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An Ising model with randomly distributed ferro- and anti-ferromagnetic bonds is treated. A procedure is 
derived for systematic expansion of the thermodynamic potential at low temperatures, in an arbitrary 
magnetic field, as a power series in the concentration of antiferro- or ferromagnetic bonds. It is shown 
that the susceptibility diverges as 1/T at T 4 .  The ground-state energy, the magnetic moment, and the 
residual entropy are calculated as power series in the concentration. 

PACS numbers: 75.10.Hk 

1. INTRODUCTION 

T h i s  paper  t r e a t s  the low-temperature behavior of 
a n  Ising model with randomly dis tr ibuted f e r r o -  and 
ant i ferromagnet ic  bonds, equal in absolute value. T h e  
t reatment  i s  c a r r i e d  out i n  the  c a s e  of a s q u a r e  lattice. 
T h e  method of calculation f o r  a cubic la t t ice  is com- 
pletely equivalent, and the physical  behavior i s  t h e  
s a m e  as i n  the two-dimensional case. The  calculation 
procedure suggested enables  on to obtain, in a syste-  
mat ic  manner ,  a n  expansion of the thermodynamic 
potential as a power series in, f o r  example, the  con- 
centration c of ant i ferromagnet ic  bonds i n  a f e r r o -  
magnetic matr ix:  

0 (I, T, h. c )  =Do+@, (J, T ,  h )  c+Q2(J, T ,  h )  c2+ . . . (1 

H e r e  J i s  the absolute value of the interaction con- 
s tan t ,  T is the tempera ture ,  and h i s  the magnetic 
field. The  functions a1, a,, etc. are calculated to with- 
i n  t e r m s  of o r d e r  e l J '  =, i.e., fo r  the  c a s e  of low temp- 
e ra tures .  

In o r d e r  to obtain the resu l t ,  one f i r s t  p e r f o r m s  a 
dual t ransformation of the part i t ion function i n  a n  
a r b i t r a r y  magnetic field. Then,  by a procedure that  
reduces  to the enumerat ion of a cer ta in  number of 
graphs,  one calculates  successively the functions 
iP,, a,, etc. T h i s  enables  one  to calculate  the energy 
of the ground state, the  entropy, t h e  magnetic moment, 
and the susceptibility. 

2. DUAL TRANSFORMATION 

T h e  Hamiltonian of the  model under consideration, 
f o r  a square  lattice, h a s  the f o r m  

H e r e  the indices i and j enumera te  the s i t e s  of the 
s q u a r e  la t t ice  along the  horizontal  and ver t i ca l  d i rec -  
t ions respectively; of,, i s  the spin variable  (o,,,=+ 1); 
and J,,,,,, , i s  the interact ion constant. It  i s  assigned 
o n  t h e  edges  of t h e  la t t ice  ce l l s  and i s  numbered 
according to the coordinates  of the i r  centers .  If c i s ,  
f o r  example, the concentration of antiferromagnetic 
bonds in  a ferromagnet ic  mat r ix ,  then t h e  interaction 
constant  h a s  the value+J with probability 1-c and the  
value -J with probability c. 

T h e  part i t ion function corresponding to (2) can  be 
represen ted  i n  t h e  following f o r m  (N i s  the number of 
la t t ice  sites): 

After summation over  a l l  values of o, the re  will  r e -  
main  on the r igh t  s ide  of (3) a s u m  over  a l l  possible 
products  of f a c t o r s  tanh(J,,,,,,/T) and tanh(h/T). It 
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FIG. 1. Examples of 
graphs of the high-tem- 
perature expansion. 

i s  convenient to describe these products by graphs, 
--- 

representing a factor t a n h ( ~ , + , ~ - , / ~ )  by a line on the - -, ~ .. 
appropriate lattice edge, and a factor tanh(h/T) by 
a cross at the appropriate site. Thus, for  example, 
a term of the form 

corresponds to the graph of Fig. l a ,  and a term 

th (Ji, j+,lT) th (Jt+,;,. *,IT) th (Jttl .  j+r/T) th (Jr+-I,, J T )  

to the graph of Fig. l b  (the lattice is represented by 
dashed lines). If the number of lines into any vertex is 
even, then it contains no cross. In fact a c ross  corres- 
ponds to the beginning or end of some line; In the 
absence of crosses,  a t  h =  0, there a r e  only closed- 
line graphs. This expansion is convenient a t  high temp- 
eratures,  when J / T  is small, and i s  called the high- 
temperature expansion.' 

