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Equations that describe the averaged motion of a relativistic electron in the field of two waves of unequal 
frequency are derived. The hydrodynamic stage of stimulated scattering of a wave by a relativistic 
electron beam is investigated. It is shown that the main mechanism that determines the gain saturation is 
the displacement of the electron bunches from the decelerating into the accelerating phase of the field of 
the combined wave. The methods developed are used to calculate the starting currents and to estimate the 
optimal ranges of the parameters (from the point of view of realizing high electronic efficiency) of devices 
based on stimulated scattering of waves by relativistic electron beams. 

PACS numbers: 41.80.Dd 

INTRODUCTION 

The inroads made in recent years by high-frequency 
electronics into the region of relativistic electron ener- 
gies has revived interest in the use of two related phy- 
sical processes-stimulated bremsstrahlung of electrons 
in periodic static fields (stimulated undulatory radia- 
tion) and stimulated scattering of waves by electron (pa- 
rametric transformation of waves on electron beams). 
In the relativistic region, both processes become par- 
ticularly attractive from the point of view of the pos- 
sibility of higher efficient conversion of the energy of 
electron beams into radiation of very short wavelength. 
Devices based on stimulated undulatory radiation (ubi- 
trons), which use relativistic electron beams, have by 
now reached efficiencies a s  high a s  5% (ref. 1) in a 
wavelength region extending to several microns.' The 
f i rs t  experiments on millimeter and submillimeter 
waves in scattering of relatively long waves by relativis- 
tic beams have already been performed.' It should be 
noted that the contemporary technical means enable us 
to realize not the Compton limit of stimulated scatter- 
ing of waves by free electrons, but only the Thomson 
classical limit. Devices of this type will be called here 
scattrons (from "scatter"). It i s  natural to regard the 
ubitron a s  a particular case of a scattron, when the role 
of the pump wave is assumed by a periodic static field. 

The heretofore employed variants of the theory of 
relativistic scattrons have either described the kinetic 
state of low-efficiency interaction of weak waves with a 
beam having a large velocity or considered 
the hydrodynamic stage in particular cases.=-' Yet a 
simple and universal scattron theory can be constructed 
on the basis of averaging the motion of the electron in 
fields of different frequency.1° This method, which is 
successfully used for the description of the acceleration 
of charged particles,1° a s  well a s  in the theory of wave 
decay processes in a plasma," was used in Ref. 12 to 
obtain, for a relativistic scattron with dominant iner- 
tial electron bunching, equations suitable for the cal- 
culation of the starting current and for  the description 
of the saturation regime. The region of applicability of 
such a theory is restricted to relatively weak field 

strengths, to relatively large dimensions of the scat- 
tering sections, and accordingly to relatively low ef- 
ficiencies. 

In principle, however, the averaging method can be 
used also for  regimes that a re  f ree  of the foregoing re- 
strictions and a re  characterized by a higher efficiency. 
This generalization is in fact one of the purposes of the 
present paper. In addition, we estimate here the role 
of a number of factors that a r e  encountered in real  ex- 
periments, such a s  the scatter of the electron velo- 
cities, the Coulomb interaction, or  loss of coherence 
of the pump. We shall trace in passim the analogy be- 
tween wave scattering in a scattron and decay processes 
in a plasma, a s  well a s  with the process of interaction 
of electrons with electromagnetic waves in Cerenkov 
devices of the traveling-wave-tube type. 

1. MOTION OF RELATIVISTIC ELECTRON I N  THE 
FIELD OF TWO WAVES OF UNEQUAL FREQUENCY 

An electron moving in the field 

A=Re{A, (r,, z, t) eiB.+A,(r,, z, t )  eiet) (1.1) 

of two waves, one "incident" ( i )  and one "scattered (s), 
each specified by a vector potential, with a Coulomb 
gauge, and having phases 8, ,s = (w,,,t - h i , ,  z )  and smooth- 
ly varying amplitudes &,, has a Hamiltonian 

where P= p - eA/c and p = myv a r e  the canonical and 
mechanical momenta of the electron, -e and m a re  i ts  
charge and r e s t  mass, and c is the speed of light. For 
the ubitron we have of = 0 and h i  = 2n/d, where d is the 
period of the static pump field. The Hamiltonian (1.2) 
is a function of the time: 

