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The behavior of a current-carrying Josephson junction of finite width placed in a strong magnetic field He 
is considered. In contrast to the earlier studies of this subject, where numerical methods were used, the 
nonlinear equation is investigated analytically. All the possible solutions of the corresponding boundary- 
value problem are analyzed and are checked for stability. It is shown that stable and unstable field and 
current conf~gurations exist in the junction and correspond to a distributed vortex structure; a criterion 
for the stability of the solution is indicated. It is shown that the dependence of the maximum current 
through the junction on the external magnetic field I--(sin+)/+ (+ = HeL/2), previously obtained from 
simple physical considerations for junctions of small width L ,  remain in force in a strong field also for 
junctions of finite width. The existence of a unique "geometric resonance," is indicated, wherein junctions 
that differ in width by 2r/H, (in dimensionless units) must simultaneously go over to a nonstationary 
regime when equal currents are made to flow through them. 

PACS numbers: 74.50. + r. 

1. INTRODUCTION with 
H,=H.-H,, H,=H.+H,. 

Josephson tunnel junctions a r e  extensively used in where He is the external magnetic field and H, is the 
modern devices intended for precision measurements intrinsic magnetic field due to the transport current 
of magnetic fields (the so-called SQUID quantum inter- flowing through the junction, I=2H,. 
ferometers, see,  e.g., Refs. 1 and 2), a s  well a s  for 
other purposes. It is therefore of both theoretical 
and practical interest to describe the physical pro- 
cesses that occur in tunnel junctions. This paper deals 
with the behavior of a Josephson junction of finite 
width L, placed in an external magnetic field H, 
and carrying a transport current I. This problem was 
previously considered by numerical methods by Owen 
and S ~ a l a p i n o . ~  It is shown below that this problem 
admits of an analytic desqription in the limiting case 
of a strong external field. 

We note that the boundary-value problem (3) for Eq. 
(1) is not unique: given H, and H,, several solutions 
satisfy the conditions (3). It is therefore convenient 
to formulate4-' in place of (3) the equivalent Cauchy 
problem 

where rp(0) is the value of the function rp a t  x =  0. Since 
the Cauchy problem defines uniquely the solution of the 
differential equation, reduction of the boundary-value 

The initial equation that describes the stationary dis- problem (3) to the cauchy problem (5) i s  convenient in 
tribution of the field and of the current in a Josephson the analysis of (1). 
junction i s ' s 2  We obtain below the value of q(0) a s  a function of the 

Gqldz2=sin ~ ( x ) .  (1) parameters of the boundary-value problem (L, H,, H,). 
The solution obtained with the aid of Cauchy problem (5) 

The quantity ~ ( x )  (called the phase d i f f ~ ~ e n c e  of super- will then automatically satisfy the conditions (3). 
conductor wave functions) is connected with the mag- 
netic field in the junction Equation (1) has a f i rs t  integral in the form 

dqldx=H(z). (2) + c } ,  

Dimensionless unit a r e  used in Eqs. (1) and (2) (see 
Refs. 1 and 2). where C is an arbitrary integration constant, with . 

We consider a one-dimensional problem, where cur- H (x) --2 (sin' (cp (x) 12) +C) ". 
rent flows along the z axis (see Fig. I), the external 
magnetic field is perpendicular to the plane of the fig- 
ure and is directed along the y axis, and the distribu- 
tion of the field and the current in the barrier depend 

for this problem a r e  
only on a single coordinate x. The boundary conditions 

external field. 
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From the conditions (3) we have 

C-~~z14-sin~q(0)  12) =HLz/4-sinyq (L) 12). (8) 
This yields the value of cp(L): 

We have chosen here for A the principal value of the 
arcsine: 0 c A  -( n/2. 

Substituting x =  L in (6) and using (9), we obtain an 
integral equation for cp(0): 

We note that the solutions of (1) a r e  defined only in 
modulo 2n,. i.e., i t  is always possible to add the solution 
the number Zrn, where n is an integer. Using this 
circumstance, we can assume that ~ ( 0 )  lies in the in- 
terval -n s cp(0) a n. We consider separately the solu- 
tion branches that begin with the values p(0) < 0 and 
4 0 ) '  0. 

