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A Hamiltonian technique based on the Poisson brackets is developed to describe the hydrodynamics of 
superfluid He3. The technique is used to obtain the nonlinear-hydrodynamics equations for the A and B 
phases. The normal coordinates corresponding to first and second sound, and also the spin waves in both 
phases, are found. The interaction between these hydrodynamic modes is considered. The conditions for 
the excitation of various parametric processes are described. The interaction vertices for first and second 
sound, and also for sound interacting with spin waves, are obtained by expanding the Hamiltonian in 
normal coordinates. 
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INTRODUCTION 

The basis of the present work is a Hamiltonian form- 
alism that turns out to be convenient for the considera- 
tion of nonlinear problems of hydrodynamics. The Ham- 
iltonian formalism was developed by ~okrovsk i r  and 
Khalatnikov1* as applied to superfluid He4. In Ref. 2 
and also in the work of the author3 this method was used 
for the investigation of the process of parametric ex- 
citation of second sound by first  sound in He 11. In the 
works of Khalatnikov and the a Hamiltonian 
formalism was developed for the description of the hy- 
drodynamics of the anisotropic superfluid liquid He3-A. 
In the present paper, the Hamiltonian method is used for 
the consideration of processes of interaction between 
different hydrodynamic modes in superfluid He3. 

A review of the properties of superfluid He3 can be 
found in the papers of Wheatley7 and Leggett.' This 
liquid is characterized by an order parameter A the 
physical meaning of which is that of a gap in the excita- 
tion spectrum: 

Here k is the wave vector of the excitation and 6 a r e  the 
Pauli matrices. The structure of the tensor d j i  i s  dif- 
ferent in the different phases of the superfluid He3. 

The tensor dj, i s  factored in the A phase: 

Here A, is the maximal value of the gap, the unit vector 
n has the sense of the spin anisotropy vector, and the 
vector 

characterizes the orbital part of the order parameter. 
The vectors 9' and 9" a r e  mutually orthogonal and 
have unit length, and the unit vector 

I=[(DIX (D"] (4) 

has the sense of the orbital anisotropy vector. 

The order parameter in the B phase of superfluid He3 
i s  determined by the angle of rotation of the spin part of 
the order parameter relative to the orbital part: 

8i8j 
Gji cos 8  + ( I - c o s  8 )  +ej,r 3 sin 

0' e 
At equilibrium, cos 6 = - i. 

THE HAMlLTONlAN FORMALISM 

We assume that reversible hydrodynamic processes 
can be described by means of a local variational prin- 
ciple. Let q(r)  be the set  of generalized coordinates, 
the specification of which, together with their time de- 
rivatives, uniquely determines the state of the system. 
Then the Lagrangian density can be written down in the 
form 

where p a r e  the generalized momenta, variables that 
a r e  canonically conjugate to q ,  and H i s  the Hamilton- 
ian density. 

The equations corresponding to (6) a r e  written in the 
form 

where the Hamiltonian is 

and { ,} a r e  the Poisson brackets. For the canonical 
variables, 

Let 6 be the generator of the group whose repre- 
sentations a r e  p and y. If the Lagrangian density (5) is 
invariant relative to this group then, with account of 
the equation of motion (71, the conservation laws 

hold a s  usual. Thus, 
G ( r )  = - i p ( r ) G q ( r )  (10) 

has the meaning of the density of a quantity corre-  
sponding to the generator G. The coefficient in (10) is 
so  chosen that standard expressions for the quantum- 
mechanical operators can be used; thus, for the mo- 
mentum density we have 

g ( r ) = - p ( r )  V q ( r ) .  (11) 
Let 8, be the set  of generators of the intrinsic sym- 

metry group of a system, for which the relations 
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hold. Here t t b  a r e  the structural constants of the 
group. With account of the definitions (lo), (11) and 
also (8), we find the rules for the Poisson brackets: 

In the description of real systems, we a r e  not dealing 
with the Hamiltonian density H but with the density of 
thermodynamic energy E ,  which is represented by the 
function 

Various combinations of the order parameter play the 
role of q; quantities associated with the symmetry 
group of the order parameter as well as quantities as- 
sociated with the "normal" degrees of freedom enter 
into the set of generator densities G,. The rules 
(13)-(17) enable us to formulate the hydrodynamic 
equations in this case also; for the Hamiltonian we 
use here (7) with the substitution H- E. 

