e * ~ ~ 7 ~  j 
a r e  taken at  the point p 2  =-m2 (cf. the plane-wave case, -- 2n - = 

4n ah ees 

Refs. 1,2). This  solution is the s ame  a s  that of (z+z')~ tcs(r.'-z,') 
Nikishov.' X exp -ieez, - - orees + 

2 4thecs 
-izleqlks). (23) 

In  the E,, representation the m a s s  operator  is diagon- Similarly, we use the representation 
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2 'I* - 
D. (p )  = (--) eu' j dy yne-ui' cos ( p y  - T) 

0 

to ca r ry  out the summation ove r  k and the integration 
over p2: 

2 D re -izi.qlks - ( ' q  

.-" 2n sin 2eqs 

here  

Thereafter ,  

-ieq ieq (z,'+z,') - 
4n sin eqs 4 tg eqs 

) (26) 

In  this  way we get for  the integral a s  a whole the in- 
variant expression 

@P -ie2qe e - i p * a ~ m p  ( 2 )  .Twp (2') =, 
(4n)'sin eqs sh ees 

Equations (22)-(27) a r e  essential for  the use of the 
eigenfunction method in more  complicated problems. 
Another representation for  the causal propagation func- 
tion can be derived by closing the  path of integration with 
respect  t o  p2 in the second o r  third representation in  
Eq. (18). T o  do this we consider the integral 

and the analytic propert ies of the function D, in  the com- 
plex plane of p2 o r  v. Recalling ou r  footnote1) and Eq. 
(8'), we see  that in the  complex v plane the function D, 
has  simple poles a t  the integer points on the imaginary 
axis, moved slightly upward fo r  the function 
r(-A), to v =i(n + 6), n = l , 2 ,  . . . , and downward for  the 
function r(-A'*), v =-i(n + 6), n = l , 2 , .  . . , because of 
the smal l  bias 6 discussed in that footnote.') T h e  pres-  
ence of poles along the ent i re  imaginary axis of v in  
each of the frequency t e r m s  of the function D, is incon- 
venient fo r  closing the contour, and therefore we intro- 
duce two further representat ions for  the function D,: 

in which al l  of the nodiagonality in x, x' and al l  of the de- 
pendence on the gauge of the potential A(y) a r e  concen- 
trated in the f i r s t  t e rm of the exponent, and al l  of the y- 
matrix structure is in the t e rm uF. In  writing the third 
t e rm in the exponent we have used the diagonal repre-  
sentation of the field tensor 

F=diag(iq, -iq, e ,  - 8 )  (28) 

and functions of it. The  coefficient of the exponential 
function can a lso  be written in t e r m s  of the field tensor: 

but the form shown in Eq. (27) is more intuitive and con- 
venient. On substitution of Eq. (17) in Eq. (18) we obtain 
the proper-time2) representation a s  found by Focks and 
by Schwingere: 

-ieiV j d e [ i 
Sc ( x ,  2') = --i- m--y ($+eF)z  

(4n)  sinenssh ecs 2 

x exp (-imzs + - + - "" 4 ie? * 

which follow from Eq. (20) and formulas 8.2(7) and 
8.2(8) of the Bateman co l l e~ t ion . ' ~  T h e  f i r s t  t e r m s  of 
these representations have poles only on the semiaxis 
Imv >O, 'and have in the half-plane Imv s 0 the respective 
asymptotic forms 

for  1 v (-a. The  second t e r m s  have poles only on the 
semiaxis Imv < 0, and in the half-plane Imv z, 0 a s  I v I 
-03 they become 

n(ZleeI)-"~e~p[-'/~in*i(2(ejv)"(t-t')]. 

Choosing for  D, the representation (31+) for  t - t'>O and 
the representation (31-) fo r  t-  t' < 0, and closing the 
path of integration in the v plane below in the integral of 
the f i r s t  t e rm and above for  the second, we get  a non- 
vanishing result  from the f i r s t  t e r m  only: 

where in the right member v = vo o r  p2 =-m2. 
The  invariant formulation of the integral (27) also 

contains the case  of a c rossed  field; fo r  this we must In  this  way we a r r ive  a t  the well known representation 

take A, and F,, to be the corresponding potential and 
field, and s e t  the field invarients 77, e equal to zero. 
Then the right hand side of Eq. (27) becomes f ( x , z f )  = 2 j % E ~ ~  ( 2 )  ( m - i d ) B p .  (2')  (I-e-") 'v, 

k-0 
(251)" 

i i -- iz2 is(;:)'), 
exp i q + - e o F s + - - -  ( 2 

(27') = j dp2 dp* ~ V W .  ( ~ ) $ P w  (2') 
(4n) 's2 4s (ZIT)' (l-e-z"' )" ' 

h,r 

and the Green's function takes the form "=* for t - t 'so.  (33) 

The  matr ices  E,, a r e  obtained from E + ,  by the replace- 
ment 

- 
iz' is(eFz)' ) / Z n  e'l' '"'-L-2' 

x e x P ( - i m 2 s + - - - + -  4s 12 (29') ex""' r ( - h ) D ~ ( * z )  -t D-%-, (*iz) 
)"  

(34) 
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and have ;t frequency behavior a s  t o r - .  T h e  solutions 

of the Dirac equation a r e  normalized in the following 
way: 