2. CLASSIFICATION OF THE SOLUTIONS AND 
REGIONS OF THEIR EXISTENCE 

In the general case, the elliptic integral in (10) can- 
not be calculated analytically and the problem calls for 
numerical calculations. In the case of strong external 
fields (He >> I), however, this integral degenerates and 
Eq. (10) reduces to 

HL=*2A* 1 q~ (0) 1 +2nn, (11) 

where A is defined in (9). In accordance with the four 
possible combination of the plus and minus signs in 
( l l ) ,  we have four equations that define four types of 
solution1) of the initial equation (1). 

These equations can be written in the form 

@=nn-E+A(E) =J4,,(E), ('lzv(L) =A(S) +nn), 

@=nn+E+A (b) =Jhn+, (E), ('lzq(L) -A (b) +nn), (12) 
9-(n+i)n-E-A(f)-J,.+,(f), ('lzq(L) =n-A(E)+nn), 

@=(n+i)n+E-A (E)=J,.+,(E) f1lZq(L) =n-A(E)+nn), 

where A([) = arcsin(HeH, + sin2[)'IZ and we have put 5 
= $ I  rp(0)( (0 ~5 an/2), +=+LH,, and n=O, 1,2, . . . . 
In the parentheses on the right sides of (12) a r e  indi- 
cated the values of cp(L) for the corresponding solutions, 
obtained in accordance with (9). The functions JN(5) 
a re  shown in Fig. 2a for n=O, 1,2. They a re  integral 
curves [see (lo)], and the points of intersection 5, of 
these curves with the horizontal line J= Q correspond 
to  different roots of Eqs. (12). Each root gives the 
possible initial values of the function cp(0) = * 25, that 
enters in the Cauchy problem (5), and determines 
uniquely the corresponding solution cp,(x). Knowledge 
of the number of the solution and of the position of the 
representative point on the curves of Fig. 2a serve a s  
the basis for the classification of all the possible solu- 
tions of the problem (1)-(3). (The explicit form of the 
solutions cp,(x) is given in Sec. 4 below and is illus- 
trated in Figs. 5 and 6.) 

As is clear from Fig. 2a, the roots of Eq. (12) exist 
only in definite intervals of the values of $= LH,/2. 

FIG. 2. Integral curves (12) a s  functions of the parameter 5 .  
The numbers on the curves correspond to the number of the 
solution. a) Curves at p =He HI=O .5. The intersection of the 
curves with the horizontal line J=@ yields the initial f l u e  
1 (0(0)1 =2tN. b) Family of reduced curves (J= J - n r ,  @=@ -nn, 
@=HeL/2 atp=O, 0.2, 0.5, and0.8). The light circles show 
the extremal points of the curves. c) Characteristic points of 
curves; their designations a r e  given on the axes. The thick 
sections of the curves correspond to stable solutions. (One of 
the curves at  n = O  is shown, the numbers on the curves corre- 
spond to the number of the solution, the light circles separate 
different types of solutions). 

Introducing the notation J, = J, - nn, Q = Q - na, we can 
refer all  the J, curves corresponding to different n 
(see Figs. 2a) to a single quadrant -n/2 s 5 a n/2, 
0 c 4 a n (see Fig. 2b, which shows curves correspond- 
ing to different values of the parameter p = 4 H , ) .  The 
roots for the values Q = 6 + nn > n coincide with the 
corresponding values of the roots in the interval 0 s Q 
c n .  Figure 2c shows one of the curves of the family 
of Figs. 2b, on which the characteristic points a r e  
separated. The light circles in Figs. 2b and 2c show 
the extremum points of the functions J,, and J, (as well 
a s  of all  the functions J,, and J,,,,). It is seen, for 
example, that a t  a given Q there exists two different 
roots of the equations Q = J,, which determine different 
solutions of the problem (to distinguish between these 
solutions, one of the branches on Fig. 2b is labeled 
with a primed number: N = 0 and N =  0'; the same situ- 
ation holds for the solutions iV = 3 and LV = 3 ' and anal- 
ogously for all the solutions N = 4n and N = 4n + 3). It 
will be shown below (see Sec. 5) that points Lying on 
the branches of curves 0, 1, and 3 determine stable 
solutions of the problem (these branches a r e  shown in 
Fig. 2c by thick curves). On the other hand, points 
lying on branches O f ,  2, and 3' correspond to stable 
solutions (they a re  shown by thin lines). The points of 
all  J, curves on Figs. 2a and 2b a r e  classified in the 
same manner. 

