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We consider various types of low-lying linear and nonlinear collective excitation in excitonic phases (at 
temperatures T = 0 and T+T,) and undamped inhomogeneous fluxes of electrons e and holes h in systems 
with spatially separated and nonequilibrium e and h .  We analyze the influence on the excitations by 
interband (or interfilm) transitions on various types, which fix the phase Q of the order parameter in the 
ground state and make the existence of homogeneous solutions of the type p(R) = P.R impossible in the 
excited state. The obtained nonlinear equations that describe the distribution of the phase of the order 
parameter in the excited states take the fonn of the sine-Gordon equation or of its simple generalizations. 
We consider collective excitations that manifest themselves in excitonic phases as polarization-density 
waves in intrinsic antiferroelectrics or as magnetization-density waves. The restrictions imposed on the 
symmetry of the wave functions of the pairing particles for which a second order phase transition into the 
excitonic phase is possible are indicated. 

PACS numbers: 71.35. + z, 77.80. - e 

1. INTRODUCTION 

It is known that restructurings that can be described 
a s  condensates of electron-hole (e-h) pairs a r e  pos- 
sible in a number of e-12 systems. These restructurings 
can occur: 1) in semi-metals in which the e and i z  Fer- 
mi surfaces have sections of almost the same form, o r  
in semiconductors with narrow band gapslV7; 2) in a 
semimetal in a quantizing magnetic field8 o r  in a quasi- 
one-dimensional structure (see, e.g., Refs. 9 and 10); 
an excitonic phase can be produced also in nonequilib- 
rium systems (Bose condensation of a rarefield exciton 
,.&as" '12 o r  a transformation of a nonequilibrium e-12 

system into a coherent dielectric liquid13); 4) finally, 
formation of an e -  i z  pair condensate is possible also 
for spatially separated e and h, and this circumstance 
is of interest in connection with the recently analyzed 
possibility of superfluidity of the charges in such sys- 
tems (e-h superconductivity) (Refs. 14-16).'' As shown 
in Ref. 14, in the case of the system 4), all  the pro- 
cesses with transitions between the bands of the pairing 
e and h make the existence of strictly homogeneous cur- 
rent states impossible. However, a s  indicated in Ref. 
16 (and later in Ref. 19) and a s  will be analyzed in the 
present paper in greater detail and on the basis of real- 
istic models, excited states with spontaneously broken 
translational symmetry exist and correspond to inhomo- 
geneous superfluid current states, and the character- 
istics of the inhomogeneity a re  determined by the mat- 
rix elements of interband transitions. 

The ground state of the system remains in this case 
translationally invariant and only the constant phase of 
the order parameter is fixed in it.5120v7 

This paper will deal, in particular, with inhomogen- 
eous superfluid current states in systems with pairing 
of spatially separated e and h ,  and account will be taken 
of the influence exerted on them by all the hitherto not 
considered types of inte rband transitions. Allowance 
for the latter causes the equation obtained for the order 

parameter in the stationary and one-dimensional pieces 
to be analogous to the equation for the physical pendul- 
um with a rotating oscillating plane. The fluxes in sys- 
tems with spatially separated e and h ,  in constrast to 
systems of type 1) and 2), carry  charges, i.e., they 
give rise (in the case of films) to a macroscopic experi- 
mentally observable undamped electric current (the 
system does not have anomalous diamagnetism14). 

We discuss also a system of nonequilibrium paired 
e and h,  in which the condensate flux carr ies  excitation 
energy. It will be shown below that when a semiconduc- 
tor is irradiated with an electromagnetic wave, the 
fluxes a re  also spontaneously inhomogeneous, and the 
inhomogeneity length is determined by the matrix ele- 
ments of the interband transitions induced by the field. 

We obtain (for T = 0 and T - T,, where T, is the phase- 
transition temperature) an equation for the weakly in- 
homogeneous phase @(R, t) of the order parameter, with 
account taken of hybridization and of all the interband 
transitions due to the Coulomb interactions, and for 
equilibrium excitonic phases. The functions q(R, t) de- 
termine the low-lying collective excitations of the sys- 
tem. We note that, in contrast to Refs. 5 and 21, where 
density waves of orbital and spin currents were investi- 
gated in the ground state of an excitonic dielectric, the 
"inhomogeneous" fluxes considered by us  a r e  connected 
with an inhomogeneous phase q(R, t) and a re  excited 
states of the system. These excited states can exist a t  
any order parameter in the ground state (real  o r  imag- 
inary) and, in particular, should occur also in all the 
systems considered in Refs. 5 and 21. 

If a phase transition is possible in the system, then 
the free-energy term that fixes the phase and is linear 
and the order parameter should vanish by virtue of the 
symmetry of the system (see Sec. 2). In this case the 
phase fixing can be due only to free-energy-functional 
terms that a r e  quadratic (or of higher order) in the or- 
de r  parameter (Sec. 2)-in contrast to the case consid- 
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ered for singlet pairing in Ref. 22 for layered and 
homogeneous excitonic phases. 

