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The effect of dipole forces on the Kosterlitz-Thouless phase transition is considered. It is shown that 
dipole forces are' responsible for the existence, in the vicinity of T,, of a narrow critical region within 
which they play a dominant role. In this region, self-consistent field theory is valid to within logarithmic 
corrections; the spontaneous moment varies by an amount of the order of the saturation moment. The 
results are also applicable to layered magnetic materials with sufficiently weak interplane coupling, and to 
films of ferroelectric smectic C. 

PACS numbers: 75.30.Cr, 75.30.Kz, 75.70.Dp, 77.80.Bh 

1. INTRODUCTION 

In recent  years ,  intensive theoretical investigations 
have been car r ied  out on two-dimensional (2D) degen- 
e ra te  systems. As is well known,' in such systems,  
with local interaction, the order parameter  (m) is ze ro  
a t  nonzero temperature. The formal reason for this i s  
divergence of the integral that determines the mean 
square of the fluctuation of the order  parameter:  

Therefore the method of the self-consistent field and 
the 4-s expansion, which has i t  as a start ing point, 
a r e  completely inapplicable to such systems. 

A 2D XY model was studied by B e r e z i n ~ k i i . ~  The ex- 
istence of a phase transition was demonstrated; the 
low-temperature phase i s  characterized by the presence 
of a stiffness p, with respect  t o  t ransverse  fluctuations 
of the moment (an analog of the superfluid density in 
He 11) and by a gradual decrease of the spin-spin co r r e -  
lator with distance. Pokrovskii and Uimin3 investigated 
the behavior of a system in various weak fields from the 
point of view of sca le  invariance. Kosterlitz and Thou- 
l e ~ s ~ . ~  investigated the phase transition in this model 
(see also Refs. 6 and 7). On the other hand, experi- 
mental studies a r e  now being made on sys tems which, 
in the "zeroth" approximation, a r e  described by the 2D 
XY modei. These include thin superfluid f i lms of 4He,8 
a two-dimensional crystal  of atoms adsorbed on a sur- 
face,' and an  easy  -plane (planar) layered ferromagnet 
with weak interplane e x ~ h a n g e . ' ~ - ' ~  Communications 
have recently appeared on the synthesis of a two-dimen- 
sional ferromagnet13 and on experiments with thin 
films (a few molecular layers thick) of ferroelectr ic  
smectic c ' ~  (on the properties of bulk smectic C, s e e  
Ref. 15). 

Ferromagnetic and ferroelectr ic  sys tems a r e  especi- 
ally suitable for  investigation, since there exist exter- 
nal fields (magnetic and electr ic)  that a r e  directly re -  
lated to the order parameter. But in these sys tems 
there also exists  the nonlocal dipole-dipole interaction 
(DDI). Strongly developed fluctuations produce an 
anomalous1 y large susceptibility in degenerate 2D sys-  

tems. Therefore DDI, because of i t s  long range, 
strongly influences the properties of the system, des- 
pite i t s  sma l l  intensity a s  regards  local forces. The 
low-temperature phase of a 2D Heisenberg ferromag- 
net, with allowance for  DDI, was investigated by Mal- 
eev16 and by Pokrovskii and the author." It was shown 
that DDI leads to an effective anisotropy of the "easy 
plane" type and to the appearance of a t e rm in the ener- 
gy of the fluctuations that is linear in the momentum; 
therefore a spontaneous moment appears a t  sufficiently 
low temperature. 

The present  paper studies the phase transition in a 
2D planar ferromagnet. It is shown that in this system 
a single phase transition occurs,  a t  which the stiffness 
p, and the spontaneous moment disappear simultaneous- 
ly, and that DDI leads to a shift of the transition tem- 
perature a s  compared with the purely exchange X Y  mo- 
del: 

(pZ is the rat io of the intensity of the dipole to that of the 
exchange interaction). In the vicinity of T, there is a 
cri t ical  region, of width - ~ , l n - ~ ( l / ~ ~ ) ,  where DDI plays 
a dominant role,  provided such la rge  distance scales 
r - k-' a r e  important that the dipole t e rm -p2k in the 
energy of the fluctuations becomes la rger  than the ex- 
change t e rm -5'. Here a "parquet" situation a r i s e s  in 
the two-dimensional theory, a s  in four-dimensional 
phase transitions with local interaction and in three- 
dimensional with participation of dipole  force^.'^ The 
applicability of the results  to layered  magnet^'^"^ and 
to f i lms of ferroelectr ic  smectic C14 i s  discussed. 