HYDRODYNAMICS OF H ~ ~ - A  

Since the order parameter of H ~ ~ - A  has independent 
orbital and spin degrees of freedom, we must take into 
account the dependence of the energy density E both on 
the density of the spin angular momentum S and on the 
density of the orbital angular momentum L. The de- 
pendence on the mass density p and on the superfluid 
momentum density j associated with the order param- 
e ter  a r e  also important. The entropy density s and the 
relative normal momentum density p describe the de- 
grees of freedom connected with the normal motion. 

Carrying out a Galilean transformation from the set 
of coordinates in which j = 0, we find 

The differential of the energy has the form 

Here p is the chemical potential, T is the temperature, 
v i s  the normal velocity, and ware  the angular velocities 
connected with the orbital and spin angular momenta, 

The momentum density j is connected with the order 
parameter; therefore the rules for the mutual Poisson 
brackets of j with combinations made up of the order 
parameter a r e  given by the expression (15) with the 
substitutions g- j and q-1, n, while the rules for  the 
mutual Poisson brackets with the generator densities- 
by the expression (17) with the substitutions g- j and 
G,  - L, S ,  p. The enumerated variables have null Pois- 
son brackets with those describing the normal motion 
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s ,  p, the rules for the mutual Poisson brackets of which 
a r e  given by the expression (17) with the substitutions 
g- p and G ,  - s,  since the entropy in the non-dissipative 
regime is a conserved quantity. The rules for the Pois- 
son brackets of j and p with themselves have the form 
(16). Taking into account the commutation relations for  
the spin operators and the rules for their action on the 
vector indices (see, for example, Ref. 9), we find 

{ L , ( r , ) ,  L>(r , ) )  =-efJnLn6(r,-rz),  (22) 
{L i ( r1 ) ,  l J ( r 2 ) )  --e,,Jn6 (r l -ra) ,  (23) 

{&(rl) 9 s j ( r z ) )  --enjnSm6 (rl-2) 9 (24) 
{ S i ( r l ) ,  n j ( r 8 ) ) - - e ~ n n n 6 ( r l - r ~ ) .  (25) 

The complete set  of Poisson brackets has thus been 
constructed for the quantities on which E depends, 
which allows us  to formulate the equations of motion: 

d s / d t = ( a ,  c ) = - ~ ( s v ) ,  (26) 
a p / a t = { a ,  P } - - v ~ ( u , P ) -  (PIV, )V-SVT,  (27) 

ap/at= { a ,  p) =-vg, (28) 

an -- {%,,)- - ($  v ) n + [ 0 8 x n ] ,  
at 

(3 2) 

ag,/at={%, j,+ p,}=-V,I7,,, (33) 

where the s t r e s s  tensor is 

and the pressure is 

We note that the transfer of all quantities connected 
with the order parameter takes place with the mean 
mass velocity. As is seen from (31) and (32), the con- 
ditions 12= 1 and n2=  1 a r e  f i rs t  integrals and therefore 
a r e  compatible with the derived system. The system 
that has been obtained corresponds to the equations of 
volovik. lo 

The orbital angular momentum L fails to satisfy even 
an approximate conservation law. The equation for L 
has therefore a dissipative term [added to the right 
side of (29)] proportional to wL (see, for  example, the 
work of Leggett and Takagill). This dissipative term 
leads to a relaxation of L in a finite time to i t s  equil- 
ibrium value, which leads in turn to  the effective re- 
moval of the degrees of freedom connected with L; 
here the equation for 1 (in (31) there a r e  also kinetic 
terms) is a purely diffusion one, even with account 
taken of the spontaneous orbital angular mornent~m. '~  
Therefore we shall assume 1 to be constant when the 
hydromatic modes a r e  considered. 

