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For the case of e'e- pair production by ultrarelativistic muons on nuclei, the dependence of the cross 
section and the energy spectrum of the pair on t = k2, the square of the four-momentum transfer, is 
calculated. Asymptotic formulas for small and large values of the momentum transfer are examined. 
Qualitatively, we have d u-dt/t for t <m2 and d a-dt/t2 for t >m2. A decided asymmetry is found in the 
energy distribution between the components of the pair in the "deep-inelastic" region, where the energy 
k, of the pair is of the order of the square of the momentum transfer divided by the mass of the electron, 
k,-k2/m; although the energy of the pair is large in this case, k0>2m, there is considerable probability 
that almost all of the energy is camed away by one particle of the pair, the energy of the other particle 
being only of the order of its mass. In accordance with the uncertainty relation, the distribution in 
momentum transfer gives a (qualitative) distribution in impact parameter. By treating the process as pair 
production by an external field, one can estimate probabilities for multiple pair production in collisions of 
fast nuclei with charges eZ and eZ'. In this way the ratio of the cross sections for production of two 
pairs and for a single pair is found to be ~ , / c r , - ( a~zZ ' / a )~ lny .  Similarly, w,+,/u, - ( ~ ~ ~ ~ ' / a ) ~ l n ~ - y ,  
n 2 2, where y is the Lorentz factor of the incident nucleus. 

PACS numbers: 13.60.Hb, 14.60.Cd, 25.30.Ei 

1. INTRODUCTION scribes the differential cross  section a s  a function of 
the external parameters Po and M and the variables t, 

The first  theoretical papers on pair production by 
k,, and w; w is the energy of the electron, and ko=w 

charged particles appeared more than 40 years ago. A + w' is that of the pair. The purpose of the work is 
paper' by Landau and Lifshitz gave the main term of 

to integrate the Racah formula f i rs t  over w (which gives 
the asymptotic formula for the total cross section a t  

the distribution in ko for fixed t) and then to integrate 
large energies. The total cross  section and the dis- 

over k,, obtaining the distribution in t. For  t <<M2 this 
tribution of electron and positron energies for produc- 

last  distribution can also be regarded a s  the momentum tion by a lepton on a Coulomb force center were found 
distribution of the recoil nuclei. 

in the remarkable papers by Racah.'s3 Let us also note 
some later papers. Kel'ner4 took screening of the nu- 
cleus by electrons into account and found the energy 
distribution of the electrons and positrons in the case 
of complete screening, and later5 found the energy loss 
of muons through e'e' pair production and gave numer- 
ical values of functions describing the energy spectrum 
of pairs for muons of several different energies pass- 
ing through earth or lead. The total cross section for 
e+e- pair production in collision of a muon and an atom 
was found by Pichkurov and the present writer,' and 
the energy spectra of the pairs were found later.? The 
state of the problem up to 1970 is described in a book 
by Bugaev, Kotov, and Rozental'.' 

In the present paper we examine the dependence of the 
cross section on kZ = t, where k, =P, - P: is the four- 
momentum transferred from the incident lepton; the 
target is a Coulomb center of force. We shall be in- 
terested in the case in which the initial lepton is ultra- 
relativistic: Po >>M and t << M2, where M is the mass 
of the incident lepton (for definiteness a muon). For  
such distant collisions the state of motion of the collid- 
ing particles is almost unchanged in the process of 
production of an e'e' pair which carr ies  away only a 
small fraction of the energy of the incident particle. 

Our starting point is a formula of RacahZ which de- 

The integration of the exact formula turns out to be 
difficult, and therefore two important limiting cases a re  
considered. In Sec. 2 the Racah formula is written in 
a form which is convenient for analytic integration over 
w for t << m2 and t >> m2, where m is the mass of the 
electron. 

