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Electron-electron collisions in a weakly ionized plasma are studied in the case when relaxation in 
momentum occurs on neutral atoms. It is shown that if the electron mean free path becomes less than the 
Debye length, the fonh of the diffusion coefficient in energy space changes: the Coulomb logarithm is cut 
off at the mean free path and, in addition, a nonlogarithmic contribution from large impact parameters 
appears. The results of the work are applicable also to semiconductors when momentum diffusion occurs, 
for example, in acoustic phonons and the energy relaxation is the result of electron-electron collisions. 

PACS numbers: 52.20.F~ 

1. INTRODUCTION 

It is well known that in a rather highly ionized plasma 
the relaxation of the electrons in energy is determined 
by electron-electron collisions, while the relaxation of 
nonequilibrium electrons in momentum occurs both on 
electrons and on ions. Since these collisions occur at 
large impact parameters,  i.e., in each event there is 
a small  transfer of energy and momentum, the operator 
of these collisions can be represented in differential 
form as was done by Landau.' 

In a weakly ionized plasma the relaxation of the elec - 
trons in momentum occurs in collisions with neutral 
atoms, while electron-electron collisions continue to 
remain important for energy relaxation even in this 
case. The question arises of how the finite electron 
mean free path affects the form of the Landau operator. 
It is clear that as long as the electron mean free path 
I is much greatet. than the Debye screening radius X- ' ,  
collisions with neutral atoms do not affect the nature of 
electron-electron collisions. In the present work we in- 
vestigate the opposite limiting case: x 1 << 1, and derive 
the Landau operator for energy relaxation. 

The principal result  is that the electron-electron col- 
lision operator has the usual form 

where v(c )=  ( 2 m 3 ~ ) 1 / 2 / l r 2 p  is the density of electron 
states and n, is the electron distribution function. How- 

ever,  D(c,  &') differs from the standard expression.' 
It turns out that 

~ ( e ,  e l )  =a/le'(vuf) "f (v'Iv) ,  (2) 

where v =  ( 2 ~ / r n ) ~ / ~  is the electron velocity. The func - 
tion f (v l / v )  has the obvious property f(v'/v)= f (v /v t )  and 
for v ' s  v  we have the form 

Here p, is of the order  of the electron wavelength for 
e2/iiv << 1, and in the reverse  case  it is equal to the val- 
ue of the impact parameter of the Coulomb scattering 
problem, at which the scattering angle becomes of the 
order of T . ~  

A plot of the function p ( v l / v )  is shown in Fig. 1. It 
is important to note that in the case considered p  does 
not depend on the parameter I / p ,  (with accuracy to 
t e rms  of order p,/l). For smal l  v'/v we have 

It is evident from Eqs. ( 2 )  and (3 )  that, in contrast to 
the usual case,  the Coulomb integral is cut off at the 
mean f ree  path I and not at the Debye length. In addi- 
tion, D(c , c') contains a nonlogarithmic contribution 
which for a sufficiently high velocity rat io becomes 
greater than the logarithmic contribution. Physically 
the presence of the two t e rms  in Eq. ( 3 )  is due to the 
fact that as long a s  the impact distances are smal l  in 
comparison with the mean f ree  path I, Coulomb colli- 
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FIG. 1. 

sions occur in the same way a s  in the absence of colli- 
sions with neutral atoms. For impact distances greater 
than the mean free path, Coulomb collisions occur not 
between free electrons, but between electrons diffusing 
in the field of neutral atoms. 

The question arises of when the electron-electron re-  
laxation plays the principal role, compared to slightly 
inelastic collisions with neutral atoms. These collisions 
also are described by the Fokker-Planck equation with 
an energy diffusion coefficient B , - c 2 m ~ v a / ~ ,  where u 
is the cross section for scattering of an electron by a 
neutral atom, N is the concentration of these atoms, 
and M is the mass of the atom. Comparison of Eqs. 
(1) and (2) with B ,  shows that electron-electron colli- 
sions play the principal role i f  

where so= e 2 / 6 ,  and n is the electron concentration. 
On the other hand, the inequality Xl<< 1 must be satis - 
fied. These inequalities a re  compatible if 1 << p@/m. 