SOUND WAVES IN H ~ ~ - A  

The variables describing the sound waves a r e  the 
mass density and the entropy density, and also the 



densities of the normal and superfluid momenta. The 
corresponding part  of the energy, with accuracy to 
third order in the vector quantities, has the form 

~ = ( P ~ ) ~ / ~ P I I + [ P ~ - ( P ~ ) " / ~ P ~ + ~ ( P ,  s), (36) 
where pll and p, have the meaning of longitudinal and 
orthogonal (to 1) components of the normal density. 
Substitution of this expression in (26), (27), (28) and 
(33) yields equations describing the propagation of f irst  
and second sound. 

We assume the parameter 

which characterizes the relative value of the depend- 
ence of the thermodynamic quantities on the tempera- 
ture (o= s / p  is the specific entropy), to be small. By 
virtue of the smallness of this quantity, the estimate 
(c,/c,)~- @ holds, where c ,  and c, a r e  the phase vel- 
ocities of f irst  and second sound. The expressions for 
them in the variables p and a have the form13 

where @ is the wave vector of the wave) 

Now let  a ,  and a, be the normal coordinates corre- 
sponding to first  and second sound. They satisfy the 
relations (in the Fourier components) 

We require diagonalization, in second order  in a ,  of 
the Hamiltonian corresponding to (36): 

( k )  +c,ka2'(k)a2(k)) .  

With account of the rules (14) and (40) for the Poisson 
brackets and keeping in mind the smallness of the 
parameter p, we find (departures from equilibrium 
values a r e  denoted by 6) 

6p(k)  =PA (a,&) +a,'(-k))+gp(a2(k)+a,'(-k))B, 
6 s ( k )  =-sB(a2(k)+a,'(-k))+p-'s6p(k), 
- ik (a ,  ( k )  + a z ( k )  ) =c,A ( a ,  ( k )  -a,'(-k) ), 

ca 
- ika2(k)  -c,bA (a ,  ( k )  -a,'(-k)) - - B (a2(k)  -a,' ( - k ) ) ,  

(42) 
r 

j=-(p+6p)  Pa , ,  g=-pV (a,+a?)-o-'6sVr*?-dpT.r.,, 

where 

The expressions for g and j contain the terms, of sec- 
ond order in a, which a r e  necessary for  the calculation 
of the third-order interaction Hamiltonian: 

where 

Separating in (43) the coefficients of the corresponding 
products of normal  coordinate^,^' we can find the ver- 
tices corresponding to the interaction of f irst  and sec- 
ond sound. The Hamiltonian (43) describes a three- 
wave interaction. It follows from the condition c,> c, 

and from the conservation laws that a process is pos- 
sible with decay of a wave of f irst  sound into two waves 
of second sound, as well as a Cerenkov process in 
which the wave of f irst  sound is transformed into 
another wave of f irst  sound with emission of a wave of 
second sound. 

The decay process is characterized by the frequency 
w of the wave of f irst  sound, the direction of i t s  wave 
vector k,, and the direction of the wave vector of one of 
the waves of second sound k, (with account taken of 
c ,  >> c,, the wave vector of the other wave of f irst  sound 
is -k,, and the energy is distributed equally). The 
corresponding vertex has the form 

In the Cerenkov process, with account taken of c, >> c,, 
the frequencies of the waves of f irst  sound a r e  almost 
equal (and a r e  denoted by w ) ,  

2ca . cp 0 2 = - 0 s 1 n - ,  
c1 2 

where cp is the angle between the directions of propaga- 
tion of the waves of f irst  sound. The Cerenkov vertex 
has the form 

These formulas a r e  a generalization of those given in 
Ref. 2 for the case of an anisotropic superfluid. We 
note that the Cerenkov vertex V has smallness of the 
order of p3l4 in comparison with the decay vertex U; 
moreover, the Cerenkov process is suppressed at small 
angles cp owing to the conservation laws. 