Those roots of Eqs. (12) which determine the initial 
values of the Cauchy problem can be obtained in expli- 
cit form: 
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We have put here I$ = @ - nlr (the quantity I$ lies inside yN 
the interval 0 c 6 C C n, and the symbols @, and @, a r e  
defined below), 

H a l  x 
a(@)-arcsin-<--. 

Is~n#l  2 (1 4) 

Under each formula is (13) is indicated the field interval 
(@ =HJ/2) in which the roots (13) exist. Obviously, 
the limits of the existence of the solutions coincide with - r 
the extremum points of the function JJ5) and J4n+3(5) 
(see Fig. 2a). In accordance with (12), the J4,(5) 
curves have a minimum a t  the point 5 = 5,, where 

and the curves J,,+,(f) have maxima at  the point 5 =  5,. 
From this, in particular, we obtain the value of 
$c=Jo(~c): 

corresponding to the minimum of the J0(5) curve [see 
Fig. 2c and formulas (12)], and the value @ = n  - @, 
corresponding to the maximum of the J3(3) curve. 

It is also possible to find the value 5 = 5+ a t  which 
the branches of the curves 0' and 2 on Fig. 2c termin- 
ate, and the corresponding values of @, = Jo(5 = t,), 
namely 

&.=arcsin {I-H.HI}", 
+.=arcsin (H.H,)'". (17) 

We noteathat J,(5 = 0) = J, (5 = 5,) (see Fig. 2c). The 
locations of the remaining characteristic points for 
the JN(5) curves is clear from Fig. 2c. 

As seen from Fig. 2a, with increasing parameter 
@ =HeL/2 (at a given value of HI), the point of inter- 
section of the JN(5) curves with the horizontal line JN 
= @ that represents the static solution of the problem 
shifts along the corresponding curve, reaches the point 
of the maximum of the curve, and enters the forbidden 
region, where there a r e  not static solutions. In this 
region, consequently, a nonstationary regime is real- 
ized. With further increase of @ the representative 
points lands on the lower branches of the JN curves, 
corresponding to static solutions, etc. The field inter- 
vals in which static solutions exist can be represented 
in the form 

@.+nn<@<n-@.+nn, n=O, I ,  2 ,... , (18) 

or  4 -( @ ~n - @,(6 = @ - nn < n), as written in (13). 

FIG. 4. Plots of cpN(0) against @=He L / 2 ,  obtained from formu- 
las (13) at several values of the parameter jL = 2 H i / L  (j, 
= 0 ,  0 . 1 ,  0 . 2 ,  0 . 6 ,  and 0 .8 ,  see the numbers on the curves). 
The light circles denotes the termination points of the static solu- 
tions. The indicated numbers of the solutions correspond to 
different sections of the curves. 

Figure 3 shows the transformation of the integral 
curves JN(5) with changing parameter He but a t  a fixed 
value of HI, while Fig. 4 shows the functions cpN(0) ob- 
tained from formulas (13) for  L = 1 and for  several 
values of HI. 

3. EXPLICIT FORM OF THE SOLUTIONS AT He >> 1 

Knowing the initial value of the function cpo = cp(O), we 
can construct the concrete solution cp(x) of Eqs. (I), 
satisfying the conditions (3) o r  (5). In the general case 
the solution of Eq. (1) is expressed in terms of Jocobi 
elliptic functions. In the case He>> 1, the solution sim- 
plifies and can be expressed in terms of elementary 
functions. Using the expansion of expressions (6)-(8) 
a t  He >> 1 (H, >> 1) o r  directly from Eq. (1) we obtain an 
approximate solution for cp(x): 

coscp 1 
c p ( x ) = c p . + ~ ~ + { ~ z - ~  H. Ho isin(cpo+H.x)-sincp.l]. (19) 

with 

The solution (19) satisfies the initial conditions (5), and 
a t  x = L we get 

Taking relations (4) into account, we can rewrite (21) in 
the form 

rgL=*2 arcsin {H,H,+sin2 ((po/2)}'"+2nn. 