(36) 
The  representation (33) is remarkable fo r  i t s  explicit 

causality; the state of the electron in the field is af- 
fected only by the positive-frequency state in  the past  
and the negative-frequency s ta te  in the future. The  fac- 
tor  (1 - e'2"v)1/2 is the probability amplitude for  the 
state with quantum numbers k , h , p 3  to be free.  The  
method given here  i s  based on papers by the writelJ1 and 
by "Nikishov7 (see also Refs. 1'2). " 

3. THE MASS OPERATOR AND ITS EIGENVALUE 

We shall use the eigenfunctions E, to calculate the 
mass  operator  of the electron in  a constant field. In 
second order  in the radiation field the mass  operator  in 
the x representation is given by the expression 

M (x ,  X I )  =ieZy,,SI ( x ,  X I )  y ~ ~ ~ ~ x - x / ) ,  (37) 

where S is the propagation function of the electron in 
the external field, and DC is the photon propagation func- 
tion. Using for  SC the representation (29) and for  DC the 
analogous representation 

w e  get fo r  the E, t ransform of the mass  operator  the 
expression 

-ie' m ds dt e'qee-'"'I 
M ( P , P ' ) =  yjj -i;- 1. 

(4n)  sin eqs sh ees 

Here  J is an integral over the coordinates, which is a y 
matrix: 

where z = x -  x ' ,  cp is the nondiagonal phase of the 
Green's function, and A = P +  t" and B = p + e F  a r e  4 x 4  
matrices, cf. Eq. (29). The  y matrix appearing between 
the E, matrices can be written in the form 

r=4m (S+iy,P) +ie-'"""F'yBz, 

S=cos elis ch ees, P=sin eqs sh ees. 

Since the E, matrices commute with the matr ices  y, and 
OF, to find J it  is necessary to know only the integrals 
Jo, J1: 

The  way these integrals a r e  calculated is given in the 
Appendix; the result  i s  the foundation of the E,-function 
method: 

4ie-'h8e0Fw-ii;~D 
10, J t  = (2n)' 6(p-p1)6... 

(det (A-eF))" 
(1 ,2yB(A-eF) - lp ) .  (43) 

Here  w is a symmetric mat r ix  function of the field ma- 
trix F: 

and (21r)~6(p- p')b,,, denotes the right hand s ide  of Eq. 
(13). We remark that Eq. (43) is valid f o r  arbitary 4 x 4  
matrices A and B, under the condition that A is a sym- 
metric function of F. In our  c a s e  A =eFco theFs  + t-' 
and the matr ix  w has two twofold positive eigenvalues, 

which play the role of magnetic and e lec t r ic  character-  
istic t imes  of an  electron which interacts  not only with 
the external field but also with the radiation field. Ow- 
ing to the lat ter ,  wlz lag s. But wl is always in the 
same period a s  s: n n / ( e g I < w l < s < ( n + l ) n / ( e q ( ;  and i t  
even coincides with s when it passes  through a boundary 
between periods, i.e., d sin@lariW of cotees. At the 
same time, w, fo r  s -a  and finite t goes further and fur- 
ther  from s, approaching (2ee)-' ln(1 +Zest). F o r  t -- 
both functions w,,, - s, and fo r  t-0, w, -nn/ lee l ,  the 
beginning of the period that contains s, and w, -0. 

Finally, we give the expansions 

W ~ = O + ~ / , ( ~ ~ O ) ~ ! S - O ) + .  . . , ~ z = a - ~ / s ( e e a ) ' ( s - a ) + .  . . , (46) 

which a r e  valid for  sufficiently.sma1~ fields 7, E, We 
shall cal l  w the matrix of radiative characterist ic  time. 

Equation (43) may usefully be compared with the anal- 
ogous formula in electrodynamics without an external 
field ( F  =O), in which plane waves eiPX replace the func- 
tions E,, p being the ordinary four-momentum pa, and 
in which we have the ordinary conservation laws 

4ie-'P*-'P 
Io, J I  = (2n)' 6 (p-p')- (1.2yBA-'p).  

(det A)" 

I t  follows from Eq. (43) that the effective (mean) value 
of the relative coordinate z,  is given by 

Th i s  formula acquires a simple physical meaning if we 
recall  the law of motion of a classical  part icle in a con- 
stant fields: 

Thus  the effective relative coordinate va r i e s  like the co- 
ordinate of a classical  particle. except fo r  two differ- 
ences: I t  is not s that plays the pa r t  of a characterist ic  
time, but w (owing to the additional interaction with the 
radiation field), and the quantum vector P plays the role 
of the initials) kinetic momentum. 

In  what follows we shall  need the expansion of the ma- 
t r i x  w in t e r m s  of two independent matrices:  

[compare with (56)] which in the important special case  
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of a crossed field reduces t o  

In  the general case  th is  las t  formula is approximate, 
with accuracy up to t e r m s  of o rde r  (eF)4. It can be seen 
from the representation (50) that the vector F appears 
in  the exponent in Eq. (43) only in the form of the invari- 
ants  p 2  and (eFf12. 

By the use of Eqs.  (39), (40), and (43) the mass  opera- 
t o r  reduces t o  the diagonal form 

~ ( p ,  p') = (2x1 '6 (p-p') 6.m.M~ (F, F )  9 

where 

- dsdt sineqw, sh eew, 
Mn(F' F)= ;j.f T{ sineqssh ees exp (-im2~-iFw@ - -~uFw 2 

In  this  expression a renormalization has  been car r ied  
o u r )  (see Refs. 2,12), and use has  been made of the r e -  
lation 

e'qe 
(det($+t-I-eF))' = 

sin eqw, sheewz ' 

Because the motion in the electr ic  field is infinite, an 
infrared divergence for  t-.o a r i s e s ,  in general, in M; 
this divergence can be removed by introducing a factor 
e ' ~ ' ~ ,  i.e., a smal l  photon m a s s  p .  