2. TWO-DIMENSIONAL HEISENBERG FERROMAGNET 

It was shown earlier' ' that in the study of large-scale 
fluctuations, the Hamiltonian of a 2D ferromagnet re -  
duces to the effective Hamiltonian of the 2D XY model 
with DDI: 

Here m i s  a plane vector of unit length. A system of 
units i s  adopted in which the lattice constant a, the ex- 
change integral J, and the length of the spin vector S 
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a r e  unity. 

The important small parameter of the problem is 
p2 - lo-'. The seed correlator corresponding to the 
Hamiltonian (1) is 

where the angular variable o, has been introduced, 

m(x) = (cos o., sin ox), 

and wk i s  a Fourier component of w,. 

On scales less  than the dipole radius17 R =R,"( ' -~~) ,  
the behavior of the system is scale-invariant :293 

Besides small fluctuations, there exist in the system 
topological excitations-vortices.2~4~5~7 They form a two- 
dimensional Coulomb gas with logarithmic interaction. 
In the low-temperature phase of the X Y  model, the vor- 
tices are  connected with neutral quasimolecules and do 
not substantially affect the properties of the system. 
With r ise  of temperature, there occurs a phase transi- 
tion due to dissociation of quasimolecules. The vortex 
gas goes over to a plasma state; the Coulomb interac- 
tion is screened; the spin system finds itself in a dis- 
ordered phase. 

Kosterlitz5 constructed for this phase transition a 
renormalization procedure that enables one to determine 
exactly the index'of the correlator ~ ( x )  -x-%t the tran- 
sition point: 77 =~A(T, )  = a  [this implies finitness of p,(T) 
at  T - T, - 01. It also enables one to find the basic de- 
pendence of the correlation radius 5, on the closeness to 
the transition point in the high-temperature phase, 7, 

= (T - T,,)/T,: 

Since the singular part  of the free energy is 

the specific heat and all its derivatives a r e  continuous 
a t  r0 =O. 

To avoid misunderstanding, we remark that the jump 
in p, at  the transition point does not imply a transition 
of the first  kind, since p, is not an order parameter. 
In fact, the system can be described by a function p,(k2) 
that plays the role of dielectric susceptibility in the 
vortex gas. The interaction of the vortices in momen- 
tum space is ~ ( k )  =p,(k2)/k2. In the low-temperature 
phase, p, =ps(0) # 0. Above the transition point, p,(#) - k2/(k2 + 5;'); that i s ,  in a broad range of scales 1 << r 
<< exp(~/r ,"~)  the behavior of the system does not differ 
from that of the low-temperature phase. 

We now consider the effect of DDI on the phase transi- 
tion. It is easy to show that when p,# 0, DDI leads to 
a linear increase of the energy of attraction of vortices 
a t  distances larger than the dipole radius R. Therefore 
a phase transition can occur a s  soon a s  the vortices will 
form a plasma on scales of the order of R. In other 
words, the correlation radius 5, without allowance for 
DDI must become of the order of the dipole radius R. 
When 5,2R, the system is in an order phase; when 5, 

s R ,  in a disordered. Therefore the width of the criti- 
cal  region 6 is determined by the conditions 5, -R and 
6d(,/dr0 -R. Hence we obtain an estimate of the shift of 
the transition temperature, 

and the width of the critical region, 

We note an important difference from the usual transi- 
tional effects (crossover) (for example in 3D ferromag- 
nets19), where weak fields become important in a narrow 
fluctuational neighborhood of the transition point. In the 
2D XY model, the whole low-temperature region is ,  in 
essence, fluctuational; the spontaneous moment, for ex- 
ample, is determined by DDI at all T <  T,. Therefore a s  
soon a s  T s T, - 6Tc, the spontaneous moment S is de- 
termined as  at low temperatures, 

the change of S from zero to a value of the order of the 
saturation moment occurs over a narrow interval 
I T  - I T - T, I - ~ , i n - ~ ( 1 / ~ 1 ~ ) .  