For  investigation of the low-temperature behavior, i t  
i s  convenient to perform a dual transformation with 
the partition function (3). In the case of an arbitrary 
magnetic field, such a transformation was suggested 
by wegnerZ for a ferromagnetic lattice. The generaliz- 
ation of this transformation to the case of a disordered 
Ising model i s  trivial. 

We consider a system of spins located at the centers 
of the edges of the original lattice (Fig. 2), with inter- 
action Hamiltonian 

The partition function corresponding to H* has the 
form 

Here s,,,~,, , i s  the spin varible ( s , + ~ ~ ~ = *  I), and T* 
i s  the temperature of the dual lattice. The constants 
K and B,+,/ % a r e  defined below. The four spins whose 
product occurs in (5) a re  marked by the dashed lines 
in Fig. 2. 

We consider expansion of (5) as a ser ies  in inverted 
spins. The zero-order term corresponds to every s= 1. 

FIG. 2. Lattice of the 
dual model. 

If a single spin i s  reversed, for example 2, then 
the corresponding term in the partition function will 
have the form 

exp (-2K-281-1. WI.-w. 
We now consider four reversed spins, located on 

the edges of a square. Their contribution to the par- 
tition function i s  

Z,=Z, exp {-2Bi. j+l1,-2B1++, ~+l-rni tr .  *a-Bc+r.  d. 

The factor e-2X i s  absent from Z,, since, for example, 
in the term 

two spins change sign, and as a result the resultant 
sign does not change. 

The contributions of the ~ r ~ r i o u s  spin configurations 
can be represented graphically if a reversed spin 
(factor e ~ p ( - 2 B , , , ~ ~ ,  ,) is  represented by a line going 
along the corresponding edge, and a factor e-"by a 
cross.  Then if an  even number of lines pass through 
a vertex, the cross is absent. It corresponds to the 
beginning o r  end of a line. It i s  easy to show that 
every graph in the expansion of (3) and Z can be put 
into unique correspondence with a graph of a spin con- 
figuration in (5). In the examples considered, Z, corr-  
esponds to the graph of Fig. l a  and Z, to that of Fig. 
lb.  If we impose on K and B,,,, , the conditions 

exp ( -2K)  =th ( h d ) ,  
exP ( -Ml+s .  ,) =th (Ji+,. JT),  

then the parition functions Z and Z* will be proportional 
to each other. 

By representing Z* in a form analogous to the ex- 
pression (3) for  Z, one can obtain the partition func- 
tion of the original lattice in the form 

It i s  easily verified that Z i s  invariant to a change of 
sign of h; therefore what occurs in (6) i s  Ih I. 

We remark that the transformation performed can be 
generalized directly to a cubic lattice. 

3. EXPANSION IN POWERS OF THE CONCENTRATION 

We introduce a t  each bond an operator D,,,/,, that 
takes two values, 0 and 1. If this is the oper?tor of 
occupancy by antiferromagnetic bonds, then v;,/, , 
= 1 - ;,+,/,,, is the operator of occupancy by ferromag- 
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netic bonds. If we denote by angular brackets (. . .) an 
average over all distributions of bonds on the lattice, 
then i t  i s  clear that (;)= c ,  (Ct)= 1 - c. We shall con- 
sider some properties of the operator ;. 

Suppose that i t  is  necessary to calculate f ( i a ) .  We 
represent it in the form 

Since the equality must be satisfied on the discrete set 
of values ;= (0, I ) ,  this i s  the most general form for 
f(v'o!). On setting v = 0 , 1  we obtain fo=f(0), fl= f(o) 
- f(0). Similarly one can write for the function f(c, 
+ ;,,4 

- 

The appearance of an f, term i s  due to the fact that on 
the basis of operators and ;, one can construct also 
the operator S1d,. We set vl = v, = 0; this gives fo= f(0). 
If we take v, = 0 and vl = 1, we can get f, = f (a )  - f(0). 
Finally, setting v,= v2 = 1, we get f,= f(2a) - f(0) -2V(o!) 
-f(O)I. 

If we apply this procedure to f((;,+ $*)a + ̂ v,~,B), we 
easily get 

f ( C V ~ + ; ~ )  a+%p) =f (0) + (jlfyfyt) [f ( a )  -f (0) ] 

We shall call the number of different operators in 
any product of operators 3 the order of that product. 
It is  clear that by setting certain of the C's equal to 
zero, one can always reduce to zero the values of 
operators of order larger than some prescribed order,  
though the operators of lower order  will have nonzero 
values. This enables us to calculate the expansion 
coefficients successively, order  by order,  as was done 
in the examples given. Then the taking into account of 
operators of higher order does not change the expansion 
coefficients for operators of lower order. This fact en- 
ables us  to carry out a systematic expansion a s  a 
power series in the concentration. 