SPIN WAVES IN H ~ ~ - A  

The spin variables a r e  n and S and the spin waves 
a r e  respectively described by Eqs. (30) and (32). These 
equations, in particular lead to the conservation law 

Thus the oscillations of the longitudinal part  n of S 
correspond to a harmonic with zero frequency and will 
henceforth not be taken into account by us. 

Accurate to third order, the spin part of the energy 
is given by 

where 

The energy (47) includes the interaction with the homo- 
geneous external field H ( v  is a unit vector in i t s  direc- 
tion), and y is the gyromagnetic ratio. The last  term 
of (47) takes into account the ferromagnetic ordering as 
well as the spin-order interaction. 

At equilibrium, n is directed along 1,14 s o  that 5 >  0; 
in addition, X ,  > ,yll ,I5 so that a t  equilibrium nl v. In 
first-order approximation, Eqs. (30), (32), and (47) 
lead to equations that correspond to the linear hydro- 
dynamics of Graham and ~ le ine r" :  
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We label with 11 and I the oscillations for which 6s is 
respectively parallel and perpendicular to the magnetic- 
field direction v. The transverse oscillations corre- 
spond to the dispersion law 

where the gap is 

and the phase velocity of the spin waves is 

~t is seen from (48) that the longitudinal oscillations 
a r e  mixed with the first  sound, but this mixing is small 
to the extent that (X,/p)1/2y H/G is small and will be 
disregarded by us. The dispersion law for the longi- 
tudinal oscillations takes the form 

Let b be the normal coordinates corresponding to the 
spin waves; they satisfy relations of the type (40). 
Then, recognizing that the rules (24) and (25) must be 
satisfied in the zeroth approximation, and stipulating 
diagonalization of the Hamiltonian corresponding to 
(47), we obtain in second order in b 

i[vX1] 
6n (k) = ( b l ~ ( k ) - b ~ , * ( - k ) )  

( 2 x 1 ~ ~  ( k )  )" 

6 s  ( k )  =v ("- @ (') )"'(bIl(k) i b l l ' ( - k ) )  
2 

We consider now the interaction of the spin waves 
with the sound. To write down the interaction Hamil- 
tonian of third order in b i t  is necessary to substitute 
for the quantities on which E depends expressions of 
second order in the normal coordinates. The second- 
order corrections can be found by requiring that the 
rules for the mutual Poisson brackets of the quantities 
on which E depends be satisfied accurately to first or-.  
der in b. For the description of the interaction of the 
spin waves with sound, an important second order 
correction is the contribution of spin waves to the mo- 
mentum density: 

g,'=-GS[lxVs]. (55) 
When this is taken into account, the Hamiltonian that 
corresponds to interaction of sound and spin waves has 
the form 

The Hamiltonian (56) corresponds to processes in 
which a single sound wave and two spin waves partici- 
pate. For the A phase, which exists only in the region 

of temperatures near the transition curve, it is natural 
to expect that c, > c, ." Therefore, decay into two spin 
waves having a frequency threshold due to gaps in the 
spin wave spectrum is possible with the participation of 
first  sound. The Hamiltonian (56) gives nonzero ver- 
tices for the decay into spin waves of like polarization 
Q,  is the wave vector of the sound wave, k, and & a r e  
the wave vectors of the spin waves) 

In the high frequency limit w>>.>51, both these formulas 
give identical expressions: 

Because of the smallness of p, the estimate ( c ~ / c , ) ~  - P<< 1 holds.' Second sound exists only in the region 
of very low frequencies; we therefore assume the fre- 
quency of the wave of second sound to be much smaller 
than the gap 51. This condition excludes the possibility 
of consideration of the decay process, and we shall deal 
with the Cerenkov emission of a wave of second sound 
by a spin wave, since the conservation laws do not im- 
pose any limitations on the frequency in this case. By 
virtue of the assumed condition $2 >> c2k, (k, is the wave 
vector of the second sound) the frequency of the spin 
wave changes little; we shall denote it simply by w. 