I t  would be more co r r ec t  t o  cal l  the y-matrix function 
M(F, F )  an eigenvalue of the mass  operator ,  in analogy 
with the fact that yp is an eigenvalue of the operator  yl?. 
Like every eigenvalue, M(F,  F) is an  invariant; i t  does 
not depend on the choice of representation. In a differ- 
ent  representation, characterized by a different com- 
plete se t  (5), different eigenvalues (6), and different 
eigenfunctions (7), M(F, F )  would be the s ame  function 
of h and F, and only the dependence of P on the new 
eigenvalues would be different. 

In the special case  of a crossed field the m a s s  opera- 
tor  (52) is identical with that found previously by the 
present writer,le2 and in the special case  of a magnetic 
field i t  i s  identical with the result  of T s a i  and Yildiz.13 
In the general case  of electr ic  and magnetic fields a 
mass  operator  has been found by ~ a i e r ,  Katkov, and 
Strakhovenko.14 However, the operator  they give i s  
cumbersome, and a comparison with Eq. (52) is diffi- 
cult. 

4. THE ELASTIC SCATTERING AMPLITUDE 

On the mass  shell p 2  = -m2 the matrix element of the 
mass  operator  between "free" spinors gives the charac- 
ter is t ic  amplitude for  elast ic  scat tering of the electron 
in an  intense constant field: 

Here  u i t  is the spinor corresponding t o  a definite polar- 
ization of the electron, s o  that iy,yEu,-, = ub,. As  for  
the f r ee  electron, the polarization four-vector F satis- 
fies the conditions 5' = 1, Z$=O. Accordingly 

is the corresponding polarization density matrix. 

Matrix functions of the field matr ix  F appear in the 
calculation of the trace.  In the final stage of the calcu- 
lations i t  is convenient t o  represent  these functions a s  
expansions in t e r m s  of four independent mat r ices  with 
invariant coefficients 

Here  a b a r  over a mat r ix  means that i t  is multipled by 
the involution matr ix  diag(-1, -1,1,1). As usual, F& 
= ( i / 2 ) ~ , ~ y ~ ~ , , ~  i s  the tensor dual to Fee, and its form in 
the  diagonal representation is diag(ic, -ic, - 7 , ~ )  [cf. Eq. 
(28)]. We have already used the representation (56) for  
the symmetric matrix w [see Eq. (50)]. 

T h e  resul t  is the following expression for  the ampli- 
tude: 

ds dt sin eqw, sh eew. -fn,s,-,w3 T (p, F) =-em - a fi 7 { sin eqs sh ees Z n  

eiF'p eiFp o2 + i- mJ cl+i-c,] m - ;;- (2 -I) e-'"'*--)). (57) 

Here  a, b, el, c, a r e  invariant functions of the parameters  
71, E and the characterist ic  times: 

a=2 cos eqs ch ees cos eqw, ch eew,+2 sin eqs sh ees sin eqw, sh eew, 
e2 -- sin eqw, sh eew. 

ch ee (w,+s)- - -& cos eq (wi+s)- 
q'+ez slneqs q-+e' shees ' 

b = -  sin eqw, m. 
[ch ee(w,s)-- cos eq (w,+s)- 

e2 (q2+e') sin eqs ':heze7 1 ' 
(59)' 

mL (1;) = 
[(Je ) ( 2  cos eqscheessineqw, cheewz . 

- 2sin ells slr eescos eqw, sh eew,-sin eq 

+ ( :) (2cos eqs ch ees cos eqw, s l ~  eew2+2 sin eqs ah err sin eqw. cheew. 

The amplitude depellds on the two field parameters  
q m  *2, ecrn-' and on a dynamical parameter  x which 
includes the entire dependence on the momentum f3 

The  parameter  x takes  d iscre te  values if the magnetic 
field is not zero,  17 #0, s ince in this case  j?: = 2  (q 1 k, k 
=0,1,2,  . . . , If v = 0, then 3; and x take continuous val- 
ues. Finally, if = c = 0 but F + 0 (crossed field), x is 
continuous, while the right member of Eq. (61) takes the 
form rn'3 1 eF lp, , where p- is an eigenvalue of the oper- 
a tor  Il,. As  fo r  the invariants 5F*p and ZFF, they a r e  
the mean values of the spin matr ices  $OF and $OF* in 
the state ubE: 

Two mutually orthogonal spinors u iC and u,--~ can be 
chosen so  that for  them 
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One such pa i r  of mutually orthogonal spinors i s  the f i r s t  
and fourth columns of the matrix m-  i y f i  the i r  polariz- 
ation vectors a r e  *?a, where 

Another pair  of mutually orthogonal spinors satisfying 
Eq. (63) is the third and second columns of the s ame  ma- 
t r i x  m - i yf i  f o r  them the polarization vectors a r e  *?&, 
where 

Thus  i t  i s  c l e w  that the t e rms  in the amplitude propor- 
tional t o  Z P F  and SF$ depend on the spin orientation and 
are governed by the interactions of the AMM with the 
magnetic field and of the AEM with the electr ic  field. 