For  an arbitrary distribution of ferro- and antiferro- 
magnetic bonds, the partition function Z can be rewrit- 
ten in terms of the operators ; in the form 

For the value of 2' after averaging over s, one can 
obtain an expansion in powers of e2"*, analogous to 
the expansion (3). Since the f i rs t  term in the sum for 
Z' i s  unity, in the low-temperature limit one can dis- 
card terms of order em2.'IT and below. It is  convenient 
to represent the expansion graphically. A factor 
e'2J'T corresponds to a wavy line passing through the 
center of the corresponding bond and perpendicular to 

it. A factor 

corresponds to a solid line, also arranged perpend- . 
icular to the corresponding bond. Each lattice site 
surrounded by a contour of the graph corresponds to 
a factor exp( - 2 ] h 1 /T). 

From the rule of construction it i s  clear that the 
graphs of the expansion for 2' coincide, with respect to 
the form of their contour, with the graphs of the ex- 
pansion (3) but a r e  constructed from two types of lines. 
At T - 0, only those graphs will be important in which 
the number of solid lines i s  not less than the number 
of wavy ones. Examples of the simplest graphs a r e  
represented in Fig. 3 (the lattice is shown by dashed 
lines). For  example, the graph of Fig. 3a i s  obtained 
after averaging of a term 

The graph of Fig. 3c denotes the following term in 2': 

After averaging over s, operators occur that repre- 
sent sums of different products of 2s. Since only 
t e rms  proportional to N occur in the expansion of the 
thermodynamic potential, operators proportional to 
powers of N higher than the first  will make no contri- 
bution to the thermodynamics. Therefore the impor- 
tant operators have the form 

Here the sum extends over a l l  si tes ( i , j )  of the lattice. 
The index o! numbers the se ts  { k , l ) .  These sets  a re  
represented by solid lines on the graphs. The index 
n describes the order of the operator. 

Since the contour of the simplest graph i s  a square, 
the f i rs t  nonvanishing terms in the limit T- 0 a re  of 
the second order in ; and correspond to graphs 3a and 
3b. Therefore in the lowest order in 0, the expansion 
for  Z' has the form 

The operators 3:' and ?:' a r e  constructed in accor- 
dance with the definition (8). For  each site, they a r e  
determined by the graphs of Figs. 3a and 3b. There 
a r e  four different.graphs per si te of the first  type, and 

FIG. 3. Examples of 
graphs for the dual model. 

I I 
a b c 
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two of the second. Therefore This gives 

The expansion of lnZ1 must contain only operators 
proportional to N, i.e.,operators i. From products of 
operators ;j2', ;:' we may not separate out new oper- 
ators of the second order; therefore to the lowest order 
in G, the expansion of lnZt has the form 

F i r s t  let every v= 0; this gives f, = 0. We then set  
equal to zero the values of almost all the vls excepting 
the two that belong to site ( i , j )  and correspond, for 
example, to the graph of Fig. 3a. Then up'= 1, T:'= 0, 
whence follows 

Similarly we find f,=f,. 

The expression for the thermodynamic potential has 
the form 

In the third order in G, Zt  will contain the graphs of 
Fig. 3c and of Figs. 4a-e. We donote the operators 
corresponding to them by ;?', ?:', ?:', i:', ;:', and 
; cc , ) . From products of operators ?:' and ?:' one can 

separate out new operators of the third order. They 
a r e  represented in Figs. 4h-i and a re  denoted by ?:', 
- 0 )  r7 , - I:', and ;:'respectively. 

We write the expansion of 1nZ1, to terms of the 
third order in ;, in the form 

As in the preceding example, we set  equal to zero 
the values of almost a l l  the C's, excepting those that 
correspond, for example, to the graph of Fig. 3c for 
i?' a t  some site. We get directly 

FIG. 4. Third-order 
graphs for the dual model. 

On performing analogousoperations for the other F's, 
we obtain the expansion of (lnZ1), and accordingly of 
a, in powers of the concentration: 

One can obtain similarly a ser ies  expansion to higher 
powers of the concentration. We note that generaliz- 
ation of the procedure described to a cubic lattice i s  
triviaL We remark also that in the calculations, the 
smallness of e'*'IT was used repeatedly. If this quant- 
ity i s  of order unity, then one must take practically 
a l l  the graphs into account even in the second order in .. 
V. 