The condition (22) a t  He >> 1 is equivalent to the exact 
relation (9). Thus, examination of the approximate 
solution (19) led us again to the need for analyzing four 
possible types of solutions of Eq. (22) [or (9)], i.e., we 

FIG. 3. Transformation of the integral curves with variation arrive again a t  the problem considered in the preceding 
of the parameter He but at fixed values of jL = 2  H l / L .  sections. 
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FIG. 5. General form of the solutions q(x) and of the field dis- 
tributions H(x) (schematic). The numbers of the curves corre- 
spond to the numbers of the corresponding solution (for exam- 
ple, the solutionN = 2  corresponds to the section of the curve 
from the point ~ ( 0 )  to the point 2). Two branches of the curves, 
beginning with rp(O)> 0 (a) and with ~ ( 0 )  < 0 (b) are shown. 

We note that formulas (19)-(21) yield a self-consis- 
tent solution of the problem only if account is taken of 
the small nonlinear term in the curly brackets. If this 
term is disregarded (linear approximation, cp = cp, 
+ H,x) we have d 'q/dx2 = 0 in contradiction to the initial 
equation (I), and a re  unable to introduce the transport 
current I into the problem, since we get Ho = HL, i.e., 
Z=0. Obviously, i t  is precisely this small nonlinear 
term which takes into account the fact that new solu- 
tions vanish and appear, and determines the regions 
of their existence, i.e., characterizes the bifurcation 
points of Eq. (1) (see Ref. 8). When this term is 
neglected, the solution loses all  i t s  nonlinear proper- 
ties. 

Figure 5 shows schematically the general form of the 
solutions and indicates separately the branches that 
start from q(0) > 0 and q(0) < 0. From the form of the 
field distribution H(x) i t  is clear that the numbers of 
the field extrema of neighboring solutions (0 and 2, 1 

FIG. 6. Change of the distribution of the field (a and b) and of 
the current (c) in a barrier with L = 1 with increasing external 
H,(Ho=He-HI, for j,=2Hi/L=0 (a)andj,=0.2 (b andc). 
Solid curves-stable solutions, dotted lines-unstable, dashed- 
curves corresponding to the stability limit. The arrow marks 
the onset of the nonstationary behavior and the transition from 
branch to branch. 

and 3, etc.) differ by unity. The field extrema coincide 
with the points rp=nn [see (7)]; a t  these points j ( x )  
= sin(p(x) = 0, i.e., they constitute centers of vortex 
currents in the junction (the currents a r e  oppositely 
directed on the two sides of these points). The number 
of extremal points of solutions whose number n differs 
by unity (0 and 4, 1 and 5, etc.) differ by two, and ac- 
cordingly they contain different numbers of vortices. 

Figure 6 shows the variation of the distribution of the 
current and of the field in a junction with L = 1 with in- 
creasing external field [see formulas (19) and (20)}. 
The dashed curves show the distribution on the stability 
boundary, where a nonstationary transition takes place 
from one branch of the solution to another (the transi- 
tions a r e  indicated by thick arrows). We note that even 
in the absence of a transport current (HI =0, Fig. 6a), 
stability is lost  a t  certain points and nonstationary 
transformation of the solutions takes place (for exam- 
ple, solution 1 is transformed into solution 5; more 
details of the character of the time evolution of the so- 
lutions a re  given in Refs. 5-7). Thus, in the absence 
of a transport current, the vortices enter the junction 
jumpwise. In the presence of a transport current (Figs. 
6d and 6c) there exists a certain field interval wherein 
an extremal point appears inside the junction near one 
of i ts  edges, and the stability is not lost thereby (for 
example, the solution 1 is gradually transformed into 
solution 3, for  which there is a zero of the current, 
i.e., an extremum of the field) on the right-hand edge of 
the junction. These solutions corespond, in accord with 
the terminology adopted in Refs. 3 and 2, to solutions 
with an intermediate number of vortices. With further 
increase of the field, the transition is f i rs t  into a non- 
stationary regime, after which the stationary region is 
again reached (see also Sec. 5). 