The  amplitude (57) has  not been previously derived. 
In the case  I = E = 0 (but F 20)  it becomes the elastic 
scattering amplitude for  an electron in a crossed field,'' 
and in the case  E = 0 i t  agrees  with the amplitude for  an 
electron in a magnetic field.ls 

I n  proceeding with the study of the amplitude (57), we 
note that it is invariant under the replacements 7 t - i c  
i f  the parameter  x and the spin invariants a r e  kept the 
same. We shall now consider three  physical effects: 
The  appearance of an AEM of the electron in an electro- 
magnetic field, the behavior of the AMM in an  electr ic  
field, and the mass  shift and damping of the ground state 
of an  electron in an electr ic  field. 

5. THE ANOMALOUS ELECTRIC MOMENT 
A s  i s  well known, besides i t s  normal magnetic mo- 

ment e/2m an electron in the vacuum has  an  AMM de- 
termined by its internal structure-its interaction with 
the radiation field. An intense external field changes 
the interaction with the radiation field and therefore 
changes the AMM. In the vacuum the electron has  no 
electric moment (neither normal nor anomalous), be- 
cause the interaction is invariant under space and time 
inversions. An applied field, however, by changing the 
radiative interaction, can produce an electr ic  moment if 
the field has  a pseudoscalar E .H + 0. 

The  anomalous magnetic and electr ic  moments a r e  
l inear in the spin, but whereas the AMM is a pseudovec- 
tor, the AEM is a vector, and is therefore odd with re- 
spect  to both the electr ic  field and the magnetic field. 
The  interactions of the AMM with the magnetic field and 
of the AEM with the  electr ic  field lead to an  electron- 
mass  change that depends on the spin orientation. The  
change of mass  Am of an electron in an external field is 
related to the characterist ic  elast ic  scattering amplitude 
T by the simple equation T =-cAm. I t  follows from Eq. 
(57) that the change of mass  Am, brought about by the 
AEM is given by 

ie;? a fJ ds dl sin eqw, ah eewz 
A m  =-- - 

E 
e-Lm~.-<p.?F C2. 

2n tZ sineqsshees 
(66) 

The  magnitude h v  of the AEM is given by the r ea l  part  
of Am,, namely R e ~ m ,  = -AvE = -Av?~F/rn (compare 
this with the energy -AU -E of a classical  dipole mo- 
ment). Then in units of the Bohr magneton vo =e/2m we 

Av ds dt sin eqw, sh eew. 
sin(mts+gwp) c,. 

vo n sin eqs sh ees (67) 

Th i s  expression, like (66), is a complicated function of 
q, c, and x and vanishes if ei ther  of the field q o r  c is 
equal to ze ro  [factor c,, s e e  Eq. (60)]. Because it is 
odd under inversion of t ime reversal ,  AU/V, changes 
sign for  E-- E o r  17--7. 

Let  u s  examine the important special  ca se  when the 
fields q, & a r e  smal l  in comparison with ma/e. Then 

s e e  also Eq. (46). We change to the variables 

Then 

e ~ F p  5a ezqe du zsj" ( z )  Am =--- 
E mz 6n m'! u2(l+u) 

where f (2) is a special function introduced p r e v i ~ u s l y ' ~  
by the wr i te r  and studied in detail in Ref. 2: - 

f (z) = i I d z  e x p { - i ( ~ z + 2 ' / 3 ) ) .  

T h i s  function is characterist ic  for  processes  in crossed 
fields, which is essentially what we have here, s ince the 
entire dependence on the actual field parameters  has  
been factored out in the factor  e%q/m4. The  expression 
for  av/v0 is obtained from Eq. (70) by setting e g ~ $ / 2 m ~  
0-1, f "(2)-T"(z), where T(z)=Ref (z) (cf. Ref. 2). 

F o r  small  and la rge  values of the parameter  x [see 
Eq. (61)] we get 

According to Eq. (61) the parameter  x cannot be sma l l e r  
than x ,,= (e&(m12. Accordingly, a s  x increases  the 
AEM ~ v / v ,  decreases  monotonically from the value 

to zero. 

6. THE ANOMALOUS MAGNETIC MOMENT 
The formula for  the AMM is obtained by replacing c, 

with -c, in Eq. (67). In particular, for  an electron in  an  
electr ic  field the AMM is given by 

where j3 = e ~ r n ' ~ .  T h i s  expression thus depends on two 
independent parameters,  p and X .  

Let u s  examine the important c a s e  in which the elec- 
t r i c  field is weak and the t ransverse  momentum of the 
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electron is large  compared with the mass. Then @ << 1, 
X, while x can be ei ther  smal l  o r  la rge  compared with 
unity. Expanding the integrand in Eq. (72) in powers of 
the field and introducing the variables (69) instead of s, t, 
we get 

The  function T(z ) was already mentioned in Sec. 5. Th i s  
expression is identical with the AMM in  a crossed field, 
if we take x to mean the expression corresponding to a 
crossed field, ( e ~  (p-mm3 [(see Eq. (12)). We call  atten- 
tion to the fact that for  smal l  values of the parameter  x 
the AMM is close to the Schwinger value ( ~ / 2 r ,  and for  
la rge  x it decreases  a s  

Equation (73) ceases  to be valid when x approaches j?, 
i.e., when the t ransverse  momentum of the electron is 
comparable with o r  sma l l e r  than the mass  of the elec- 
tron. 