In this paper we consider various types of linear and 
nonlinear collective excitations in systems with singlet 
and triplet e-  h pairing (including systems of low density, 
Sec . 3). Besides the high-frequency plasma oscillations 
of the e- h system, which change little (if A<< w,) on 
going to the excitonic phase, in a system with e-lz pair- 
ing there occur low-lying collective excitations which 
can be described in the general case by an inhomogen- 
eous order parameter Aa,(R, t): 

where o,, is a vector whose components a r e  Pauli ma- 
trices and n is a unit vector. In correspondence with 
the four independent real  functions (q(R, t ) ,  cp(R, t), 
n(R, t ) )  it is possible to have four types (see also Ref. 5) 
of collective excitations in the system: two modes cor- 
responding to "oscillations" of the magnetization vector 
n, one mode corresponding to the oscillations of the 
phase cp of the wave function of the e-h pair condensate, 
and one mode connected with the oscillations of q. The 
q oscillation corresponds to the appearance, in the ex- 
cited state, of an inhomogeneous admixture of triplet 
e-h pairs if the ground state corresponds to a singlet 
condensate, o r  to an impurity of singlet pairs for a 
triplet condensate in the ground state. 

From the point of view of collective excitations and of 
their contribution to the observable physical quantities, 
three-dimensional equilibrium excitonic phases have no 
"superproperties," and do not differ in principle from 
ordinary dielectrics, antiferromagnets, etc., which a r e  
described by other models, (see Sec. 6). All this per- 
tains also to layered o r  quasi-one-dimensional crystals 
with alternating microscopic layers of e and h ,  where 
the electric currents along the layers play the role of 
"molecular currents" and a r e  not quantities that can be 
directly determined in experiment. Such systems 
should likewise exhibit no superproperties of their be- 
havior in external fields. 

Collective excitations can manifest themselves a s  
nonlinear polarization waves (Sec. 6) o r  nonlinear mag- 
netization waves (Sec. 4), domain walls, etc. 

2. EQUATION FOR THE PHASE OF THE ORDER 
PARAMETER IN HIGH-DENSITY SYSTEMS 

We consider f i rs t  an e-h system of type 1) and of a 
system with spatially separated e and i t ,  which a r e  list- 
ed in the Introduction [the qualitatively predicted effects 
occur also for the system 2)]. The Hamiltonian of such 
systems can be represented in the form H= H, +HI + H,, 
where H, is the Hamiltonian of the e- h system without 
allowance for the interband transitions; Hl corresponds 
to tunneling between the films for a system with spat- 
ially separated e and h o r  to hybridized interation in 
the Kohn-Luttinger representation for the systems 1) 

HI= M ( P )  a:,azpa+ H.C. ; 
P,= 

Hz corresponds to interband transitions due to screen- 
ing by the Coulomb interaction 

Here qpo ,a2 , ,  a r e  the operators of electron annihilation 
in the f i rs t  and in the second bands, o r  on films 1 and 
2, while cu and /3 a r e  the spin indices. The hybridiza- 
tionZ3 is given by the formula 

(here and below tZ= 1), cp,,(x) a r e  Bloch functions, k, i s  
the quasimomentum of the band extrema, V,,,,,(k) a r e  
the matrix elements of the screened Coulomb interac- 
tion and correspond to transitions of electrons from the 
f i rs t  to the second band. We have, for example, for  
small  frequency transfers: 

exp[- - lx , -xz l l rD]  
~ , c r ) = . ~ J  T : , ~ x , ) , : . ~ z J  ix l -x2 ,  

x plea ( x z )  9 2 b ( x 1 )  e x p [ i ~ ( x l - x 2 )  l d x ,  dx,. (1) 

Since cplko(x) and cp,,,&) a r e  orthogonal, the matrix ele- 
ments Vl,,,,(k) can be small compared with the pairing 
potential V,(k) which enters in H, and i s  connected with 
the direct  Coulomb interaction of e and h ; the quantities 
V,(k) and V3(k) do not differ greatly, and we shall 
henceforth assume for simplicity V,(k)= V,(k). For a 
system of spatially separated e and h , the matrix ele- 
ments V,,,,,(k) a r e  Fourier transforms of the 
"screened" (see, e.g., Ref. 14) e and h Coulomb poten- 
tial averaged over the wave functions of the transverse 
particle motion in the films. The quantities 
M(p),  Vl,,(k) can be  small compared with the pairing 
potential V,(k) because of the weak overlap of the wave 
functions of the transverse motion of the particles in 
different films. As shown by Keldysh and Kopaevl, a 
high-density e-h system i s  unstable to pairing of e and 
h in the case when the Fermi  surfaces of e and h are  
close in shape. 

We derive an equation for the phase of the order para- 
meter and an expression for the current in the system. 

A. Temperature T = 0. We introduce the normal and 
anomalous Green's functionsz4: 

I I 

G=j ( P ,  P, t, t ' )  = - i ( T ( a i , z p a ( t ) a , , ~ p + p ,  ( t ' )  ) ), 

In this section we consider singlet pairing of the e and 
h, so that F,,=6,,F+. We consider weakly inhomogen- 
eous excited states. We assume therefore that the 
characteristic momenta P and the frequencies corres- 
ponding to the motion of the pair a s  a whole a r e  much 
less  than the momenta p and the frequency w of the rel-  
ative motion. Taking the Fourier transforms of the fre- 
quencies o of the relative motion with respect to t-t' 
and of the coordinate R of the center of gravity with re- 
spect to P, we change over to the functions GPu1(R,t) 
and F,,+(R, t). For the latter at ~ / p  << 1 we obtain the 
Gor'kov equations for a system with Hamiltonian H: 
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where i * ( ~ , t )  i s  the effective order  parameter: 

APa(R, t )  - -M(p)  +i J v 0 ( p - k )  FL- dk do' 

+i J V 1  (p-k)  Fho# dk do8-2iVi ( 0 )  J (F,.*+~:,)dk do' 

For the sake of simplicity we chose the dispersion laws 
in the form rl,,(p)=*(p2/2m + ~ / 2 ) ,  where E, is the 
overlap of the bare  bands for the initial semimetal. 