4. CALCULATION OF PHYSICAL CHARACTERISTICS 

The expression (9) enables us to calculate the sus- 
ceptibility, the magnetic moment, the entropy, and 
the energy of the ground state a s  power ser ies  in the 
concentration. We expand (9) a s  a power se r i es  in 
Ih I / T  << 1, and, in each coefficient, separate out the prin- 
cipal term with respect to eZJIT: 

As is seen from (lo),  the susceptibility diverges a t  
T- 0, a s  for  a paramagnet. This fact i s  easily under- 
stood in a simple example. We consider the case in 
which two antiferromagnetic bonds a r e  located one 
after another in a ferromagnetic matrix, for  example 
a s  in Figs. 3a-b. Then a t  the end spins three bonds 
a r e  ferromagnetic, while at the middle one two bonds 
a r e  ferromagnetic and two antiferromagnetic. There- 
fore for the end spins it i s  advantageous to aline along 
the total moment, while for the middle one the energy 
i s  the same for  orientations up and down. Therefore 
this will behave like a paramagnet, making a contribu- 
tion 6cZ 1112 to the entropy (since there a r e  six different 
bond configurations per site) and insuring divergence of 
the susceptibility a t  T-0. If T =0 ,  an arbitrarily weak 
field orients all paramagnetic spin configurations and 
thereby removes the degeneracy. For  this case, we 
have at h -0 

The energy has  not changed, since the paramagnetic 
configurations make no contribution to it. The moment 
has increased, since the paramagnetic configurations 
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have become ordered; the residual entropy has dis- 
appeared. The susceptibility i s  infinite, a s  is  insured 
by paramagnetic spins. 

The case of an antiferromagnet with a certain con- 
centration of ferromagnetic bonds is solved in similar 
fashion. By the substitution - 1 - and simple trans- 
formations, the partition function (7) can be reduced 
to a partition function of the form 

Actually this i s  the same partition function (7), only 
there a r e  two identical sublattices; to a site of one of 
them corresponds a factor exp(- 2 Ih I/T), of the other 
a factor exp(2 Ih I / T ) .  

The calculations give the following results for the 
case Ih I /T << I: 

As in the case of a ferromagnet, there i s  a paramag- 
netic divergence of the susceptibility. Physically, this 
can be explained with exactly the same example as in 
the case of a ferromagnet; it i s  necessary only to 
make the ferro- and antiferromagnetic bond change 
places. 

We shall estimate the effect of graphs of higher 
orders. For  example, let there be a graph in the form 
of a square with all solid lines. It will encircle r2 
lattice sites. The factor occurring in the argument of 
the logarithm will be of the order of e x p { ~ r  
- 2 1h lr2)/T). In a field larger than h > U / r ,  this 
term will disappear a t  T- 0. When I h / < U/r, it 
will make a contribution to the energy and to the mo- 
ment. When Ih I =4J/r ,  i t  will correspond to a para- 
magnetic configuration. These deductions a re  easily 
verified by taking the corresponding configuration of 

bonds in the lattice and considering the possible config- 
urations of spins. Thus on increase of the field, there 
will occur at ] h ]  = 4 J / r  a discontinuity in the moment 
and in the energy, and also the appearance and dis- 
appearance of an entropy term, a s  well as a term in 
the susceptibility. These will al l  be of order c4' in 
the concentration. It i s  clear that there may be an 
arbitrary number of such graphs in an infinite lattice. 
Therefore whenever Ih I/J becomes equal to any ra- 
tional number, the corresponding discontinuities will 
occur. On increase of Ih I ,  when Ih 1 > 4 J  all  depen- 
dence of the physical properties on the field will dis- 
appear, and a l l  the spins will aline along the field 
direction. 

All the behavior characteristics set forth for a 
square lattice will occur also for a cubic lattice. The 
corresponding calculations lead to the following ex- 
pressions for the case of antiferromagnetic bonds in a 
ferromagnetic matrix, to terms of order c4: 

In conclusion, we note that an increase of the suscep- 
tibility a t  T- 0 has been observed in calculations by the 
Monte Carlo m e t h ~ d . ~  The absence of a significant 
difference between the two and three-dimensional cases 
has been noticed by Kinzel and ~ i s c h e r . ~  

The author i s  sincerely grateful to V. L. ~okrovsk i r  
for a critical reading of the text and for numerous 
discussions. 
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