In Sec. 3 the integration over w is carried out in the 
simplest case, when the energies of a l l  the particles 
a r e  ultrarelativistic. The next integration over ko 
(within the limits of applicability of the formula) gives 
an expression from which one can easily perceive the 
structure of the distribution over t for t in the range 
y-' << tLI2 c Y ;  namely, the cross section is proportional 
to a polynomial of second degree in ln(2y). The coeffi- 
cients x,, x,, x of this polynomial a re  functions of t 
only if t <<M2, and x2 and X, a r e  already determined 
from this consideration of the case of ultrarelativistic 
energies. The function x is derived for t <<m2 in Sec. 
4, and for sufficiently large t/m2 in Sec. 5. Qualita- 
tively do - dt/t for t << m2 and du - dt/t2 for t >> m2. 

By means of the uncertainty relation the distribution 
in momentum transfer can be made to yield (qualitative) 
information about the distribution in impact parameter. 
By regarding the process a s  pair production by an ex- 
ternal field1 one can easily estimate the probabilities 
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for production of several pairs in collisions of fast 
nuclei; see Eqs. (32) and (33). 

In Sec. 4 the integration of do over w is performed 
a s  in Refs. 2 and 9, to give the distribution in k, and t 
for t << mZ. Although the original expression here is 
somewhat more complicated than in Refs. 9 and 2, the 
answer can be expressed in terms of the same functions. 
Subsequent integration over k, gives the distribution in t. 

Section 5 deals with distributions like those of Sec. 4, 
but for the case of sufficiently large t/mZ. Here there 
is a particular complication because a t  k, - t/m >>m 
small electron (or positron) energies, w -m, a r e  in the 
effective range of integration over w. The fact that 
values w - m a r e  favored a t  k, - t/m >> m can also be 
seen from the electron propagator, in which the de- _ -  
nominator is small under these conditions. 

2. THE RACAH FORMULA 

~ e t  w=IpI and p=IpI be the energy and momentum of 
the electron (and wf, pf those of the positron); Po and 
P= I PI a r e  the energy and momentum of the incident 
(and PA, Pf of the scattered) muon; kz = ( P  - Pf)' 
- (Po - PA)' =k? - is the square of the transferred 
four-momentum; w2 - pz = m2 = 1, P: - P2 =Mz, ko = w 
+ wf =Po -PA. The cross section for the process of 
interest here is given by a formula of RacahZ (for re- 
marks on the derivation of this formula by the Feynman 
technique see Ref. 6; ti= c = m  =1, a= 1/137) 

where r ,=a/m, y=P,/M, t=k2, 11~=kt+t ,  w2=pZ+1, 
and 

@=~o+@A+@LL+@~rLr+@uLA+@~~~'A, (2) 
r = r o + ~ ~ + r L ~ + r L . ~ i + r u ~ l ~ + r u . ~ ~ ' ,  (3) 

in Eq. (2) we have 

and in Eq. (3) 

The primed quantities (e .g . ,  L', Qi,,, etc.) a re  obtained 
from the corresponding unprimed quantities by the ex- 
changes w -- wf , p - of, The important property of 
symmetry in w and w' is a consequence of the Born ap- 
proximation. We note that in our notation, unlike 
Racah's, Qi and I' include the factor pp'. 

We also note that the square of the momentum trans- 
fer  is related to the scattering angle 9 of the muon by 
the equation 

We shall here be interested only in the ultrarelativis- 
tic case y >> 1. Besides, we confine ourselves to the 
range t <<M2. The minimum value of t for given k, is 
tm,,=(k,,/y)2, and the maximum value of k, for given t is 
kom,=yt112. Equation (1) takes the form 

The dependence on Po and M enters here only through 
the Lorentz factor y. Moreover, since Qi and r depend 
only on t, k,, and w, and 1 r w c k, - 1, 2 c k, c k,,,, 
after integration over w and k, we have do/& = f(t, yt 'I2), 
s o  that the only dependence on y is that through kmu. 

- - 

3. DISTRIBUTIONS IN PAIR ENERGY AND IN  
MOMENTUM TRANSFER IN  THE ULTRARELATIVISTIC 
CASE 

I£ all  of the particles involved in the process a r e  ul- 
trarelativistic, the expression (9) can be s i m ~ l i f i e d ~ * ~ :  

(2ar Z)' &=A I 1  
[ ~ o ( ~ k ~ T ) - - - - h ~ ,  

n 2 2 
(10) 

here 

z=(k,/y)', y,=l+tr, n=b+'/,(l-r)zz, 
bd-*/ ,T,  C=' /J~T+'/ , -~/~T,  t=w/kO, T = x ( ~ - x ) ,  (I11 

(2<ko<Po; taka; l<w,  w').  