A s  before, let k 2  and k, be the wave vectors of the 
spin waves. Just a s  in the case of interaction with first 
sound, only processes without change in the polarization 
of the spin wave a r e  possible. The corresponding Cer- 
enkov vertices, obtained from the interaction Hamil- 
tonian (56) have the form 

'I. + (yHIZ d 1 d v, = %[( i +-) o o - l n x , - - o - ( t + ~ . . k ~ ~ k ~ ~ ) ]  . (61) 
ZY'p c, oz do &o do 

where the derivative d /da denotes differentiation at  con- 
stant pressure. In the high-frequency limit w>>O we 
can assume k, - k, =k. Here the expressions for both 
vertices simplify and a r e  identical: 

d 
V-- (2) Ih ko do - c,. 

The expressions (57) and (58) give the long-wave limit 
of the vertices of phonon-two magnon interaction and 
can be used for the study of kinetic phenomena in He3-A. 
We also note that the linkage of the spin waves with sec- 
ond sound is much weaker than with first  sound. 

HYDRODYNAMICS OF H ~ ~ - B  

In connection with the structure of the order parameter 
of the B phase (5), we must take into account, in addi- 
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tion to p, s and p, the dependence of the energy density 
Eon the density of the spin S which generates the rota- 
tion of the spin part of the order parameter relative to 
the orbital part, and also the dependence on the order 
parameter itself and its derivatives: 

e=e (p ,  s, P,  S, 4 ,  Vd, , ) ,  
d e  dE= ( g / ~ ) d j + v  dp+ ~ d p + T  d s + o  dS+Ej,ddj.+,V ( -ad j . )  , (63) 

a v 4 ,  

where 

In connection with (14) we have 

{Sk, d,,) = - e d j n ;  (64) 
taking also (24) into account, we find the equations of 
motion 

The equations of motion for p, s, and p have the same 
form a s  (28), (26), (27). 

We complete the set  of hydrodynamic equations with 
the law of momentum conservation, which has the form 
(33) with the s t ress  tensor 

ae 
I I c r = ~ n r ~ + j t ~  + v,pk + - 

P a v i d j  '"J' 
(67) 

where the pressure is given by 

At equilibrium, the angle of rotation is determined by 
the condition cos 9 = m i . "  At small departures from the 
equilibrium angle, we shall use the symbol 6: 

- .. 
dj,= exp (-ies) 4:) 

As is known, in the presence of a magnetic field the 
angle B tends to become oriented along the field.17 We 
assume therefore that at equilibrium B is directed along 
the uniform external magnetic field H = HV (i.e., we 
neglect boundary effects). However, the corresponding 
contribution to the energy is of fourth order in a and 
we shall not take it into account. 

Finally, the spin part of the energy density, with ac - 
count taken of the gradient terms and the spin-orbit 
interaction, has the form1' 

sa e =-- 
I t i z  6 

THS + p a ( - &  ( 2 ( ~ k ) ' - ~ ~ , ~ i ) t 1 )  ( i v ) ' ,  (69) 
2% 

with accuracy to third order. Here pS = p - p a  is the 
superfluid density and m is the He3 mass. 

It is more convenient to write out the equations of 
first  order for 6 and S with account of the fact that 

follows from (64) in zeroth order in 8 .  These equations 
have the form1' 

Just a s  in the case of He3-A, we neglect the transport 
term that leads to the mixing of spin waves with first  
sound and is small in terms of the parameter ( , Y / ~ ) " ~  
yH/cs = ~ / 1 0 ~ G  (the velocity of the spin waves is taken 
from Ref. 20). 

Equations (71) and (72) describe the spin waves for 
which the characteristic parameters a r e  the phase vel- 
ocity 

and the gap a,: 

In correspondence with the number of degrees of free- 
dom, there a r e  three spin wave branches with rather 
complicated dispersion laws in the general case. We 
consider two limiting cases depending on the relation 
between yH and a,2 + c,2 k2. 