X ,  p = leslm-a and A =  p2 / ( e&/ .  T h e  las t  one, the infrared 
parameter ,  will always be regarded a s  the smallest ,  
and we se t  it equal t o  ze ro  wherever possible. 

In an electr ic  field Am does not depend on the polariz- 
ation of the electron; the interaction with the AMM is 
turned off because there  is no magnetic field, and the in- 
teraction with the AEM vanishes because the AEM is 
zero. L e t  u s  examine in more  detail the Am for the 
ground state of the electron, i.e., the s ta te  with = O  
(so-called hyperbolic motion). In this ca se  x =B, and we 
get 

a - dzdu sh Y 
~ m = m - J  2n ~ - { * ( 2 ~ h z ~ h ~ - -  z ( l+u)  s h z  sh z 

Using the  definition (45), we can express  the functions 
of y appearing here  in t e r m s  of x and u: 

1 cth z+uz-'+I 
y= -1n 2 cth z+uz-'-1' 

cth' x+2ur-' cth z f  l 
(79) 

*(Zehzrhy-- = 
sh z ::: ) (cth ztuz-'-1) (cth z+uz- ' t i )  ' 

T h e  singularities of the integrand in the sec tor  - r /2 Let  us, therefore, consider a different case,  that in  
< a r g x c  0 of the x plane, a t  the points were  cothx+ ux" 

which 5, =0, s o  that x takes its smal les t  value, x =@. In 
this ca se  Eq. (72) becomes a function of the single pa- - 1 =0, do  not allow u s  to turn the path of integration 

over  x onto the negative imaginary axis ,  on which the rameter  j?. F o r  smal l  values of j? we get 
integrand is real. However, a proper consideration of 
these singularities leads t o  a d i f f e r e ~ t  representation 

(75) for  Am. 

This  dependence on smal l  j3 = X  is like the dependence on 
small  x for @ << x << 1, Eq. (47). However, the coeffi- 
cient on the main, logarithmic t e rm in Eq. (75) is much 
smal ler  than that in  Eq. (74). Th i s  means that the pa- 
rameter  j? not taken into account in Eq. (74) increases  
the AMM, a t  the s ame  t ime that the parameter  x dimin- 
ishes it. With increasing @ its effect in increasing the 
AMM becomes stronger,  a s  can be seen by investigating 
the limiting c a s e  @ = X  >> 1: 

Accordingly, a s  the parameter  = X  increases,  the AMM 
f i r s t  fal ls  below the Schwinger value 4 2 r ;  it reaches  a 
minimum value for  j? = X  - 1, and then increases,  appro- 
aching the limit a/n, which i s  twice the Schwinger value. 

L e t  u s  consider two limiting cases: p << 1 and @ >> 1. 
In the c a s e  @ << 1 the essential contributions t o  the inte- 
gra l  (78) come from two ranges of integration which we 
shall cal l  the quantum region and the classical  region. 
In the classical  region xeff  -1, u e f f  -/3 << 1, and in the 
quantum region x,, -@ << 1 and u,, - 1. T h e  contribution 
from each region can be calculated by dividing the range 
of integration over x a t  a point q,, which sat isf ies the 
condition j? << x, << 1, and expanding the integrand in  the  
quantum region (0 < x < q,) in t e r m s  of x, and in the clas- 
s ica l  region (x, < x < a) in t e r m s  of u. T h e  total contri- 
bution does not depend on x,, and the result  i s  

7. THE AND OF THE GROUND STATE T h e  f i r s t  t e r m s  in these expansion are purely classical: 

IN  AN ELECTRIC FIELD they do not depend on 6, when we take into account, the 
fact that in classical  theory one must  use  instead of the 

Setting 71 = 0 in Eq. (75), we get the amplitude for  the photon mass  a minimum wave number k, = pc/ti. T h e  
change of mass  of the electron in an  electr ic  field: classical  t e r m  in the probability -2ImAm of emission 

of radiation is identical with the  integral of the classicaI 
radiation spectrum found by Nikishov and the writer." 

The  t e rm in ReAm which is l inear in the magnitude of 
the field is l a rge r  by a factor  2n than the  t e rm l inear in 

1+2u izu 
the field in the c a s e  of a magnetic field, in  which i t  is 

+ fiz ( -  I+u Y )  ) ] - e x [ - - ] )  . (77) due to  the AMM found by Schwinger. In  the present  case  
B(l+u) this t e rm represents  the work which the electron does 

H e r e  instead of s, t we have used the variables x =  Ie& 1 s, in the rearrangement of its self-field on being acceler- 
u =s / t  and have introduced the notation y = Jet lw,. The  ated in the electr ic  field. Therefore Am,, is determined 
function (77) depends on three dimensionless parameters  a s  the difference of the interactions in the field and in 
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vacuum (indices P and 0): 

AW,,=-Am d'sd'z'j. (s) j,(z') Aqx-s', F) 

(81) 
where ja(x) and X(Y(S) a r e  the classical current and co- 
ordinate of a charge executing myperbolic motion in the 
electric field, Equation (81) reproduces the classical 
terms of the expansions (80). 

As the field is made larger, the motion of the electron 
ceases to be classical and the change of i t s  mass be- 
comes an essentially nonlinear function of the field. 