Unfortunately the region of applicability of this simple 
formula becomes narrower a s  t increases. Formally 
this is a result of the fact that its derivation from Eq. 
(9) is based on the requirement that mk, >> kz, i.e., k, 
>> t. Physically i t  is due to the decidedly uneven dis- 
tribution of the energy of the pair between its compo- 
nents for k, - t >> 1; there is a considerable probability 
that one element of the pair will have a low energy. In 
fact, simply from the expression for y, in (11) i t  can be 
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seen that the lower limit on values of w that a r e  impor- 
tant is given by the condition 

tr=tww'/k,2-tw/k,-1, 

i.e., for ko-t >> 1, w can be of the order of unity, 
whereas Eq. (10) holds for w, w' >> 1. 

It follows from the kinematics of the problem that for 
fixed k we have t b z, and for fixed t the maximum ener- 
gy of the pair is ko,,=yt112. I t  follows that Eq. (10) 
holds for values of t that a r e  neither too large nor too 
small: 

Zy-'cl".cy. (12) 

The inequality on the left is necessary for k,,, >> 2, and 
that on the right is necessary for k,, >> t. 

Integrating Eq. (10) with respect to x over the range 
from 0 to 1 and with respect to k, over the range from - 
k, >> t to k,,,= yt'I2, we get (dz/z = 2dko/ko) 

where 

Here Li,(y) is Euler's dilogarithm 

The integrand in Eq. (14) gives the distribution in k,. 
The functions x,, $,, q,, $, depend only on the variable 
t. For  t << 1 we find 

Accordingly, for t << 1 the cross section satisfies 
do-dt/t. Small t means a large effective distance: 
t-l l2 >> m-l . 

The terms with the factor z in the integrand in Eq. (14) 
a r e  important only for z - t  (i.e., for ko -yt112) and a re  
small for z <<t. For  fixed t we have qualitatively do 
- dkO/kO right up to ko = k,,,. 

Performing the elementary integration over k, in Eq. 
(14), we get 

where 
1 1 lnt 

In t+2$ + t '@z=-Ei+- .  +- 3t2 

$,='I. In"t)xZ+ ln(t)$,+1/2t ln (t) $,+t$,. 

In order to get rid of the parameter Lo in Eq. (24) we 
must go back to the expression_(9) and integrate i t  over 
w ,  and then over k, from 2 to k,. It is obvious that for 
Lo >> 2 we get 

Frr=ln2(2Eo) ~ , + 2  ln(2E0) $,+ ( E o ~ ~ ) ' t l n ( 2 ~ o ) $ ~ + $ ~ l + $ , .  (25) 

Accordingly F,, is determined by means of F, up to an 
additive constant +,, which is subject to calculation. 

Replacing the function F, in Eq. (13) with F =F, +F,,, 
where 

F=ln2 (27) x ~ + ~ ( ~ ~ ) x I + x ,  ~='!"+$3~ (26) 

we get the distribution over the square of the four- 
momentum transfer in the range (12) (where the func- 
tion x must depend only on the variable t): 

In the reversed coordinate system in which the incident 
particle and the target a r e  interchanged, the expression 
(27) is of the same form, and describes the distribution 
over the variable t for the target. As noted in the In- 
troduction, for t <<M2 the pair gets only a small frac- 
tion of the energy, so  that the distribution over t does 
not depend on the nature of the colliding particles. 

One can tabulate ~ ( t )  by starting directly from Eq. (9). 
The behavior of ~ ( t )  for 1 << 1 and for sufficiently large 
t will be studied in the following sections. According 
to the results found there we have for t << 1 

F o r  t >> 1 we have 
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for xz see  Eq. (22). The corresponding results for suf- 
ficiently large t (t >> 1) a r e  

where L(3)= 1.202.. . ; fo r  X, see  Eq. (23). The func- 
tion x in Eq. (29) is given in lowest approximation; the 
calculation of the next term is difficult. 