It is clear that the situation considered in the present 
work can occur also in nondegenerate semiconductors 
where diffusion in momentum occurs, for example, by 
means of acoustic phonons and the relaxation in energy 
occurs a s  the result of electron-electron collisions. 
Here B,,-ms2/r,, where s is the velocity of sound and 
7, is the momentum relaxation time. In this case the 
condition (5) takes the form 

and the condition of compatibility is I<< p,,v2/sa. 

2. DERIVATION OF THE KINETIC EQUATION FOR 
A WEAKLY IONIZED PLASMA 

In deriving the kinetic equation for the case in which 
the electron frequently encounters neutral atoms, it is 
convenient to use the Keldysh diagram technique3 for 
highly nonequilibrium processes. In this technique the 
Green's function is the matrix 

where Ga and Gr  are respectively the advanced and re- 

tarded Green's functions and F is related to Ga and Gr 
by the expression 

We shall investigate only electron energy relaxation 
processes, and therefore the distribution function of 
the electrons n, depends only on the energy variable c. 

The self-energy operator 2 is also a matrix: 

The kinetic equation in this representation has the form 

where 

is the density of states of electrons. 

The self-energy part associated with the electron- 
electron interaction is shown in Fig. 2. The broken 
line is the renormalized Coulomb interaction of the 
electrons and the wavy line is the free Coulomb propa- 
gator 4ne2L?,/qa (8, are  the Pauli matrices). Since scat- 
tering of electrons by each other occurs with small 
transfers of energy and momentum, it is necessary, a s  
in the normal skin-effect problem; to renormalize the 
vertex part and the Green's function of the electron 
with allowance for interaction with neutral atoms. As 
a result of the fact that the atoms are  heavy, the colli- 
sions of electrons with them are quasielastic and the 
neutral-atom loop shown in Fig. 3 by the dashed line 
does not carry energy. Therefore taking into account 
the interaction with atoms is equivalent to the problem 
of scattering by random short-range i m p ~ r i t i e s . ~  The 
Green's function of an electron scattered by atoms, 
which is shown in Figs. 2 and 3 by the solid line, has 
the form 

G' (p, e) -Go' (p, e) = 
i 

E-pZ/2m+i/2z.+' 

where r;'=NuZ, andp is the electron momentum. 

The equation for the vertex part, illustrated in Fig. 3, 
has the form5 

1 
d3p &~(p-q)i*(q, e)CT(p)Z,. (10) *(q,e)-p+- - 

n ~ , ~ ( e )  J 
Here q = ( q , w ) , p = ( p , ~ ) ,  and 

yrj1=6$,'27 T,+ (u=) <j/v2 (11) 

FIG. 2 .  a) Self-energy part, b) equation for renonnaIized 
Coulomb interaction. 
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over into the usual expression for the permittivity of a 
free electron gas. If we took into account ions, then a s  
usual they would contribute to the permittivity, and 
since for ions the collisions a r e  elastic, this would 
lead to the static number %:-the square of the recip- 
rocal Debye length associated with the ions. FIG. 3. Equation for the vertex function. The dashed line 

shows the Green's function for neutral atoms. 
In the limit of low frequencies of the wave vectors 

(wrE << 1 and ql<< 1) the expression for c(w, q)  has the 
form a r e  the bare vertices. 

In renormalization of the vertex parts it is sufficient 
to take into account only the diagrams which have lad- 
ders  of atomic loops, since the diagrams with rescat- 
terings a r e  small in the parameter l/pEl<< 1. This is 
due to the fact that scattering by neutral atoms occurs 
at  arbitrary angles and the momentum transfer is of 
the order p,. For the same reason r:, does not depend 
on p and the matrix integral equation (10) reduces to a 
system of eight linear algebraic equations which is 
easily solved. As a result we have for I':,(q, E )  

where D, = vey, /3 is the coefficient of diffusion of elec - 
trons with energy c. 

We note here one feature of Eq. (18): it involves the 
coefficient of diffusion of electrons with a given energy. 
This is a consequence of the fact that in derivation of 
E(W ,q)  we neglected energy relaxation processes, i.e., 
we assumed that frequencies w >> l/r,,,, a r e  important 
and therefore c(w , q)  involves partial quantities and dif - 
fers from the "hydrodynamic" &(w,q) obtained for w 
<< l/reDOrw. 

The self-energy part has the form (Fig. 2a) 

d'q %(p) = i  I-fi(-q, e-o)  ~ (p-q)?(q ,  e)  V " ( q ) .  
( 2 ~ ) '  

(19) 
4 - rli*= 5. 