3. EFFECTIVE HAMlLTONlAN IN THE CRITICAL 
REGION 

In the critical region I T ( =  I T  - T,I/T,<< 6,  the correla- 
tion distance 5 >> R; therefore in the Hamiltonian (11, 
the second term is larger than the first. Since the phase 
transition is due (in contrast to the XY model without 
DDI) to the appearance of a spontaneous moment (m) #O, 
the critical behavior of the system is described by a 
functional of the Ginzburg-Landau type: 

m(x)m(xf)  d2xdZz' 
%,(m)= - 

2 lx-x'l' 
az A + [T m2(x) + - m' (x) -hm (x) ] d2x. 

4 

Here already m z # l ,  and the modulus of the order pa- 
rameter fluctuates strongly. The coefficient of the f i rs t  
term is written, with allowance for renormalization, at 
distances r < R :I7 

The parameters a and X a re  determined by the condi- 
tions 

ar=:-'-R-' when 7-8, 
I (m) 1'- (pZ)'/' when -r-6. 

Therefore 

On introducing the new variable c p = ~ - " ~ m  and trans- 
forming to the momentum representation, we get 

The seed correlator a t  h = O  is 
1 1 

Go (k) = - (cpkcp-k) = - 
T k+to' 
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The momenta k 5 A - R-'. 4. DISCUSSION OF RESULTS 

It is easily s e e n  that the physical dimensions of the 
field a r e  (length)-'I2; there fore  the coupling constant 
go is dimensionless. A calculation of the correct ions f o r  
the interaction leads to  parquet  equations analogous to 
the equations of 4D local  

where g(1) and t(1) a r e  the renormal ized  coupling con- 
s tant  and gap on a sca le  Y - ~ e ' .  

We solve (8) with logari thmic accuracy:  

t ( l )  =t,(l+g,. 101/2n)-'". (9b) 

Equations (8) a r e  valid when g(l)<< 1. In our  c a s e  go 
= (w2)-1'3 -5. Therefore  the theory s e t  for th may be  
applied, if we assume that,  s t a r t ing  with such go's,  we 
drop immediately through renormalizat ions to  the "zero- 
charge" t rajectory (9). In this c a s e  one c a n  a t  once take 
for  the solutions (9) the asymptotic expressions for  
I>> 1. 

Returning to the previous variables ,  we get,  a s  in  Ref. 
18, expressions fo r  the correlat ion distance 5, the mag- 
netic susceptibility x =as/ah,  and the s ingular  par t  of 
the specific heat  CSiw in  the c r i t i ca l  region: 

6 6 
g( t )  -R-ln'15-, 

l t l  I t l  (10) 

6 6 
~ ( t )  .-R'-ln'ls-, 

I t l  l t l  

1 6 
C a S n g ( ~ )  - 

R2@ I t1  (12) 
Because of the  s m a l l  factor  (R6)-' -(C12)4131n6(1/p2), 

detection of the singularity in the specific heat  would be  
very complicated. The magnetic susceptibility, on the 
con t ra ry ,  is anomalously l a r g e  even a t  the boundaries 
of the c r i t i ca l  region, s ince  because of exchange inter-  
action the sp ins  a r e  cor re la ted  on s c a l e s  R >> 1. Below 
the transition point, calculations s i m i l a r  to  those of 
Ref. 18 give the behavior of the spontaneous moment: 

It is easy t o  s e e  f r o m  (11) and (13) that magnetic f ie lds  
h<< R ~ ( T / ~ ) ~ "  = h ( ~ )  a r e  weak; that i s ,  the thermody- 
namics in such fields is described by a l inear  response  
X ( ~ ) .  When h ( ~ ) < <  h < < ~ - ' ,  the  behavior of the sys tem 
depends pr imar i ly  on h and not on T ;  i t  is determined 
a s  in Ref. 18: 

When k>> R2, DDI is not important,  and the sys tem be- 
haves like the XY model in  a n  external  field. 

Formulas  (10)-(15) determine the behavior of a two- 
dimensional planar  ferromagnet  in  the c r i t i ca l  region 
IT - T ,  IS ~ , / l n ~ ( l / ~ ~ ) .  At lower t empera tures ,  the 
s y s t e m  is in an ordered  phase; i t s  p roper t i es  were  de- 
t e rmined  earlier17 and depend substantially on DDI. In 
par t i cu la r ,  the spontaneous moment is S - (p 2)Af('-2A). 
In the high-temperature phase, DDI is not important; 
the s y s t e m  can  be described by the 2D X Y  model. 