We now estimate qualitatively the probability of 
production of several pairs in the collision of two fast 
nuclei with charges eZ and eZ1. We use for  this the 
approach of Landau and Lifshitz.' Let W(Y) be the 
probability of producing one pair in a collision between 
the nuclei with impact parameter r ;  assume w(r) << 1. 
Then, neglecting effects of the identical nature of the 
particles, we have for the cross  section for production 
of n pairs1' 

It is now natural to suppose that, in the present situa- 
tion with logarithmic formulas, w(r) - r* for r in the 
range 1 c r c y. Otherwise we can assume that in order 
of magntiude t = r2. Then from Eqs. (26), (27) and (30) 
i t  follows that 

w ( t )  - ( ~ U ~ Z Z ' / ~ ) ~ ~ T .  (31) 

Setting for a qualitative estimate [see Eqs. (26) and 
(27)l 

we find 

Similarly, 

The difference between the ratios (32) and (33) is due to 
the fact that in Eq. (30) ti:(' =re,, - 1 for n 2 2, i.e., 
large impact parameters a r e  no longer effective for 
production of two or  more pairs. 

4. THE CASE OF SMALL MOMENTUM TRANSFERS 

In this section we assume that t << 1 (i.e., t <<m2), 
y >> 1, and yt112 is unrestricted. We a r e  not bound here 
by the limitation expressed by the left-hand part  of the 
inequality (12). In the lowest approximation the quan- 
tity @ in Eq. (9) (which describes the contribution of 
"scalar" photons6) is to  be omitted, and I? is to be taken 
a t  t=O, i.e., on the mass shell of the photon. We then 
have 

692+468k+76kz+108k3 
P ( k ) = z ' j ' d w r ( t = O ) - ,  27(1+k)" K ( k )  

ko 1 (34) 
- 692+360k+692k2 1-k I-k ' 

E ( k )  -4 (-)'I-+16 (-) I--, 
27 (1+k)  l + k  l+k  

where 

in agreement with the expression obtained by Racah 
[see Eq. (10) in Ref. 31. Here K(k) and E(k) a r e  the 
elliptic integrals of the f i rs t  and second kinds. 

In this approximation Eq. (9) with @ = 0 and Eq. (34) 
describe the distribution in k, and t. Integrating this 
distribution over k, from 2 to k,,, we get for the dis- 
tribution in t an analog of Eq. (13), in which F ,  must 
be replaced with 

+ 5-270k+5k2 I dk 
E ( k )  + 811- - 8 ~ - - + 3 2 J  - J-- (35) 

( l - k ) 2 ( l + k )  I-kZ 

k=(ko ,--2)/(ko m,+2). 

Here Pl(k) is defined by the expression 

dk 28 l -k  
P I @ ) =  I7p(k)=-1- -4  1-k 9 (-) l+k  I--  

As was to be expected, the function Pl(k) agrees with 
that calculated by Racah [see Eq. (16a) in Ref. 31. 

Setting k = (zo - 2)/($ + 2) in Eq. (35), we get (in the 
approximation under consideration) an analog of Eq. 
(25) which holds for a l l  zo > 2. 

When we keep also the next term in the expansion, we 
get from Eqs. (9) and (2): 

*.-I 3 1 1 1-k J a w [ 7 a + 7 ~  
2ko tq  1 3. l +k  

1 

Equations (9) and (36) describe the distribution in k,. 
In particular, for k, >> 2 they lead to Eqs. (13) and (22), 
and for k, - 2 << 1 we get 

By integration over k, we can get from Eq. (9) and (36) 
a correction term for Eq. (35). We consider here only 
the limiting cases. For  k,,, - 2 << 1 we get by inte- 
grating (37) over k,: 
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In Eqs. (37) and (371) we are assuming that the energy 
of the pair i s  not too small (that ko - 2 >> a2Z2), SO that 
the Born approximation can be used. (For more details 
about the conditions for i ts  validity in this case see also 
Sec. 92 in Ref.  11.) 