B. We consider f i r s t  the simplest case M(p)=M 
= const: This should take place for  a system of spatially 
separated e and h. The function F+,,(R, t )  depends2 ) on 
Ip I and in expression (3) for Z,*(R, t)  we can integrate 
V0,,,,(p -k) with respect to the angles dS2,. The func- 
tions V0,,,,(p - k) vary over momenta Ip - k la l/rD, and 
we therefore replace the angle-integrated potentials 

J v o , 1 , 2 ( ~ - k ) d Q h  

by the constants V0,,,, at Ip -k /<  l!rD and by zero  a t  
I p  - kl> l/rD. Thus, we have for A,*(R, t )  

Ap'(R, t )  =A'(R, t)=W+iVo SF,+,. dk do1- iv l  J F,,! dkdo' ,  

p, i s  the Fermi momentum, and no= 2n for two-dimen- 
sional and no= 417 for three-dimensional systems. Elim- 
inating C;,(R, t )  from Eqs. (2), we obtain for F;,(R, t): 

{ a 2 - f 2 -  I A 12+Bp.(A*)}Fpr ' ( R ,  t )  =A'(R, t ) .  (5) 

Here i,,(A*) includes all the terms that contain the 
"small operators" a/at and h= - i a / a ~ :  

az - 
B ~ ~ ( A - ) =  - -- r2+2 a t' 

E ( p + ~ )  =e ( p )  +r^Ee+i? 

We substitute in (4) the formal solution for F;, from 
(5). Expanding the operator (w2 - 5' - I A 12+B,,(~*))-1 
in powers of &,,(A*)/(w2 - 5' - I A 1 ') and assuming the 
change of the modulus I A I to be small, we obtain as a 
result an equation for the phase of the order parameter 
q(R,t) ,  (A= IAIei' =AoeiV): 

- 
u2 =vp2/2 ,~ (0 )  =m/2n; the term M2/(2A$N(0)V0 in 1/~,2 
takes into account in the approximation of lowest order 
in M the weak change of the modulus of the order para- 
meter. The current of the charges in one film3) is 

In f i rs t  order in the small  operators  at and fi we get 
from (8) 

en, 
j i = -  

prZ 
Vcp(R,t) ,  n o = - .  

2m 2n 

The particle density in one film, in the same approxi- 
mation, is 

n ' = - 2 i ~ ~  ( s t ,  s t ' )  - - n , - ~  ( 0 ) s .  
1'-.1+0 a t  

The current j1 in one film is determined by the solution 
of equation (6) with boundary condition 

and in  the nonstationary problem and initial conditions, 
fo r  example, 

where j, is the current on the boundary s, and n,(R) is 
the distribution of the charges a t  the instant t = 0. We 
neglect here the reaction of the induced magnetic field 
on the current. It i s  easily seen from (9) and (10) that 
Eq. (6) follows from the continuity equation for the total 
current in the system: 

an' 
e -  + div j1=Ii2, 

at 

where I,, is the tunnel current between the e and h 
films. 

C. For three-dimensional excitonic phases I ~ ( p ) d h l ,  
= 0, s o  that the t e rms  of f i r s t  order in  M(p) drop out 
of the equation for  the phase. In the lowest order in 
I M ( ~ ) / A  1 <c 1 we obtain, an analogy with the derivation 
given above, an equation of the form (6) for the phase 
of the order  parameter, but with different coefficients: 

- 
where V,,,,, is defined in (4). The las t  tezm in 1/~,2 
in the approximation of lowest order in ( v d e 0 )  takes 
into account the weak change of the modulus 1 A 1 .  Con- 
cerning the effective boundary conditions for the exci- 
tonic phases, see  Ref. 25. 

If the Bloch functions of the electrons and holes, 
which enter in the definition of v2(k) [see (I)] transform 
in accordance with different representations of the sym- 
metry group of the crystal, then, as follows from (4), 
F2 = 0 and consequently 1/L: = 0. In this case Vl# 0, 
since V, contains the Bloch-function combination 
(qlk*qzk *q,,q,), and consequently 1/L: #O. Only in 
the case V2= 0 does a phase transition exist in the sys- 
tem (see subsection E). The coefficient 1/L; may van- 
i sh  also for a system with spatially separated e and h, 
for example i f  the different f i lms have the same lattice 
symmetry, but the Bloch functions of the pairing quasi- 
particles transform in accordance with different repre- 
sentations of the symmetry group. 

We write out the conditions for the applicability of 
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Eq. (6) and expressions (9) and (10) for the densities of 
particles and of the current. We used in their deriv- . 
ation the slowness of the variation of A over the coher- 
ence length to, a s  well as the condition 1 A / =  const. 
This imposes restrictions on the values of M, V,, and 
V, and on the boundary conditions. Estimating the 
terms discarded in the derivation of (6), we arrive a t  
the inequalities 

These conditions can be  easily satisfied for a system 
with spatially separated e and h, fo r  example, by in- 
creasing the distance between the films. In semimetals 
and semiconductors, the conditions for the smallness 
of the interband matrix elements, sufficient for the ex- 
istence of collective excitations connected only with the 
phase p(R, t ) ,  can be  satisfied in rather special cases. 