We shal l  now explain the applicability of our  resu l t s  
to  r e a l  sys tems .  Experiments  on two-dimensional mag- 
nets13 a r e  s o  f a r  lacking; but t h e r e  a r e  data on layered 
compounds of graphi te  (LCG) with the s a l t s  NiC1, and 
CoCl,, i n  which s e v e r a l  planes of graphi te  a r e  located 
between planes of the By introduction of a 
sufficient number of graphi te  planes, the direct  inter- 
plane exchange can be made a rb i t ra r i ly  weak. The di- 
pole interaction fal ls  off slowly and therefore must  be 
taken into account both between sp ins  in a plane and be- 
tween planes. A calculation of t h e  dipole tensor  fo r  a 
l ayered  sys tem was c a r r i e d  out by Maleev.'"e showed 
that in the l imit  of s m a l l  momenta, the DDI f r o m  other  
planes completely cancels  the l inear  t e r m  in the energy 
of a fluctuation, s o  that there  remains  only a weak in- 
terplane antiferromagnetic interaction, decreasing ex- 
ponentially with the distance between planes. But when 
the interplane interaction is weak, the spins in  differ- 
ent planes a r e  uncorrelated,  therefore there  is no basis  
fo r  restr ic t ing ourselves to  s m a l l  t r a n s v e r s e  momenta; 
and when their magnitude is a r b i t r a r y ,  the cancellation 
of the t e r m  l inear  in the longitudinal momentum does 
not occur. Therefore the magnetic p roper t i es  of LCG 
may be  made a s  nearly two-dimensional a s  one pleases ,  
even with allowance for  DDI. 

In p rac t ice ,  the experimental resu l t s  cease  t o  depend 
on the number of graphi te  l a y e r s  n a s  soon a s  n 2 2 for  
NiC1, and as soon as n '- 1 f o r  C O C ~ , . ~  In the papers  of 
Bragin e t  a1.,I2 the magnetization was measured  by the 
NMR method. It  was found that the spontaneous mo- 
ment d e c r e a s e s  l inearly with t empera ture  a t  l eas t  to 
(T, - T)/T , -  0.03, reaching 65% of the saturat ion mo- 
ment. This  is apparently a qualitative confirmation of 
our  resul ts .  We r e m a r k ,  however, that such behavior 
of the moment should a l so  be  observed in layered com- 
pounds in which the interplane exchange is s t ronger  than 
the DDI. O u r  analysis  of the c r i t i ca l  region is inappro- 
pr iate  in this case ;  but the s imple  es t imates  of the cor-  
relat ion radius,  which determine the width of t h e  c r i t i -  
ca l  region, r e m a i n  in  force.  It  is necessary  only t o  
take instead of the dipole rad ius  a rad ius  determined by 
the interplane coupling. In the c r i t i ca l  region, the sys -  
t em should then be described by the three-dimensional 
theory of phase transitions. 

Another physical s y s t e m  to which our r e s u l t s  a r e  
pertinent is a f ree ly  floating film of fe r roe lec t r ic  
smect ic  C.14 The ordering in th i s  sys tem is described 
by a two-dimensional vector  n that de te rmines  the di- 
rect ion of t h e  projections of the long ax is  of the mole- 
cules  on the plane of the smect ic  l ayers .  The effective 
Hamiltonian h a s  the f o r m  
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and differs from (1) only by the anisotropy of the elastic 
moduli K,#K,. In a bulk smectic, K ,  and Kb may differ 
very greatly; but in a 2D system, fluctuations tend to 
make the situation isotropic.'' Furthermore,  the prop- 
e r t ies  of disclinations (the analog of vortices) do not 
change qualitatively even when K , # K , . ~ ~  Therefore the 
phase-transition mechanism that we have investigated is 
to be expected in this system too. 

Note added in proof (November 28, 1978). The author 
has become aware of an inaccuracy in the conclusion 
drawn in Ref. 17 regarding the reduction of DDI to iso- 
tropic form in consequence of renormalizations. Ac- 
tually, t he quadratic part  of the Hamiltonian in the cri t-  
ical region has the form (see R. A. Pelcovits and B. I. 
Halperin, preprint, Harvard University, 1978) 

a "parquet" situation does not occur, and the fluctua- 
tions turn out to be considerably stronger. Therefore 
the analysis of the critical region ( I T / < <  6) is not pertin- 
ent to a two-dimensional ferromagnet. All results  for 
171 2 6 retain their validity. 
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