4. INVESTIGATION OF THE STABILITY OF THE 
SOLUTIONS 

The investigation of the stability of the solutions of 
Eq. (1) will be checked by a scheme already used by 
us  e a ~ - l i e r . ~ - ~  We consider in place of (1) the more 
general time-dependent equation1*' 

aZq+B?-d"cp+siecp=O, - 
atz at at? 

where t is the dimensionless time and f l  is phenomeno- 
logical parameter that takes into account the damping of 
the temporal perturbations by the ohmic losses. Let 
q(x) be the static solution of (23), which coincides with 
one of the solutions of (1). We consider small devia- 
tions from the static solution 

Substituting (24) in (23) and linearizing the equation, we 
obtain for the Fourier component of 9 = +(x)eWt the 
equation 

d'rpldx'-eos q~ (x)$=E$, E=02+po.  (2 5) 

We assume that the solution q(x, t) must satisfy the 
boundary conditions (3). Since the static function cp(x) 
satisfies this requirement, the function $(x) should 
satisfy the zero boundary conditions: 
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we get 

From (25), subject to the condition (26), we can ob- 
tain the spectrum of the eigenvalues E a t  which the 
problem has nontrivial solutions. Knowing the eigen- 
value E, we can easily find the growth ra tes  that deter- 
mine the evolution of the solution with time: 

at--'/,p.t['/,pa+E]". (27) 

It is clear therefore a t  E > 0 there must exist a growing 
solution a t  the form ij exp(w, t ) ,  w+ > 0; a t  E < 0 there 
a re  no growing solutions. Thus, if all the eigenvalues 
E a re  negative, then the static solution cp(x) is stable, 
but for positive E the solution cpfx) is unstable. [We 
note incidentally that the stability or  instability of the 
solution is determined only by the sign of E and does 
not depend on the value of P in (23). All that depends 
on /3 i s  the growth rate (27).] Thus, an investigation 
of the stability of the solutions reduces to a determin- 
ation of the spectrum of the eigenvaluos of (25). 

In the general case, a s  already mentioned, the solu- 
tion cp(x) of Eq. (1) is expressed in terms of elliptic 
Jacobi functions. The solutions of (25) a re  expressed 
then in terms of Lam6 functions (see Refs. 9 and 10). 
However, i t  is difficult to obtain readily the spectrum 
of the eigenvalues in this case. In the case of strong 
fields H, >> 1 we can use in place of coscp(x) in (25) the 
function cos(cp, + H,x) [see (19)]. In this case the solu- 
tions of (25) simplify and the spectrum E can be ob- 
tained in explicit form. 

Indeed, we write in place of (25) the equation 

d2Y/dzz-cos (cpo+Hoz)rp=Eg (2 8) 

and seek for i t  a solution that satisfies the boundary 
conditions 

(in place of unity we can use here an arbitrary constant 
c ). 

The change of variable cp, + H g  = z reduces the sys- 
tem (28) and (29) to the form 

Using the inequality H, >> 1, we can easily obtain by 
successive approximations a solution of the system (30) 
in the form 

We stipulate, in accord with (26) that dij/dx(.,, =0, i.e., 
that dJl/dz,,, = 0, where z, = cp, + LH,. This require- 
ment makes i t  possible to find the spectrum of the 
eigenvalues: 

E= (sin qo-sin zo)/(:o-cpo) 

or 

Substituting in (31) the expression (p(O)= *2[, from (13), 

sin 6 
E = (-)"+I -a, 6 cos a (6). (32) 

where N is the number of the investigated solution, a, 
=+ 1 for N=O, 1 ,3 , .  . . and a,=-1 for N=01,2,3', 
. . . (the appearance of the factor o, = *l in (32) is due 
to  the additional term n/2 in formulas (13), n=O, 1,2, 
. . . a r e  the numbers of the curves on Fig. 2a, while 
the function a ( @ )  is defined in (14). 

On the basis of the form of formula (32), we easily 
find, for example, that E < 0 for  n = 0 for  solutions with 
numbers N=O, 1 , 3  (i.e., these solutions a re  stable), 
while E > 0 for  solutions with numbers N =  O f ,  2,3' 
(i.e., these solutions a r e  unstable). The stable and 
unstable branches of the solutions a re  shown in Fig. 2c 
by thick and thin lines, r e s p e c t i ~ e l y . ~ )  All other solu- 
tions a t  nzO a re  similarly classified (see Fig. 2a). 