D. For three-dimensional excitonic phases a t  a tem- 
perature T close to critical, (T,,- T)/T,,<< 1, we can 
derive a time-independent equation for the phase of the 
order parameter (T, is the phase-transition temper- 
ature in the absence of interband transitions). We 
start  with the Gor'kov equations for the thermodynamic 
Green's functionsz4 G1(p) = -(T(alp;p+p)) and F+(P) 
= (T(a,p+,)). These equations coincide with equations 
(2) if we make the substitutions w+i8/8t -iw, B,* - -Afi*,iVo,ld~J- v,,TC. The order parameter A* 
= z,,* - M(p)# 0 in the entire temperature region if  A #  0 
(see (4)). As T - T,,, however, we have I A 1 -  
and consequently we can expand the Gor'kov equations 
in terms of the parameter I A ~ T , ,  I near T,,, if I A/T,, I 
<< 1: 

F,.+ (R) =G-.'(A+M (p)) 'Ga0-G-.O(A+M (p) )' 
X GW0(A+M(p))G-.O(A+M(p))'G.O, G.'= (io-e )-I. 

Assuming slowness of the variation of A(R) over the 
length to, we obtain an equation for $*(R) 
= [7f ( ~ ) N / ~ ( T T ~ ~ ] " ~ A ( R ) ,  where N is the particle den- 
sity: 

4 
-(iV)'q+a~+plrpl2~+rrp'-X=O, 
4m 

We do not present here the remaining coefficients of 
(12), since they coincide in the case of three-dimen- 
sional excitonic phases with the corresponding coef- 
ficients of superconductivity theory .24 Equation (12) 
corresponds to a free-energy density: 

liV$12 B 
~ { ~ ) = ~ . + - + a l r p ~ z + ~  4m 1*14++(rpz+).')-~(rp+(.). (13) 

The last  two terms lead to fixation of the phase of the 
order parameter. From (13) assuming I $1 en = const, 
which is valid only at I V p  I <<n/v,, I ~',/v,I << 1 and 

1 M ,/~,,2 I << 1, we obtain an equation for the phase of 
the order parameter: 

Vzp= (F) sin ~ - 4 m y  sio(2p). (14) 

For a zero-gap excitonic impurity dielectric at T- Too 
we c q  obtain for the phase p(R, t ) ,  with the aid of triv- 
ial  transformations in the ~or'kov-filiashberg theory, a 
time-dependent equation that describes the excited 
states and corresponds to oscillations of the condensate 
relative to the particles in excess of the condensate. 

E. Influence of interband transitions on the phase 
transition in a three-dimensional system. It is seen 
from (13) that the quantity X, which is determined by 
interband transitions of the type V,(k), plays the role 
of an external field conjugate to the order parameter 
$ (and $*I. Similarly, the quantity Y connected with the 
interband transitions of type Vl(k) and with the second 
order in the hybridization, plays the role of an external 
field conjugate to the square of the order parameter 
$2 (and $*'I. 

y e  consider now the homogeneous case. By virtue 
of A #  0 we know (see Ref. 26) that the phase transition 
of second order in the temperature vanishes and the 
order parameter is different from zero in the entire 
temperature region. The jump of the specific heat i s  
smeared out in  this case in the region IT,, - T I 

where a =a,(T - T,,). 
- 

AtV,=O(i.e., A=0)andf l+0( i . e . ,  y#O), i t c a n b e  
easily verified by using (13) that the minimum of F{$} 
is reached at $= I$ 1 ei*o, where cp0=n/2 a t  y > 0, i.e., 
the phase of the order parameter i s  fixed5*7*20 and the 
order parameter is in this case pure imaginary. The 
gain in f ree  energy due to pairing is 6F =F -F , -  111, 1 4 ,  
so that a second order phase transition should take 
place in the system, just as when no account is taken 
of the interband  transition^.^ 'Only a renormalization 
of the transition temperature T, takes place: 

Besides the phase transition with respect to temper- 
ature, phase transitions with respect to other para- 
meters (pressure, etc.) can occur in the system. For 
example, a t  T = 0 a first-order phase transition can oc- 
cur when the pressure i s  varied.'*20 

3. EXCITED STATES IN e-h SYSTEMS OF LOW 
DENSITY 

By way of examples of equilibrium systems with low 
e-h pair density we point out the following: 1) e-h fi lms 
with low concentrations of e and h (Ref. 14); 2) the ex- 
citonic phase produced upon restructuring of a semicon- 
ductor with a bare  gap width E, only negligibly smaller 
than the exciton binding energy Ry*: (Ry* - E,)/R~* 
<< In such systems, the possibility of transition into 
the excitonic phase is not connected with the rather 
stringent requirements that the shapes.of the Fermi 
surfaces (or of sections of these surfaces) of the elec- 
trons and holes coincide, a mandatory requirement in 
the case of dense e-h systems. 

We obtain now an equation for the homogeneous order 
parameter. 'we  introduce the function A&, x't') 
= W o k  -xJ)F(xt, x't'). For simplicity we assume V, = V, 
=Om+ 0). Their role is analogous to the high-density 
case considered above. The equation for A&, x'tJ) and 
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T = O  in the self-consistent approximation is of the form 
(to abbreviate the notation we leave out the integration 
variables): 

A (xt, x't') =iVo(x-x') [G,O(A+M)G,O+G,OAG,OA0F] 

where C:,, a r e  the exact Green's functions in the ab- 
sence of pairing and V,k - x t )  is the unscreened Coul- 
omb potential. We discard in (15), assuming that 
~ M / A  1 << 1, the t e rms  of second order in M. Equation 
(15) does not take into account the e-h pair correlation 
interactions which a r e  essential for low-density sys-  
tems. But all these t e rms  which a r e  not accounted for 
in (15) a r e  proportional to A3 and to  higher powers of 
the small (for systems with low e-h pair density) quan- 
tity A. Therefore the correlation effects will be taken 
into account by replacing the coefficient of a3, as in 
Ref. 12, by a phenomenological constant. We do not 
take into account here the possibility of formation of a 
condensed e-h phase (see Ref. 13). 