In accordance with (1.2), the canonical equations of mo- 
tions of the electron a r e  
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We assume that the electron is in synchronism 

Q=x,uO (1.5) 

with the combined wave whose amplitude is determined 
by the amplitude product A,AT and whose phase B =  0, - 0, = (Slt - u,z)  is determined by the phase difference 
of the waves ( S l = w , - w , , n z = h , - h i , v o = P &  is the un- 
perturbed electron velocity. Assuming that the number 
of oscillations 

executed by the electron in the field of each of the waves 
over the interaction length L = voT is large: 

We represent the canonical variables and the energy in 
the form of a sum of smoothly varying and rapidly oscil- 
lating components 

We assume also that the amplitude of the waves and ac- 
cordingly the high-frequency oscillations of the energy 
and of the momentum of the electron a r e  relatively 
small: 

Here a, ,, a r e  the so-called acceleration parameters, 
which a r e  connected with the amplitudes of the waves by 
the relations a,, , = eAS,,/flmc2, and yo is the ratio of 
the initial electron energy 8 ,  to i ts  r e s t  energy mc2. 
Conditions (1.5)-(1.7) make i t  possible to average in 
(1.4) and (1.3) over the explicitly entering exp(iO,,,) 
combinations; as a result we have 

- - 
d i  c z i  dP ez - 
- =  -=--VAZ c~ e1 aF 

-=-- (1.8) 
d t  8; dt 2%- d t  S a t '  

where 

Thus, Eqs. (1.8) preserve the canonical form with the 
Hamiltmian 

z=[mv+e'P+ezXz]'h. 

Since the drift parts of the mechanical and canonical 
momenta coincide, fi = P, the right-hand side of the 
second equation in (1.8) is an expression for  the aver- 
age force 

F=- (ez/%-) ~ 2 .  (1.9) 

The oscillating part  of the mechanical momentum fol- 
lows in this case the oscillations of the vector poten- 
tial: 

In the weakly relativistic case, Eqs. (1.10) and (1.9) go 
over into well-known expressions.1° 

From the quantum point of view, the transition from 
Eqs. (1.3) and (1.4) to Eqs. (1.8) denotes that, in ac- 
cordance with the synchronism condition (1.5), the terms 
proportional to the f i rs t  power of A, which a r e  respon- 
sible for the single-photon processes, have been left 
out of the Hamiltonian, and those responsible for the 

two-photon processes, proportional to A ', have been 
retained. In the case of homogeneous plane waves, 
when A,,,(r,,z, t )  =A,, exp(-z?r,,,,r,), the system of 
equations (1.8) has the integral1' 

which is a reflection of the fact that the changes d6 of 
the energy and dp of the momentum of the electron in 
the elementary scattering acts a re  respectively equal 
to -59 and -En. 

2. SCATTERING IN  THE DIRECTION OF MOTION OF 
THE ELECTRONS. FIXED FIELD STRUCTURE 

In accordance with the synchronism condition (1.5), 
when the signal wave is emitted in a direction close to 
that of the unperturbed motion of the ultrarelativistic 
electron: 

the ratio of the radiation frequency w, to the electron 
oscillation frequency Gi  in the pump field 

o./Bi--o.*/Ci,= ( i -pp cos (P,) -I (2.2) 

is a large quantity of the order of yi. This general 
property of the radiation of the oscillator is due to the 
relativistic Doppler effect (Ref. 13)." For  the scattron 
we have in (2.2) w, =w,(l  +Pocoscpi), and the maximum 
frequency conversion (w$/w,),,= 4y: is realized in col- 
linear head-on scattering (p, = pi = 0). For the ubitron 
ij, = Zrvdd is the frequency of the bounce oscillations 
and (w:/ij,),,,= 2y; a t  p, = 0. 