For yt1/2 > 2  we get from Eqs. (9)  and (36) the results 
of Eqs. (26) and (28). The asymptotic forms of J-, J_-, 
. . . for k, >> 1 are given in Refs .  2 and 12. 

5. THE CASE OF LARGE MOMENTUM TRANSFER 

In this section we consider sufficiently large values 
of t /m2 and derive the distribution in k, for fixed t ;  we 
also find the function ~ ( t )  [see Eq. (27)]. 

The distribution over k, i s  simpler in form if we deal 
with various ranges of k, separately. 

1) 2 C k,<< t112. Here pp1/t, pq/t, . . . << 1. Expanding 
A", L,  A, etc., in powers of the small parameter, we 
reduce the integrals over w to elliptic integrals. In 
particular, i t  i s  easily verified that in the expressions 
for 

there i s  complete cancellation not only of the terms in- 
dependent of t ,  but also of those at".  TO  the accuracy 
with which we are concerned this region contributes 
nothing in the subsequent integration over k,. 

2 )  2 << k, << t. From the condition w + w1 = k, >> 2 it 
follows that the only possibilities for small particle 
energy are w -1, or else wl- 1. We note that because 
O and I? are symmetric in w and w1 we can integrate 
only over the half -interval 1 6 w s k0/2. In such inte- 
grals we can of course set p f  - w'. Although w - 1 gives 
contributions to some integrals over w (and can easily 
be taken into account if t i s  large enough), only values 
w >> 1 are important in the expressions (38). That the 
contributions from w - 1 cancel out in these expressions 
can be seen from Eqs. ( 7 )  and (8) ,  which for p=wwl 
<< t and k, << t take the form 

In the integral S ~ - ' L L '  dw values w >> 1 are important; 
more precisely, w,,-k, >>2. For p= w and PI-wf we 
get from (4)  and ( 5 )  

From (6)  we have 

The integrals over w can be expressed in terms of 
the Euler dilogarithm, Eq. (21); in the intermediate 
steps trilogarithms also occur (see the analogous inte- 

grals in Ref .  13). The results are 

Here 

3)  k: >> t .  Only the region k, - t needs to be con- 
sidered, since the case k, >>t i s  contained in Eqs. (13), 
(14), and (23). From Eq. ( 6 )  we have 

A=t(w-w,) (wz-w)=t(w-w,) (ko-w), ' 

w,, 2 = k o / 2 ~  (k0'/4+t/4+1+kz/t)", -w,=t/4k,+ko/t. 
(45) 

For k, - t  we get 

*- I tu3 2km j dwm=--[lnu+-lnt-- , a - 7 ,  
24 2 2 

(46) 

ulnu 
12 

1 

In u In u 1 us lnu 
f a 3  + - - -  

[ 3 ( u 2 - 0 .  6(u2-1)' B ( U ~ - ~ ) ~ ]  4 u'-1 
na i 

~i,(l-ua)+-+-Lia(l-a) 
12u 2u 

i 1 i - - Lia (-) - -1ns(i+u). 
2u i+u 4u (47) 

Substitution of Eqs. (42), (43), and (46), (47) into Eq. 
(9 )  gives the distributions in k, and t in the correspond- 
ing ranges of k,. 

To get the distributions in t we must integrate over k,. 
Integrating the expression (42) over ko with the weight 
9' and the limits 2 and k,, where t1I2 << ko <<t, we get 

I t  i s  easy to verify that this expression holds also for 
k, 2- t ; in it we can set i, = ytl J2 .  

Similarly, we find from Eq. (43) 

The corresponding result from Eq. (47), taking I << 1, 
i s  
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As was to be expected, when Eqs. (49) and (50) a re  
combined the dependence on Z drops out. 

For k, <<ytlIZ the terms in Eq. (9) with the factor y" 
can be neglected. Then Eqs. (9) and (48)-(50) give the 
integral distribution in k, for fixed t .  For y >>t1I2 these 
equations give (in lowest approximation) the result 
stated in Eqs. (26) and (29). Here the relation 

has been used for the terms - yq in Eq. (9); i t  follows 
from Eqs. (46) and (47) for u,, >> 1. As can be seen 
from Eq. (50), for t1I2 the expression for doldt is 
rather cumbersome, and we shall not consider it. 