We change over, just a s  in Sec. 2, to a mixed repre- 
sentation (R, t ,  p, w)  and consider slow variations with 
respect to the coordinates R and time t of the motion 
of the center of gravity of the e-h pair. In this case we 
can expand the t e rms  in the right-hand side of (15) in 
the gradients of the function A. Introducing 

A,(R, t )  = A,,, (R ,  t ) d o f  

and 

we obtain from (15) for $,(R, t ) :  

the dispersion laws of e and h a r e  assumed for simplic- 
ity to be quadratic. Since it was assumed that all the 
quantities change slowly relative to R and t ,  we can 
carry  out an adiabatic separation of the variables in 
(16). The equation for the fast  subsystem (variable p) 
is taken in the form 

[ Z E  ( p ) +  i A p ( R ' t )  l a  -E(R,  t ) ]  q ( p ) -  1 V O ( p - p t ) ~ ~ ~ ~ '  (17) 
2&(P) 

Then, introducing @,(R, t): q ~ ~ = C , p ~ ( p ) + , ( ~ ,  t), we ob- 
tain for the slow subsystem 

In the derivation of (18) we have discarded all the non- 
adiabatic corrections, a procedure permissible if 
IM/A I << 1. From (17) we get E,(R, t) and p,(p), re- 
garding I A(R, t )  1 ,/2< (P) a s  a small  perturbation: 

where E,,(n) a r e  the levels and p,(p) a re  the wave func- 
tions of the hydrogenlike e-h pair. Let E, be  such that 
a1<O but a,>O a t n 3 2 ,  where ol ,=EeI~)+E,  (i-e., the 
width of the bare  forbidden band is less  than the binding 

energy of the pair, but still exceeds its binding energy 
in the f i rs t  excited state). We then obtain from (18) and 
(19) an equation that describes the change of the density 
of the Bose condensate of e-h pai rs  in a low-density 
system: 

As already mentioned, fll includes the correlation in- 
teractions. Linearizing (20), we obtain the spectrum 
of linear collective excitations (see also Ref. 20): 

For spatially separated e and h, the particle flux on 
one film 

and the particle density on the film i s  
nl=-2i G' (xt ,  xt') =CIQIE, 

1.-1+0 

where the coefficient C takes into account the correl- 
ation effects (C = 1 in the average-field approximation). 
The quantities j1 and n1 a r e  connected with the continu- 
ity equation that follows from (20). Equation (20) differs 
from the phenomenological ~ i n z b u r ~ - ~ i t a e v s k i i  equa- 
tion in the presence of a source of e-h pa i r s  connected 
with the tunneling (or hybridization). Allowance for the 
other types of the interband transitions leads, just a s  in 
a dense system, to the appearance of terms of the type 
Y(@* + @) in (20). 

In the stationary case (20) goes over into an equation 
of the type (12), from which we get, assuming 19 1 to 
be  constant, an equation of type (14) for the phase p(R, t) 
of the wave function @(R, t) .  

4. INHOMOGENEOUS SOLUTIONS IN  TRIPLET 
PAIRING OF e AND h 

The anomalous Green's function (T- T,) in  the case 
of triplet pairing takes the form Fa: = (n *uaB)Ft. In 
triplet pairing of e and h from bands separated by a 
vector w equal to half the reciprocal-lattice vector, 
antiferromagnetic ordering of the spins appears, and 
the vector n characterizes the magnetization direction., 

We consider collective excitations corresponding to 
oscillations of the vector n and to an inhomogeneous 
distribution of the phase p (R, t) of the condensate with 
allowance for all the interband transitions5'. For oscil- 
lations of n in a plane perpendicular to the z axis, we 
introduce eiQn =n,+in,. Using a procedure similar to 
that described in Sec. 2, we obtain as T - T, equations 
for the phase p (see also Ref. 27) of the parameter con- 
nected with F,(R), and for the phase p, of the vector 
n: 

We note that Eq. (24), for p, in the case of triplet 
pairing, in contrast to Eq. (14) for singlet pairing, 
does not contain terms connected with M, Vl(0) and V,. 
The point is that in the case of triplet pairing the sing- 
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le-particle interband (tunnel) transitions between the 
pairing e and h (Figs. l a  and lb) a re  impossible, since 
the particle spin cannot be flipped by the Coulomb in- 
teractions with the spin-orbit interaction neglected. 
There remains, however, a possibility of two-particle 
tunneling between e and h belonging to the e-h pairs 
with different spin projections. It is these processes 
to which the terms -Vl(k) of the Hamiltonian corres- 
pond and determine the right-hand side of the (24). 

Equation (24) admits of the following: 1) "linear" ex- 
citations with cp, = P -ow, where p,, is a vector in the 
xy plane (similar modes correspond to oscillations of 
n in the planes xz and yz) and with fixed phase 
cp =nn/2b = 0,1,. . . ); 2) "nonlinear" excitations with 
+ 2 const. The magnetic-moment density corresponding 
to the inhomogeneous phase cp(R, t )  is given by 

I 
M(R, t )  =2np.Ao sin cp(R, t ) ,  p,= e""uiP(R) &+,(R) - ( E ~ + A * ) ' ~ *  ' 

P 
Ic,l-=-, 

where ei%,&) = p,(x) a re  Bloch functions. The fore- 
going oscillation modes corresponding to excited states 
of an antiferromagnet corresponds to large scale 
inhomogeneity of M(R, t). 