Let us examine in greater detail a system satisfying 
the condition (2.1), assuming the structure of the field 
to be fixed, an assumption justified for generators in 
which high-Q signal and pump resonators a re  used (Fig. 
la). The pump can be regarded a s  fixed even without 
the resonator, when i t  diverges insignificantly. In ad- 
dition, in the present section we confine ourselves to 
the case of weak fields 

when the relative change w = 1 - y/yo of the electron en- 
ergy is small. (In this case there exist inertial refer- 
ence systems in which the motion of the electron is 
weakly relativistic and can be described2 by the method 
of the averaged high-frequency potential. lo) 

Equations of motion of the electrons in the scattron. 
Using the connection between the averaged Hamiltonian 

FIG. 1. a) Diagram of scattron generator based on stimulated 
scattering of waves by an electron beam: 1-electron beam, 
2-mirrors of signal resonator, 3-mirrors of pump resona- 
tor. b) diagram of ubitron generator based on stimulated 
bremsstrahlung of an electron beam: 1-electron beam, 2- 
signal resonator, 3-periodic magnetic system. 
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and the electron momentum, we transform Eqs. (1.8) to 
two equations for the electran energy and for its phase 
in the combination wave, 

dw/dZ=y,-'Ia,a,'lsine, de/dZ=py0-'w--6, (2.4) 

which coincide with the equations of motion of an elec- 
tron in a traveling wave tube. The independent vari- 
ables in (2.4) a re  chosen to be the dimensionless elec- 
tron coordinate Z = xg  , the nonisochronism parameter 
~1 = [l + ( y , ~ ,  )2], and the mismatch 6 = (1 - v,,/v,) be- 
tween the electron velocity and the phase velocity v,, 
=n/x, of the combination wave. 

The equations of motion of the electron (2.4) a r e  valid 
not only in the case of resonators with plane waves 
(Fig. l a )  but also for a scattron with a cylindrical reson- 
ator. In the latter case, which is important for the mi- 
crowave bands, the parameters a,, a r e  expressed in 
terms of the membrane functions of the waveguide 
WLJ: 

a=aakL-'[ C , Y ,  z,] (2.5) 

for modes of the TE type and 

a=ao(c lo ) z (hV,Y  +ikLZYz,)  (2.6) 

for modes of the TM type; k, = (wa/c2 -h3'I2 is the 
transverse wave number. For scattrons with cylindrical 
waves cps,i = tan-'(& /k),,, in formulas (2.1) and (2.2) a r e  
the Brillouin angles. 

Using the fact that in the static limit wi - 0 the cylin- 
drical pump wave of the transverse-electric (magnetic) 
type goes over into a magnetostatic (electrostatic) field 
that varies along z harmonically, we can easily verify 
that Eqs. (2.4) a re  valid also for the ubitron (Fig. 1B). 

At  constant wave amplitudes a, ,, can use the linear 
change of variables 

to reduce Eqs. (2.4) to the equations of a pendulum2) 

duldf =sin 8, dOld5=u-A. (2.7) 

For electrons making up a stationary monoenergetic 
beam, the boundary conditions for (2.7) take the form 

and the electronic efficiency is determined by the rela- 
tions 

The system (2.7)-(2.9) was obtained for more special- 
ized models for the ubitron in Refs. 7 and 8 and for the 
scattron in Refs. 9 and 12. 

Optimal conditions for the bunching of the beam and 
for  the deceleration of electron bunches. Just  a s  in the 
interaction of electrons with the field of an ordinary 
slow wave, to produce a compact bunch of electrons in 
the deceleration phase of a combination wave i t  is neces- 

sary  that the kinetic and dynamic phase shifts of the 
electrons relative to the wave be quantities of the order 
of n: 

The average change in the electron energy, in accor- 
dance with the f i rs t  equation of (2.7), is then given by 

and this in conjunction with (2.10) yields an estimate of 
the maximum efficiency 

This efficiency is reached when the field intensities 
satisfy the relation 

and the phase velocity of the combination wave and the 
frequency of the signal a r e  determined by the expres- 
sions 