The author is please to thank V. I. Ritus and E. L. 
 ebbe erg for a fruiiful discussion and useful sugges- 
tions. 

APPENDIX A 

Some integrals encountered in the asymptotic formulas 
for small t 

A remarkable result of Racah's ~ o r k 2 * ~ * ~ * ~ ~  is that 
the functions he gave a re  convenient for the subsequent 
integrations; they have simple asymptotic forms, do 
not involve elliptic integrals of the third kind, and occur 
in a number of different processes and distributions. 
The integrals occurring in our case for small momen- 
tum transfer can also be expressed in terms of Racah's 
functions. We shall point out some important proper- 
ties of these integrals. The most surprising is that in 
the first and second approximations, which we consider 
here, only Racah function a re  encountered in the ex- 
pressions for do. 

We define the notations 
lo- I dw La-1 dw 

J.= J -wn,  I.= J - pn, p=ww . 
I pp PP' 

By a standard procedure we obtain14 

The calculation of J, by the same method leads to the 

elliptic integral 111 of the third kind14 (with a special 
ratio of the arguments). We note, however, that the 
change of variable of integration w - w1 causes the in- 
terchange w -- w ' in the integrand, and the limits a r e  
not changed. Accordingly, J, = koJo - J,, so that Jl 
= (k0/2M0. Consequently, 

The calculations a re  much more compact in terms of 
I ,  (than in terms of J,). Owing to this i t  is helpful to 
have the appropriate recurrence relations. Integrating 
the expressions for the derivative of ( k ,  - 2w)PP1pn with 
n=O, 1, we get 

23 I 1  k,' 
Is= ( - - - k ; ) J n + ( - + - k O z + - )  5 15 30 30 I,. 

For a complete list of the integrals encountered in 
the asymptotic formulas for small t see Ref. 15. It is 
interesting to note that the integrals 

k.-I 

j l  dw. /=Arch w  , 
p 1c+l 

L 

disappear in the final expressions for the quantities (38). 

APPENDIX B 

Calculation of asymptotic forms of integrals over w for 
k , - t > > l  

The derivation of this asymptotic formalism is the 
most complicated and laborious part of this work. We 
shall illustrate the method of calculation with a single 
integral a s  an example. For k, - t >> 1 we have 

Let us consider the integral 
lo- I dw b" dw - dw b'z dw J -A=2 J -A=2 J -A+2  J -,2. 

I " t 
A A 

We choose w so that 
-w ,< tL .~k , , .  

Then in the last integral in (B.2) we can use the approxi- 
mation (40), and we then find [see Eqs. (2) and (3) on 
page 266 of Ref. 131 

For the integral from 1 to we have 

Making the replacement k, - k; in A, we have for the 
derivative with respect to k;: 

a ' dw I ko 
- S - ~ ( k ; , w ) = - - - ~ n . - - :  
ak; W-W,  2(ko -k,) ke 

Here we have used the approximation (B.l) for w,. 
, 
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Finding the indefinite integral (with respect to k;) of 
the right-hand side of (B.6), replacing k; with k,, and 
requiring that for k, satisfying the inequality t1I2 << ko 
<< t this gives the correct expression for region 2) in 
Sec. 5, we find 

Finally from Eqs. (B.2), (B.4), (B.5), and (B.7) we get 

For  the calculation of the other integrals over w see 
Ref. 15. 

Note added in proof (23 January 1979). It can be seen 
from Eq. (45) that for k: >> t >> m2 the important values 
of w (or wl) a r e  --w, << k,. Moreover, an examination 
of the electron propagator shows that a strongly virtual 
spacelike photon gives almost all i t s  energy to the 
member of the pair that becomes free after interacting 
with it. The other particle of the pair, which becomes 
free after being scattered by the Coulomb field, car- 
r ies  only a small fraction of the energy. 
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