At T = 0, using the method of Sec. 2, we can obtain a 
time-dependent equation of the sine-Gordon type for 
cp (R, t) and a wave equation for cp,. From the equation 
for cp we can obtain the spectrum of the collective ex- 
citations with gap a t  small k, and from the equation for 
cp, we can obtain the zero-gap collective excitations 
(spin waves). The spin-orbit interaction can lead to 
fixing of the phase cp, and to the appearance of a gap in 
the spin-wave spectrum. 

Excited states connected with the phase of q. Fixing 
of the phase of the parameter 7) (see the Introduction) 
is the result of the term -X (see Sec. 2A). Consequently a t  
X+ 0 in the ground state of an excitonic dielectric there 
coexist triplet and singlet e-h pairs. We direct the z 
axis along the vector n, and then Aa, 
= (b,,cosq +iu,; sin~)h,exp(icp,). By the method de- 
scribed in Sec. 2, we obtain an equation for q in the ex- 
cited state (at T =O): 

FIG. 1. a) Triplet pairing; "single-particle" interband transi- 
tion i s  impossible; b) singlet pairings; single-particle inter- 
band transition is  possible; c) triplet pairing; "two-particle" 
interband transition is  possible and is  connected with the terms - V l ( k )  in the Hamiltonian H, where V l ( k )  corresponds to 
transition between e and h belonging to e-h pairs with differ- 
ent spin projections. 

The coefficients L, and L, a r e  defined by (11). 

5. QUALITATIVE INVESTIGATION OF THE 
SOLUTIONS OF THE EQUATIONS FOR THE PHASE 

The time-dependent equation for the phase (6) can be 
se t  in correspondence with the Hamiltonian 

We have introduced the dimensionless variables x' =x/ 
L 1 , t f = t u / ~ ,  and put (L:/L:)=X. 

In the homogeneous ground state (Bcp/Bt = Vcp =0) the 
minimum of the functional H is reached at cp = cp,= 0 if 
k<1/2, and cp =cp,,,=* arccos(l/&), if k>1/2. It is 
these points which correspond to the fixed order-para- 
meter phase in the ground state. In the stationary one- 
dimensional case the time-independent equations for the 
phase of the order parameter, (6) and (141, coincide 
with the equations of motion of a physical pendulum with 
rotating oscillating plane and a potential energy U(p) 
= cosrp - l/,k cos(2cp), and the variable x' plays in this 
case the role of the time. The points cp,, cp,,, cp, a re  
the points of the extrema of the potential energy of the 
pendulum. Qualitatively, the character of the solutions 
can be  easily understood by considering the plot of the 
potential energy U(cp) (Fig. 2). Three different types of 
solutions of the stationary equation for cp a r e  possible: 
1) Small oscillations of the pendulum about the equilib- 
rium positions (0, and p,t; It can be shown that solu- 
tions of this type a re  unstable. 2) Rotations of the pen- 
dulum about the suspension axis. 3) Solutions of the 
soliton type, corresponding to an infinitesimally slow 
rotation of the pendulum from position 1 to position 2 
or from position 2 to position 3 (at A> 1/2). Multiso- 
liton solutions also exist. Solutions of type 2) can be 
realized only if the gradient of the phase on the bound- 
ary  is I ~ c p  /, I >A, where A = L;' (2 + 1/2k +2k)'I2 a t  
A>'/, and A = 2/L1 a t  X< 1/2. Each type of solution cor- 
responds to  a definite distribution of cp and k p  in space. 
For  a system of spatially separated e and h, the solu- 
tions of the f i rs t  type correspond to closed circular 
flows in regions of dimensional L, (and L,). Solutions 
of the second type correspond to  a weakly modulated 
(over lengths L, and L,) superfluid f l u  of particles in 
the system. Solutions of the third type correspond to 

FIG. 2, Dependence of the energy U(cp)= coscp - i~cos2cp on the 
phase; A = arccos $h . 
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solitary currents in limited regions with dimensions 
L, or  L,. Outside these regions there is no flow. The 
average flow differs from zero, just as in case 2). 

The spectrum of the linear collective excitations of 
the system does not have an acoustic character, as 
was the case in the absence of t e rms  that fix the phase 
of the order parameter (see also Refs. 28 and 20). In- 
deed, linearizing the nonstationaxy equation (8) near 
q = O ,  we get w ( k ) = ~ ( k ~ + ~ ; ~ + ~ ; ~ ) ~ / ~ .  

There exist also "moving" solutions q~ &' - vt') of (6), 
obtained from the solutions q(xl) of the stationary equa- 
tion by the substitution x' - (x' - vtl)/(l - v2)112. With 
increasing matrix elements M of the interband tran- 
sitions, the energy of the inhomogeneous excited states 
in the system increases, and a t  I M / A  12 1 their energy 
becomes larger than the energy of the normal phase. 
Thus, a t  I M/A 12 1 the collective excitations of the type 
considered above cannot be realized. 