In the case j3 >> 1 the main contribution to the integral 
(78) is from the region xeff -/3 >> 1, (y/m)2 s u c f f s  1. We 
find 

Accordingly, a s  the field increases, the mass of the 
electron in an electric field at f irst  decreases, reaches 
a minimum at  a field of the order of the critical field 
(B - l ) ,  and then increases a s  the square of the logarithm 
of the field. This dependence of ReAm on the electric 
field is similar to the dependence of the mass shift on a 
magnetic field, a s  found by Demeur and considerd in 
papers1' by Jancovici17 and Newton." In both cases the 
largest diminution of the mass is small in comparison 
with m, of the order of am, but for the electric field i t  
is larger by about a factor 2 r  than in the case  of the 
magnetic field. 

A qualitative feature of the motion of an electron in an 
electric field is that there is no stable state; even in the 
ground state @: =0)  the electron radiates. The electron 
thus goes into an excited state with transverse momen- 
tum yL #0, and a photon carr ies  of the transverse mo- 
mentum k, =-pi. The necessary energy for such a 
transition ar ises  because of the work the electric field 
does on the charge. Thus the instability of the ground 
state is a manifestation of the ability of the field to do 
work on the charge, and the radiation is a consequence 
of a change of state of the electron. Nikishov and the 
writer have called attention to the fact that a system in 
a constant electromagnetic field cannot emit photons 
without there being a change of state of electrons; for 
example, a field in vacuum can emit photons only a s  a 
result of pair production in the field. 

A s  can be seen from Eqs. (80) and (82), the probabil- 
ity of radiation emission, w r a d = - 2 1 m ~ m  is given by the 
classical expression over a wide range of the parameter 
p.  Quantum corrections become important for  B 2 1 and 
slightly weaken the increase of the probability of radia- 
tion with increase of the field. For  0 -am1 = 137 the 
imaginary part  of Am becomes of the order of m, and 
we may suppose that the interaction with the radiation 

field becomes strong. It is, however, not out of the 
question that the next radiative correction may be of the 
order of (r2p 1@, so  that the parameter of the perturba- 
tion treatment would be alnp.  

We note that the probability of quantum radiation of 
an electron in an electromagnetic field was f i rs t  found 
by Nikishov:' in  quite a different form than the imagin- 
ary part  of (77) and (78), namely in the form of a double 
o r  single (for = 0) integral of the square of a hyper- 
geometric function. 

The dependence of Am on B which we have found holds 
qualitatively also for excited states with 3; s m 2 .  If 3; 
>>m2, the important parameter is X,  and the dependence 
of A m  on x will be the same a s  in the case of a crossed 
field.12 

8. CONCERNING THE CLASSICAL PART OF THE MASS 
SHIFT 

Because of the importance of the classical mass shift, 
which is not restricted to  electrodynamics, we shall con- 
sider i t  in more detail. According to  the quantum theory 
of scattering the quantity hWd,  Eq. (81), determines the 
probability amplitude exp(i~W,,) that a classical electron 
with a quantized proper field does not change i ts  state, 
i.e., is scattered without emission of photons. Since the 
electron executes an infinite motion and interacts with 
an arbitrarily large number of soft photons, this ampli- 
tude has no meaning unless the proper time 7 of the mo- 
tion in the field is finite (otherwise AWcl =-Am,] T -a) 

and unless, in the sense of Bloch and Nordsieck, there 
is a parameter (in our case p )  by means of which one 
distinguishes between elastic and inelastic scattering. 

Following this doctrine, we consider Am,, a s  the limit 
of the value in  theory in which the photon has a small 
mass, p - 0, and the propagation function is ~ ' ( 2 ,  p). 
The integral (81), which gives Am ,I, essentially depends 
on a region in which the timelike interval k ( x -  x ' )~]~/ '  
between the points of emission and absorption of a virtu- 
a l  photon satisfies the condition 

Then, if y << esm-', ReAm,, does not depend on p ,  and 
ImAm,, depends logarithmically on p. If, on the other 
hand, we se t  p = O  before integrating over the interval 
[- (x- x')']~'~, i.e., replace ~ ' ( z ,  p )  with ~ ' ( z ) ,  then 
Am,, loses i t s  meaning; IrnAm, goes to -m, and ReAm, 
becomes indeterminate (Ova). On the other hand, the 
use of different propagation functions for the calculation 
of the real  and imaginary parts violates the causal con- 
nection between them. 

The fact that for ,u <<e&rn-' the value of ReAm,* does 
not depend on y and ti means that there is a completely 
classical way to calculate this quantity. We shall not 
present this method. 

The propagator (29) is essentially an integral over s 
of the function efw, where 

W(x ,  s', s) =-m2s+'/,zeF cth e~sz+e{ dy,A,(y), z,=x,-s,', (84) 
*' 

is the action of a classical charge moving in a constant 
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field from the point x' t o  the point x during the proper 
time s. This  action is defined as the integral of the 
Lagrangian, 

taken along the actual trajectory, i.e., that which sat is-  
f ies  the Lagrangian equations of motion. According to 
the equations of motion [see Eq. (49)], the part ial  deriv- 
ative 

is a constant of the motion and is the difference between 
the square of the mass  of the particle, equal t o  -112, and 
the parameter  m2. Thus  the condition aw/as  = O  deter- 
mines m a s  the mass  of the particle. 

Inclusion of the interaction between the particle and 
i t s  proper field leads to a change of the Lagrange func- 
tion (58); additional t e r m s  appear in it. Th i s  change is 
infinite, but for the electron in vacuum it is equivalent 
t o  a renormalization of the mass. 