We note that i t  is possible to conclude that any solu- 
tion cp,(x) obtained on the basis of the linearized equa- 
tion (28) is stable, can be verified by a direct numeri- 
cal calculation of the partial differential equation (23). 
It is seen here that the unstable solutions a re  indeed 
transformed in the course of time and go over into the 
corresponding stable solutions (see, e.g., Refs. 5-7, 
which show examples of the evolution of the solutions 
with time). It is possible that the unstable solutions 
can manifest themselves in nonstationary problems o r  in 
the dynamic model of dislocations, which is similar in 
i t s  mathematical f~rmulation.''-'~ We a r e  therefore 
justified in calling attention to the existence of unstable 
solutions. 

5. MAXIMUM CURRENT AND AVERAGE FIELD IN 
THE JUNCTION 

We now consider the question of the value of the maxi- 
mum current that can flow through a tunnel junction of 
width L in a given external field He. In the general 
case this relation is highly nonlinear (see, e.g., the 
numerical calculations of Owen and Scalapino,' and 
also the survey of the experimental work in Ref. 2). 
In the case of a strong external field, He >> 1, this de- 
pendence can be obtained in analytic forms for a bar- 
r i e r  of finite width. 

As seen from Fig. 2, when the parameter p = H S l  
increases, the integral curves contract to the point @ 
= n(n + i). Consequently, a t  a given position of the line 
J = 4 (i.e., a t  given L and He) the maximum current 
I,, = 2HImax a t  which a static solution of the problem 
is still possible, is determined by the condition [see 
(Is), (16)l 

@=I,,(  j,) =nn+arcsin H.H, (33) 
~t 4 = 4 - nn < n/2 (the minimum points of the J,, 
curves) or  by the condition 

@=l,.+,(n-5,) =n(n+l)  -arcsin H.H, (34) 

a t  6 = @ - nn > n/2 (the maximum points of the curves 
J,,,,). From this we get 

I = sin 6 ,  0 s 6 < n/2, (35) 
(tn+Jl I,, /L = sin G l d ,  n/2 < 4 < x. 
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With increasing @, the quangty 4 = @ - nn, remains all 
the time in the interval 0 a @ s n ,  while s in4  a 0. It is 
clear that expressions (35) can be rewritten in the 
equivalent form 

Formula (36) is usually cited in the books on the 
Josephson effect1*' with reference to some analogy with 
the formula for Fraunhofer diffraction in optics. This 
formula was f i rs t  proposed in Ref. 11 on the basis of 
simple physical considerations and was found to be in 
good agreement with experimental for 
junctions of small width, L << 1. It was shown above 
this formulas remain in force also for junctions of 
finite width, but to justify i t  we must go outside the 
framework of the linear approximation. 

Besides the curve for the maximum current, it is of 
definite interest to obtain the plot of the termination 
points of the solutions number 1,5, .  . . . As is clear 
from Fig. 2c, the corresponding termination points of 
the solutions a re  defined by the equations 

@=I'.+, ( E = O ) ,  $=@-an<n/2, 

@=I,,+,(&=&.), q=@-nn>n/2. 
(37) 

Using (13) and (17) we easily get 

I,,+, (&-0) =nn+arc ~in(H.Hr)'~. 

I,,+, (f =&.) =n (n+l) -arc sin (H,HI)'", 

and a s  a result Eq. (37) yields the equation for the 
termination line of the solutions cp,,,,: 

(L"+O I L - s i n  6 ,  0 < 6 4 n/2, 

I ~ " / L  = sin2 n/2 < 6  G n. 

The curves for the maximum current (35) and (38) 
for different solutions a r e  shown in Fig. 7. We note 
that our analysis is limited to the case of strong 
fields," He a 1, and therefore the region He a 1 in Fig. 
7 is in fact described correctly by formulas (35) and 

FIG. 7. Maximum current j =2  HI/L as a function of the ap- 
plied field 9 =HeL/2. Solid line-stationarity limit (35). The 
dashed curve bounds the region of the existence of solutions 
cp,, +, (38). The numbers mark the regions of the existence of 
solutions numbered as in Fig. 2a. 

f Nonstationary region /" 

FIG. 8. Average field ti =L E/2 in the junction as a function of 
the applied field @ =HeL /2 and of the total current j = 2 HI/L . 
The dashed lines show the section of the ti surface at j = 0  and 
2. The region of the parameters at which the nonstationary 
Josephson effect is  realized is  indicated. 