We consider the case ( y ~ ) ~ < < a i  + c,Z k2. In this limit, 
the dispersion laws for the three branches of the spin 
waves have the form 

where k,, =kv, k: = k2 - k i  . Let b,, b, and b3 be the 
normal coordinates corresponding to these waves. 
Then, keeping in mind the fact that (24) and (70) should 
be satisfied in zeroth approximation, recognizing that 
the b satisfy the rules for Poisson brackets of the type 
(40), and requiring diagonalization of the Hamiltonian 
corresponding to (69), we find 

Heren,, n,, and n, a r e  a triad of orthonormalized vectors 
specified by their components . 

n,k=n,v=O, 
nzv=A2(2kZc.Z-o,'-c:k12), n , v = A , ( 2 k ' ~ . ~ - o ~ - c ~ k ~ ~ ) ,  

n2k=A,(2kzc.'-o?) k,,, n ,k=A, (2kZc .~ -o l l z )  k,,, (78) 

where 

In the high-frequency limit w >> a, we have w ,  = w, 
= 21/2~,  k and o, = c, k. The first  two dispersion laws 
correspond to waves of transverse polarization, n, and 
n, orthogonal to k, and the third corresponds to longi- 
tudinal polarization, rg =k/k. 

We now consider the case ( y ~ ) '  >> 0: + c,2 k2. In this 
limit, the dispersion laws for the three branches of the 
spin waves have the form 

2c 'k' ' QL'-k~',"9L'/2k2+c.'k' 
U'- (*) R L z + c ~ ( 2 k z - k i t )  ' 
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Let b,, b,, and b, be the normal coordinates corres- 
ponding to these waves. Then, keeping it in mind that 
(24) and (70) should be satisfied in zeroth approxima- 
tion, taking it into account that the b satisfy the rules 
for Poisson brackets of type (40), and requiring diag- 
onalization of the Hamiltonian corresponding to (69), 
we find 

i + (bo(k) - b e ' ( - k ) ) ~  
( 2 ~ ~ s  (k) ) " 

+ c.gkk,k,, 
(b,(k)-bs'(-k))~. 

yH ( o ,  ( k ) ~ )  "oa2(k) (81) 

where v' , v" , v is a triad of orthonormalized vectors, 
vak=O. 

INTERACTION OF SOUND WAVES AND SPIN WAVES 
IN H ~ ~ - B  

The superfluid He3-B is characterized by an isotropic 
superfluid density, therefore the consideration of the 
interaction of first and second sound is completely an- 
alogous to the case of superfluid He4.' The expressions 
for the normal coordinates and the scattering vertices 
can also be obtained from the corresponding formulas 
for He3-A, except that now l? =pS /pn  is isotropic. In 
what follows, we shall use the same notation for the 
sound waves a s  in Hes-A. 

It is necessary to know the interaction Hamiltonian in 
order to consider the interaction of sound and spin 
waves. From among the second order corrections in b 
to the quantities on which E depends, the contribution 
to the momentum density 

g:=-6SV.B 

is the most important. The third-order Hamiltonian 
then takes the form 

This Hamiltonian corresponds to processes in which a 
single acoustic and two spin waves participate. 

We consider the interaction of first sound with spin 
waves. The experimental data a re  such2. 20 that the 
condition c, >> c2 is satisfied. Thus, with the participa- 
tion of a wave of first sound, only a decay process is 
possible which has a number of frequency thresholds 
connected with the presence of gaps in the spectrum of 
the different branches of the spin waves. This condi- 
tion leads also to the result that for all frequencies, ex- 
cept those very close to threshold, the wave vectors of 
the spin waves are much greater in magnitude than the 
wave vector of first sound, and we can assume them to 

be equal in magnitude and opposite in direction. 

We now consider the case (yH)'<<51; + c,Z k2. In this 
limit the expressions for the quantities entering into 
(82) a r e  given by the expressions (42), (76), (77). We 
shall assume that the wave of first sound, which has the 
frequency w, decays into two spin waves with frequen- 
cies w' and w", with wave vectors k' and k", and with 
polarizations n' and n" . The Hamiltonian (82) gives 
the decay vertex in the general case: 

ha a +- I 
1 0 r n ~ ~ ~ ~ '  (s'oN)'" 

(2 (k'k") n'n" 

a I 
n v  n v ]  . (83) 

Recognizing that k' = - kx = k, and that in decay into 
waves of identical polarization the frequency is  equally 
divided, we obtain from (83) for the different polariza- 
tions (the expressions corresponding to the expression 
in the square brackets in (83)) 

a a ( (knJ (h,) p --(XE:) - (niv) (nr)  P - ( x ~ L ' )  ) [ U'" = xu (',,,or) 'I. afJ ap 

The expression for U3, is obtained from the expression 
for U,, by the substitution n2-15. 