-v2 (2n.-1) (24-,-I) Re - , 
VZ(1-f.') 1-t. 

where 

Substituting Eqs. (16), (17), and (12) into (19) and then 
substituting the expressions obtained for the matrix 
elements 5 into the kinetic equation (8), after exten- 
sive algebraic transformations we obtain the electron- 
electron collision operator in the form 

In Eq. (12) we have neglected terms of order c- l/pel 
<< 1 in those places where they a r e  not important in 
what follows. The operator (20) for a nondegenerate plasma can be 

simplified by utilizing the fact that the characteristic 
energy transfers w a r e  small in comparison with c.  
Expanding in w and neglecting n, in comparison with 
unity, we obtain 

Substituting the expressions for f' and 2 into the 
equation shown in Fig. 2b for 

we obtain the following expressions: 

Let us turn now to calculation of D(c , E  '), which is 
equal to 

where 

As will be seen from what follows, values q 2 1-I a r e  
important and w 2 l / m a x ( ~  re,), and therefore in Eq. 
(22) we can assume that c(w,q) = 1. Taking into account 
the departure of c(w,q) from unity gives corrections of 
order xl<< 1. 

and 

Using the explicit expression (13) for C, and introduc- 
ing the dimensionless variables 

The expression for &(w,q) in the limit r,"- 0 goes 
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we write Eq. (22) in the form 

D ( e ,  E ' )  =alie'(vv')'hf (a ) ,  (23) 

where 

It follows from Eqs. (24) and (25) that for y >> 1 

and therefore the integral (24) a s  usual diverges logari- 
thmically a t  the upper limit, which in our designation 
is l/p,. 

If x1>> 1, then Eq. (26) is valid over the entire region 
of integration and the integral (24) diverges logarith- 
mically at  both limits. Here the lower limit is x l ,  and 
as a result ive obtain the usual Landau expression. 

In the region x << 1, y << 1 we have 

which corresponds to the diffusion approximation. 
However, direct substitution of (26a) into (24) leads to 
importance of the region x - 1 and y - 1 and therefore i t  
is not possible to calculate (24) for arbitrary a .  How- 
ever, it is possible to find the asymptote of (24) in the 
region a << 1. 

In this connection we note that the quantities L(x, y)/  
[I-5(x, y )] have singularities in x all  lying in the lower 
half plane: a pole at  the point xo=i(y coty - 1) for y c n 
and branch points at  x,= -i * y . We represent ~e{c(x ,  y )/ 
[I-6(x, y )I) in the following form: 

Substituting (27) into (24), we obtain f ( a )  in the form of 
a sum of two integrals. The contour of integration over 
x for the integral containing the first  square bracket we 
shall close in the upper half plane (Fig. 4), and that for 
the other integral we close in the lower half plane, but 
in such a way that these contours do not cross  the cuts 
due to the function 

Since these cuts a r e  far from the real axis a s  the result 
of the smallness of a ,  their contribution to the integral 
can be neglected, and the entire contribution occurs 
from the pole x = i6 and the poles xL= *xo/a in the func - 

FIG. 4.  Contour for inte- 
gration over r in (24) for 
a <<I. 

tion ~ d l ; ( a x ,  )/[l -&(ax, )I}. Since values x - 1 a r e  
important, the characteristic values a r e  y - << 1 and 
x;= iy2/3a. When the velocities of the two particles 
a re  greatly different, the fast particle traverses the 
interaction region without collisions with atoms, but 
the slow particle diffuses through this region. The dif- 
fusion nature of the pole x: also corresponds to this. 
As a result we obtain 

f ( a )  =v3a+dA In ( a l l p ~ ) ,  (28) 

where 

6 "  n/6 I arctg z 
a=- - j dz [----+A] a-0.751. (29) 

n z f l  3 z-arctg z z2 ' 

For arbitrary the function f (a )  can be obtained nu- 
merically. Here i t  is convenient to separate the logari- 
thmic contribution from (24) immediately. The remain- 
der  (p(a) converges satisfactorily a t  the upper limit and 
therefore does not depend on l/po>> 1. 

Thus, a s  was stated in the Introduction, for xl<< 1 the 
Coulomb logarithm is cut off at  the electron mean free 
path and, in addition, a nonlogarithmic contribution 
appears to the electron diffusion coefficient in energy 
from large impact distances. 
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