(38) only if L S 1. For  finite values L > 1 and He- 1, a s  
shown by numerical  calculation^,^ the field dependence 
is more complicated, and the ascending and descending 
sections of the curves of the maximum current a re  
described by nonsymmetrical relations, in contrast to 
the symmetrical formulas (35) and (38). In this case 
the curves in Fig. 7 begin to overlap and sections of 
hysteresis origin appear. Our analysis shows that 
with increasing field the strong linear dependence3 
degenerates, and the maximum-current curves must 
end up with the simple relation (35), (38) even in the 
case of broad junctions (L 1). 

Some interest attaches also to the dependence of the 
average field B in the junction through which the trans- 
port current flows on the applied external field He, i.e., 
to finding the magnetization curve of a weak current- 
carrying superconductor. We have 

where A is defined in (9). Using the explicit depend- 
ence cp(0) = i25, on the field @ = He L/2, obtained in (13) 
and (14), and also the trigonometrical identity (which is 
valid in the region of the admissible values of p and @) 

@ 1 P 
arcsin[p f sinZg(@)]'" + b ( # ) =  $. :(@)=---arcsin- 

2 2 sin @ ' 

we readily obtain 

a(@)=@, H,,l, CJ=HeL12, (40) 

where the function a(@) is defined in those regions 
where the solutions cp,(x) of the problem exist (see 
Fig. 8). Thus, the magnetization curve of a weak 
superconductor with current in a strong field is made 
up of a set  of linear segments. (As seen from the 
approximate solution (19), when the nonlinear correc- 
tions.are taken into account these linear segments be- 
come somewhat corrugated.) 

In conclusion, we point out a peculiear "geometric 
resonance" in a system of Josephson junctions of dif- 
ferent widths situated in an identical external field He. 
As is clear from Fig. 3, in the absence of a current, 
some static vortex structure is realized in a barr ier  of 
arbitrary width. When a weak current is turned on, 
static solutions vanish f i rs t  for junctions of width 
2nn/He. This means that junctions with widths 2a/He, 
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Accidental degeneracy of self-localized solutions of the 
Landau-Lifshitz equations 

V. M. ~leonski, N. N. Kirova, and N. E. Kulagin 
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Zh. Eksp. Teor. Fiz. 75, 2210-2219 (December 1978) 

It is shown that the self-localized solutions of the Landau-Lishitz equations for a uniaxial fernmagnet 
with anisotropy energy K sin2B are degenerate. Specifically, for an arbitrary velocity of an isolated 
magnetic-moment wave there exists a continuous set of self-localized solutions, which correspond to a 
definite type of magnetic solitons. If one goes over to a more general expression for the uniaxial- 
anisotropy energy, such as ~ ( s i n ~ B  + flsin4B (v > 0), or if one allows for an external field, the accidental 
degeneracy is removed; this leads to disintegration of the continous set of solutions of the soliton type and 
to formation of a countable set of self-localized solutions of the isolated-wave type, with a d e f ~ t e  internal 
structure. 

PACS numbers: 75.10.Jm, 75.30.G~ 

1. Investigations of nonlinear magnetic-moment state,2 have made  it possible  to de te rmine  characteris- 
waves, c a r r i e d  out both by t h e  method of analyt ic  con- tic l imit ing veloci t ies  of "slow" and  "fast" nonlinear 

tinuation of t h e  spin-wave s p e c t r u m  into t h e  region of waves, and  also to s e p a r a t e  t h e  regions of existence of 

complex wave vectors' and by  d i rec t  ana lys i s  of t h e  definite types of s ta t ionary-profi le  waves; f o r  example, 

asymptotic behavior of t h e  magnetic-moment dis t r ibu-  t h e  moving-domain-wall type or the  isolated-wave type 

tion in t h e  region of establ ishment  of a homogeneous (magnetic soliton). 
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