F o r  the electron in an  external field the change of the 
Lagrange function can be represented as the difference 
between its changes in the field and in  the vacuum (for 
identical positions and velocities of the electron a t  a 
given time) plus its change in the vacuum, which can be 
omitted, using the renormalization of the m a s s  of the 
f r ee  electron. Thus  if m is the mass  of the actual elec- 
t ron in the vacuum, then the Change of the action on ac- 
count of the change of the interaction of the electron with 
i t s  proper field because of the external field is: 

where A,,E,H a r e  the potential and intensities of the 
proper field of the electron, determined by its current  
j,, and the indices F, 0 denote the difference of the quan- 
tity in brackets in the field and in the vacuum under the 
specified conditions. 

Let  u s  find AW for  an  electron in  an  electr ic  field, 
with ze ro  t ransverse  momentum. I n  this  case  the motion 
of the electron is uniformly accelerated, 

with constant acceleration in  its r e s t  system equal t o  
w, = eem" =B m. I h e  retarded potential and field of a 
change executing such a motion have been found by Born 
and Schott, and a r e  discussed in  detail by Fulton and 
R o h r l i ~ h . ~ ~  Using these potentials and fields, we find 
that the contribution of the f i r s t  t e rm in Eq. (87) is equal 
to zero,5' and the contribution of the second t e rm is non- 
zero  and gives the result  

where u is the velocity of the electron, y = (1 - u ~ ) - " ~ ,  
x = 2 Artanhu =4ees. 

Accordingly, the change of the action is 

I t  then follows from the condition a (  W+ A W ) / ~ S  = O  that 
the mass  of the electron in the field is equal to m- AL/ 
2m, is a function of i t s  velocity, and approaches the 
constant values m r  @wo/2 for  u - fl. Consequently, the 
m a s s  shift is proportional t o  the acceleration in  the 
proper (instantaneous res t )  system and is positive when 
the electron is being slowed down by the field, approach- 
ing the turning point, equal t o  ze ro  a t  the turning point, 
and negative when the electron is speeded up as i t  moves 
away from the turning point. The  region in which the 
restructuring of the proper  field of the electron occurs  
and its mass  changes from i t s  la rges t  t o  i t s  smallest  
value is not large; i t  is of the o rde r  of the inverse ac- 
celeration w," = m/ee. 

T h e  integral (87) which gives the m a s s  shift comes 
from a region nea r  the electron with t ransverse  and 
longitudinal dimensions of the o rde r s  of w," and of 
uywi l ,  respectively. [cf. Eq. (83)]. The  quantum cal- 
culation of the elast ic  scat tering amplitude predicts  a 
mass  shift of the final s ta te  (i.e., as u- l), a s  is as- 
sumed in the S-matrix approach. The  altered m a s s  will 
appear in experiments in which the effect on the electron 
is weak enough to  produce no additional mass  change and 
is of sufficiently low frequency. 

The  wr i te r  is sincerely grateful t o  D. A. Kirzhnits and 
A. I. Nikishov fo r  a discussion and valuable comments. 

APPENDIX: CALCULATION OF THE INTEGRALS 
J, AND J, 

Le t  u s  f i r s t  consider the integral J,. We change to 
variables of integration z = x-  xf and X =  (x +x1)/2. I t  is 
easily seen that only the phase of the integrand depends 
on X, and X,, and the integration ove r  these variables 
gives the conservation Eaws =pl, p3 =pi, s o  that 

l a -  ( 2n )  '6 (pr-pr') 6 (pa-pr') Ja"JE 64.1) 

where 

JaM- (2) nnln 1 "' d ~ , d z . d z ~ ~ .  ( p ) ~ . r  (p') alp [ i ( e q x , - p z )  z, 

8 exp ('/ , in (kt-Y) ) r(-r) r ( - k l )  
J ,  - j dXadr,dz&,- (0177 

(21eel)" 

Here  A, = eq coteqs + t'l and A, = ec cothees + t-'; the 
other notations =.are in Sec. 2. 

We introduce instead of z,, z, the polar coordinates . 
z,,cp. Then 

where J,,, denotes the integral that appears when we in- 
tegrate over XI: 
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Using the properties of the p~rabolic cylinder functions, 
we readily show that 

ar... eq  - =i(n'-n) -I,,,,.; 
acp leql 

and therefore 

J.,.(r, cp) -I.., (r ,  0)exp (A.6) 

Then 4 reduces to a known integral of a Laguerre poly- 
nomial: 

(A.7) 
Since the integral appears only in matrix elements that 
conserve the spin (o =o1=*l), we have 6,,r = 6,,,. More- 
over, using Eq. (8) for n, we can write the result in the 
form 

In the integral J: we use the representation (21) for 
the D function. Then the integral over Xo gives a delta I 

function 

Changing from z,, zo to the variable 

and integrating over z,, we get another delta function 

2 " A 

n ( )  eel 
6 [ m y + i y ' + - -  lee1 (my-w'y ' ) ] .  (A. 10) 

Integrating over z, we get 

I / -  (~n)zjJdydy.y-'.-lYY-)i)i)il [ 
A a .y+wlyl ++(.y-wlufl)] . (A.II) 

(ee)' a lee1 

Since A, >(eel, the delta function can have zero argu- 
ment only for w = wl. Accordingly we get 

2 ( A:- I ee I ) -"-I 
= (2n)'6 (pl,'-pll") 6."- - - 

A,+leel A +lee1 
. (A.12) 

In the general case, according to Eq. (8) 

21 eq l (k-k') -p2+p" yo+y'of 
b'+R'+i-i 

21eel 21eel 
ee, (A. 13) 

but the integral in question appears only in elements for 
which yo + y'ul = 0. Therefore the integral over y gives 
the delta function as  written, with 

pl,'=pz-2 1 eq 1 k, P ~ ~ " = P ' ~ - ~  l eq l k'. 