6. ABSENCE OF SUPERPROPERTIES OF THREE- 
DIMENSIONAL EXClTONlC PHASES. POLARIZATION 
WAVES 

The inhomogeneous phases (p,, (p, q correspond to 
collective excitations. These collective excitations can 
contribute to the specific heat and to other quantities 
that characterize the state of the system. Their contri- 
bution to the thermodynamic characteristics of the sys- 
tem is negligibly small, since the excitations that cor- 
respond to the inhomogeneous phase involve a very 
large number of particles in a region with dimensions 
L _z 5,. Collective excitations of this type can, in ad- 
dition, contribute also to  the transport properties of 
the system. Thus, for example, energy transport can 
be realized with the aid of an excitation of the soliton 
type, (i.e., moving domain walls). This raises the 
question whether the excitonic phases have some super- 
properties, for example superthermal conductivity. 
It is obvious that a condensate of e-h pairs which is a t  
rest  a s  a whole cannot carry  any heat (its entropy is 
zero). On the other hand, the contribution of the sing- 
le-particle excitations to the thermal-conductivity coef- 
ficient is finite (in contrast to 4He), since the latter al- 
ways have a finite mean free path connected with the ' 

scattering by the lattice defect, impurities, phonons, 
etc. (see also Ref. 29). Only moving (time-dependent) 
collective excitations of the considered type, for exam- 
ple soliton solutions of the type cp(x - vt) (moving do- 
mains), can contribute to the thermal-conductivity coef- 
ficient. However, these inhomogeneous collective ex- 
citations a re  stopped and scattered by the lattice defects 
etc., and consequently likewise do not lead to super- 
thermal conductivity of the system. It is important here 
that the state corresponding to the soliton o r  the in- 
homogeneous "flux" solution, moving with velocity v, 
is not separated by an energy barr ier  from the state of 
the same type moving with a changed velocity. There- 
fore the change of the velocity v of the entire structure 
q(x - vt), for example the stopping of a soliton, is a 
process of no little probability (but a change of the type 
of structure, for example the production of a soliton 
(domain), does consume much energy and has therefore 

low probability). Thus, the dissipation of moving col- 
lective excitations of the condensate is substantial. 

On the other hand, in a system with spatially separ- 
ated e and h ,  an electric current j - Vq exists also in 
the case when the corresponding distribution of the 
phase ~ ( x )  does not move-the soliton was pinned. 
Moreover, in analogy with type-11 superconductors, the 
ideal conductivity can be realized only if this pinning 
did take place, for otherwise dissipation will be con- 
nected with the motion of the inhomogeneous solution 
cp(x - vt). 

Polarization waves. We consider a case when a dipole 
moment due to electrons and holes can appear in a 
crystal having the symmetry of a pyroelectric. The di- 
pole moment of the unit cell is equal to 
d,- j d (xt)dx, d(x, t) =2d[G1 (xt, xt)+G2(xt, xt) +2 Re F(xt, xt) 1, d=ex, 

.el 

d(x, t) is the local density of the dipole moment. The 
first  two terms in the density d(x, t) can lead to pyro- 
electricity even in the absence of e-h pairing. We shall 
analyze here the contribution of the third term, which 
is due to e-h pairing. In this case 

In the ground state of the system, the phase is fixed 
(p = (p, and d,  =const + 0, if cp, + v/2. If the extrema of the 
bands coincide, then in the ground state the total dipole 
moment of the crystal is D =xi di + 0 (see Refs. 30 and 
21). At V2=0 (see Sec. 2) a second-order phase tran- 
sition is possible in the system, accompanied by a di- 
pole moment proportional to the order parameter, i.e., 
the system is a ferroelectric. At V-,#O there is no 
phase transition, and the system is a pyroelectric. If 
the extrema of the bands a re  separated by a vector 

1 w 1 = ~ / 2 ,  where G is the reciprocal-lattice vector, 
then the dipole moment of the unit cell is given by 
formula (25), where d,,, must be replaced by 

In the case of a displacement equal to the lattice period, 
d,, reverses sign (d,, =-d,,,,). In this case the total 
dipole moment is D =0, and we have an antiferroelec- 
tr ic in the ground state. 

We consider now the excitation of the antiferroelec- 
tr ic state. It corresponds to an inhomogeneous distri- 
bution of the phase of the order parameter, d(R, t )  - coscp(R, t),  where q(R, t) satisfies Eq. (6). Thus, a 
polarization-density wave (with a period L, o r  L,) ap- 
pears in the excited state of the antiferroelectric. It 
is possible to introduce the tensor r,, of the flux of the 
vector d(R, t), which we determine from the continuity 
equation for d(R; t). For  I?,, we obtain (in the zeroth 
order in the gradients of the function (p(R,t)): 

1 
I'rr=diaAo sin cp, dtk= - 

m 2 P. o. [ ( v A ( ~ t p ) ( P ; P + w - ~ t ~ ~ A ~ z p + ~ ]  
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In the ground state r , ,=0 for  a real  order parameter. 
We note that the flux I?,, is not-directly connectep with 
vcp 
7. FIXING OF THE PHASE AND INHOMOGENEOUS 
CURRENT STATES IN A NONEQUlLlBRlUM SYSTEM 

We consider an intrinsic semiconductor E,>> E,, in the 
field of a strong electromagnetic wave of frequency 
Q(52 2 E,) ,  which realizes the inversion of the quasi- 
Fermi  population in the system. After a unitary trans- 
formation corresponding to a transition to specified 
Fermi  quasilevels of the nonequilibrium e and h (see 
Ref. 31), the Hamiltonian of the system takes the form 

6t- x el (p) a,.+a,,+~, (P) ~ ~ + a , , +  (I(P) ~IP+%P+H.C.) 
P 

i?' takes into account the interband transitions in the 
transformed Hamiltonian (for example, hybridization 
corresponds to the term [M( p)ein 'a,, + a,, + H.C .I), and 
X(p) is the matrix element of the interband transitions 
in the field of a monochromatic wave).31 