In the high-frequency limit w >> 51,, U2, vanishes, 
the expression for U,, is identical with the expression 
for U,,, and as  should be the case for the mode with 
transverse polarization, the limiting expression for U, 
has the form 

a a 
[UsJ]= 1-p-Inx-p-Ine,. 

ap 3~ 
(85) 

We now proceed to consideration of the interaction of 
spin waves with second sound. The decay process is 
possible if c, > cs and the Cerenkov process, in the op- 
posite case. The experimental relation between these 
two quantities is unknown; however, we can obtain from 
the Hamiltonian (82) an expression that describes both 
the Cerenkov and the decay processes. In this same 
limit (yH)2<<51i + C: k2, it has the form (the notation is 
the same a s  in (83) except that w now refers to second 
sound) 

F'ho'" d 
0 -[Xo'o"(n'n") -Xc.2(2(k'k") (n'n") 

?~'p'!*C*X (o'WN)'b do 
- (k'n") (kWn') ) + (xPr2) (n'v) (n"v) I .  (86) 

Here only X, cs and 0, are differentiated; the plus sign 
refers to the decay vertex, the minus sign to the Ceren- 
kov vertex. 

We now consider the case ( y ~ ) '  + c: k2. The pos- 
sible polarizations of the spin waves a re  enumerated for 
this limit in (80) and (81). In the consideration of the 
decay of an acoustic wave into two spin waves we as- 
sume, as before, that the frequency of the wave of first 
sound is not too close to threshold, so that the spin 
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waves have the wave vectors k and -k. In the consideration of the interaction of second 

First  we consider the decay processes with partici- 
pation of a Larmor spin wave, to which the index 4 
corresponds. By virtue of the conservation law the 
frequency of first  sound is here -yH, and the condition 
on the wave vector of the decay waves has the form 
l/c, >> k / y ~  >> l /c l .  In the decay into two Larmor 
waves, the frequency of the wave of first  sound is 
= 2yH; from the interaction Hamiltonian (82) 
we find the corresponding vertex 

In the decay into a Larmor wave and a spin wave of 
another type, the frequency of the wave of first  sound 
is = yH. With account taken of the inequalities for the 
wave vector k, we find the expressions for the decay 
vertices: 

p'" a 
U'& = - 

where cp is the angle between the directions of the wave 
vectors of the wave of first  sound and the Larmor wave. 

We now consider the decay of a wave of first  sound in- 
to spin waves that a r e  not of the Larmor type. It must 
be kept in mind that the frequency w of f i rs t  sound is 
divided in two upon decay into waves of the same type, 
and is almost completely transferred to the wave of 
type 6 upon decay into waves of type 5 and 6. Taking 
this into account, we find the expressions for the decay 
vertices: 

where we have o, = w,Q) .  In the high-frequency limit 
yH>> w >>aL, these expressions yield 

In the long-wave limit, which for Us, means w<<nL, 
and for U,, and U6, means QL/cl << k << SIL/c,, we find 

sound with spin waves, i t  is necessary to keep in mind 
the smallness of the frequency of second sound w ;  
we assume w << a,. Here the conservation laws allow 
only decay of second sound into two spin waves of type 
5. By virtue of the quadratic dispersion law for these 
waves, we can assume that their wave vectors a r e  
equal to k and -k, the frequency of the second sound is 
equally divided in this case. The expression for the 
corresponding decay vertex, obtained from the inter- 
action Hamiltonian (82), has the form 

In conclusion, the author thanks I. M. Khalatnikov for  
discussion of the research. 
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