Now using Eq. (8) for -x* - 1, we can write the result in 
the form 

-pu2 P+8- I:= (2nIS6 (pl,'-pll'Z) 6.-. 

(A. 14) 

By multiplying the matrix element (A.8) and the element 
(A.14), a s  indicated in Eq. (A.l), we get for J,, the matrix 
shown in Eq. (43). 

Going on to the integral J,, we note that in a repre- 
sentation in which B is diagonal 

y B ~ = ' / ~ ( y ~ - i y , )  B,,(z;+iz,) +'/2(ya+iy,) Baa(z2-is,) 
+'IS ( iyb+~.)Baa (ZO+ZS) + ' / ~ ( i ~ a - y ~ ) B b 4 ( ~ o - ~ a ) .  , (A.15) 

Therefore J, differs from Jo by the appearance either 
of the coordinate z, *iz, =z,e*'' in J" o r  of the coordin- 
ate z0 *z3 in JB. Denoting the corresponding integrals by 
J:, J:,  we get for J: instead of (A.17) 

4ieq 2 ( m + l )  A,-ilerll 
=2nGmmyl.nl,n' 

( A , - l e q l ) z  
m-in (n,  n l ) .  (A.16) 

Since the J: are multiplied by the matrices y, i i y,, 
whose nonvanishing elements have o = k l ,  a' = r l ,  accord- 
ing to Eq. (8) a change of n and a change of o are equival- 
ent to conservation of k; besides this, m = k - 1. Accord- 
ingly, Eq. (A.16) can be written 

kip, 
J,'=2n8u. 

( ~ , + k q )  (A,-ieq) ( A,+ileq I 
(A. 17) 

Similarly, for J $  we get instead of Eq. (All) 

-&'-fYr-''-l ( 1  * s) 1'- ( s ) ' ( + ) " f i d ~ d ~  eel Y 

1 -, ( 1 . 6 )  ( ~ Y - U * Y * ) ~ ( U )  ] . (A. 18) 

where 6(u) is the same delta function a s  that in ~ ~ . ( A . l l ) .  

Calculating these integrals in the same way as  we did 
those for Eq. ( ~ 1 1 )  and using the fact that they are multi- 
plied by matrices iy, y, [see Eq. (A.15)], whose non- 
zero elements have yo = y'o' = A ,  we get instead of (A.14) 
the expression 

4(fi*p,) As-lee1 - iv  
I!= (2n)  '8 (pi,'-p,") 8..* 

e e )  ( A -  ( (A'19) 

By multiplying together the matrix elements (A.17), 
(A.14) and (A.19), (A.7), we get the matrix J, given in 
the text. 

Note adakd in proof (September 26, 1978): The change 
of the energy of the proper field of the electron, found 
in analogy with Eq. (87) is given by the expression 

which is identical with the Schott acceleration energy.20 

LaterErratum b y ~ u t h o r [ ~ h .  Eksp. Teor. Piz. 76,383 
(1979)l: The interpretation presented here for formula 
(77) for the s h i t  of the electron mass in an electric field is 
incorrect. What this formula actually determines is the 
s h i t  of the "center of gravity" of the mass doublet, 
since it had been obtained from the general formula not 
only by causing the magnetic field to vanish, but also by 
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choosing a particular direction of the spin (satisfying 
the condition (63) and perpendicular to the proper one 
for the mass shift in the electric field). 

In the general case the mass shift is given by formula 
(57) and takes the form 

where C, and C, determine the anomalous magentic and 
electric moments, depend on the parameters q, E, and 
X,  and are cited in (57) as  integrals of the functions 
(c~/%n)ic, , , .  The eigenvalues Am, of the mass spectrum 
are the values of for the spin S, directed parallel 
or  antiparallel to the vector S, that defines both the 
proper direction of the spin for the mass shift and the 
value of the splitting. Thus, Am,= ~ r n ,  *@. It follows 
therefore that for a purely electric field Am,Am, 
i e ~ F ~ m ' ~ C , ,  and the spin-independent part Am, is given 
by the aforementioned formula (77). The part 
i e~&m'~C,  that depends on the spin direction is due 
to the interaction of the anomalous magentic moment 
with the magnetic field that appears in the proper sys- 
tem because of the transverse momentum p, # 0 and is 
investigated in Sec. 6. 

"We note that DA is  an integral function of the index A ,  and 
r(- A) is analytic everywhere except for poles a t  the points 
h=O, 1, 2,. . . . In order for the solution Eq. (7), to 
exist for all real p2, a small negative imaginary part - 16 
has been added t o p  2, so that ReA S - 6 c 0. 

')We here use the proper time s , which is related to the usual 
-r by 7=2ms.  

') The point s = 0 is a point of natural symmetry of the trajec- 
tory (49). i.e., of symmetry of its curvature and torsion. 

4, The renormalization consists of satisfying the boundary con- 
dition that for F -0 the quantity M @ , F )  must approach 
M: m, the mass operator of the electron in vacuum. 

5, When the current i s  eliminated by means of the Maxwell 
equations this term must reduce to three terms which do not 
vanish, but cancel each other.' 
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