The interband transitions that enter in if can be 
treated by perturbation theory and yield rapidly oscil- 
lating (-eint) corrections to the density and to the par- 
ticle flux (with amplitude - (M/SZ I<< I ) ,  which vanish for 
an averaged over time intervals t >> l/!J(~1= E,) .  We 
shall therefore leave them out hereafter. Then the 
Hamiltonian 2 does not depend on the time and reduces 
to the form considered by us in Sec. 2 above (the Ham- 
iltonian H and Vl = V2 = 0 and X( p) = M( p)). The descrip- 
tion of the pairing of the nonequilibrium e and h is in 
this case similar  to the equilibrium case.7 The term 
~ ( p )  connected with the electromagnetic field plays the 
same role a s  the hybridization interaction in the analy- 
sis of the flux states. Calculations similar  to those in 
Sec. 2 yield for the phase cp of the order  parameter: 

We note that if 

h-- ~ A ( P )  ~ Q ~ I ~ - ~ . + O ,  

then the equation for cp will contain the term 
-(k/A,) sincp. The expressions for the flux and density 
of the particles coincide with (9) and (lo),  in which N(0) 
is in this case the state density on the Fe rmi  quasi- 
levels. In contrast to the equilibrium case, the inhomo- 
geneous exciton flux is accompanied by energy trans- 
port: j, =E,n,Vcp/4m. The inhomogeneity length L of 
the flux and the concentration of the excitons a r e  de- 
termined by the intensity of the external field: L= 1 / X ;  
f o r  X = (loa-lo4) eV, L= (1-I@)(, a t  A, = lo-' eV. 

Note added i n  proof (25 December 1978). In a paper 
_by E. -B. Sonin (Sov. Phys. J E T P  47, 1091, 1978), the 
equation fo r  the angle p, that characterizes the rotation 
of the magnetization vector (which follows from the 
phenomenological Landau- Lifshitz equation) is erron- 
eously se t  in correspondence with a derived microscop- 
ic equation for  another quantity-the phase cp of the con- 
densate (cf. Sec. 4 of the present paper). The "super- 
fluid" spin fluxes discussed by Sonin a r e  in a more  ade- 
quate language simply magnetization domains. The 
solutions of the Landau-Lifshitz equations correspond- 
ing to magnetic solitons (domains) were f i r s t  obtained 
in the very interesting papers  of A. E. Borovik (see 
A. E. Borovik, J E T P  Lett. 28, 1978 and the l i terature 
cited therein). 

Pairing is possible here ati5 l / h i  + l /h2 2 C o- ', where h and 
h are the mean free paths of e and h, and '= I A1 /Evp 
is the coherence length. This is realizable in the following: 
1) In two semiconducting films in which the charged separa- 
tion is due to the difference between the work functions. 2) In 
two semimetallic films A and B in which the Fermi surfaces 
of the electrons of A and of the holes of B are close in form. 
3) In inversion layers of e and h type on the internal surfaces 
of films adjacent to a dielectric liner. Ch the other hand, in 
a system of films of n- andp-type semiconductors," in 
which the number of carriers is smaller than the number of 
impurities, the opposite inequality holds, so that e-h pair- 
ing is impossible. Superfluidity of spatially separated e and h 
was not considered in Ref. 17. The most realistic for the 
observation of e-h superconductivity are systems with small 
and intermediate density, considered in Refs. 14, 18, and 
13. '' For simplicity we assume that the pairing potential 
is VoQ=T/o(k).  

" For simplicity we disregard the effects of periodicity for 
e-h films. In addition, in expressions (8) and (10) we have 
replaced, accurate to te-rms of second order in the deriva- 
tives of the function cp(R,t), the total Green's function on one 
film G,,=-i(~((J,i(xl)+rCI~(~i))($i* +#2* ( 1 ~ :  ))) 41 and 
%; lie in the first film) by a function G' which does not take 
into account the weak overlap of the wave function of the par- 
ticles on different films. This pertains also to formulas (21) 
and (22) below. 

4'~llowance for the possibility of formation of an e-h liquidi3 
leads to a transformation of the phase transition into a first- 
order transition. According to Gor'kov and Mnatsakanov,' 
anisotropy can also lead to a similar effect. 

5'The phase fixing connected with transitions between the sub- 
systems of the e-h pairs with different spin projections, and 
its connection with the possibility of homogeneous superfluid 
fluxes in these subsystems, were analyzed in Ref. 14 for 
spatially separated e and h. Spin fluxes in antiferromagnets 
were considered in Ref. 27. .- 
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A theory is developed of quantum decay of a metastable state in a class of problems in which quantum 
fluctuations governing subbamer evolution of virtual nuclei of the new phase are related to the local 
motion of single particles. A model of a crystal with two positions (states) of an atom in a unit cell is 
considered. The amplitude of the tunnel creation of a critical nucleus is found. It is shown that the 
associated characteristic sum over various "paths" can be found employing the conventional statistical 
methods. The discrete nature of the energy structure of the levels makes it necessary to allow for the 
interaction with phonons, which is done within the framework of the kinetic equation for the density 
matrix. The method can be applied also to analyze the decay of a metastable state via formation of finite 
clusters, when the macroscopic description is impossible. 

PACS numbers: 05.30. - d 

1. INTRODUCTION tastable state is  found to be associated with subbarrier 
tunneling of a virtual nuclei of the new phase in the con- 

Lifshitz and ~ a g a n l  (see also ~ordanskii and Fin- figuration space. This virtual growth of nuclei causes 
kel'shtekjna) developed quantum kinetics of phase transi- an initially homogeneous system to pass through a se- 
tions at temperatures close to T = 0. Decay of a me- quence of locally inhomogeneous states. Lifshitz and 
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