The parameter M = (x&/nya in (2.12) and (2.13) is equal 
to the ratio of two small parameters, namely, the velo- 
city change Aj3 - y;2, a t  which the energy of the ultra- 
relativistic electron changes by an amount of the order 
of the initial velocity, and the spectrum width AS,, - (n/n&) of the phase velocities of the combination wave 
(A@, is determined by expanding the field specified over 
the length L in a Fourier integral). In the regime of 
quasifrontal wave scattering (the condition (2.1) and 
Gi -w,), the parameter M is of the order of the number 
N of the electron oscillations, and in the resonant case 
M>>1. From this and from (2.12) i t  follows that in the 
regime of quasifrontal scattering the optimal fields and 
the electronic efficiency a r e  relatively small. 

The estimates (2.10)-(2.14) agree well with the nu- 
merical-calculation results represented in Fig. 2. 

Starting current, In the stationary regime, the out- 
put power of a generator with quasifrontal wave scatter- 
ing is many times larger than the dissipated pump pow- 
e r  (the number of scattered pump quanta is equal to the 
number of the radiated signal quanta, but the energy of 
the latter is larger by approximately y i  times). There- 
fore the power balance equation takes the form 

FIG. 2. Dependence of the optimal parameters and of the cor- 
responding values of the reduced electronic efficiency on the 
reduced interaction length. 
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where I is the beam current, W, is the energy stored in 
the signal resonator, and Q, is i ts  quality factor. Thus, 
for  example, for  the scattron shown in Fig. la we have 

where S, is the a rea  of the mirror,  L, is the length af 
the resonator, A= is the signal wavelength, and 6, is the 
mirror  reflection loss coefficient. Substituting in the 
balance equation (2.15) the equation for the Ifnear'"- 
ficiency 

q!~-pla~'~'(x.L)'r0-'cp'(8,), 

~ ( 8 ~ )  =- (~--cos~, ) /zEI~,  Q,=~,A, (2.16) 

obtained by integrating (2.7) and (2.8) in the small-sig- 
nal approximation, we get starting conditions that a r e  
common to the scattron and the ubitron, in the form 

m~' 1 8.6, S. 2 1 = 
e pro aizM3 A;' nzcp'(8,) ' 

The negative-reabsorption band, where the suscep- 
tibility x a I q ' ( 6 , )  introduced into the resonator by the 
electron beam is positive, as a width close to the value 
II - w$/N.  This band, which corresponds to homogen- 
eous broadening in lasers, contains - y i ( ~ , / L )  longitud- 
inal resonator modes, and since the current correspond- 
ing to the maximum efficiency is several times larger 
than the starting current (Fig. 2), simultaneous gener- 
ation of the large number of modes is possible in prin- 
ciple in the optimal regimes (Fig. 3). 

Pemzissible scatter of the parameters. The formulas 
derived in this section a r e  valid s o  long a s  the scatter 
of the frequencies w: due to the initial scatter Ay of the 
ener$es and AS, of the transverse velocities, to the 
noncoherence Aw, of the pump and to the angle diver- 
gences A q , ,  of the incident and scattered waves (the 
energy and angular scatter of the photons) does not ex- 
ceed the negative-reabsorption band: A w 2 S  II. At a 
given electron velocity scatter this restriction is valid if 
the parameter M is not too large: 

and in addition 

When these conditions a r e  violated, an ever increasing 
number of electrons is excluded from synchronism 
with the combination wave (the kinetic stage,'*' or  in- 
homogeneous line broadening in laser terminology), 
and the efficiency decreases. 

3. FIELD STRUCTURE NOT FIXED. INFLUENCE 
OF SPACE-CHARGE FIELD 

The theory based on the assumption that the field 
structure is fixed (Sec. 11) is sufficient for  the descrip- 
tion of the operation of scattron generators in an ap- 
preciable part  of the cases of practical interest, in- 
asmuch a s  in the short-wave bands the limited density 
of the electron beam and the limited pump power make 
i t  essential to use high-Q resonators. At the same time, 
to describe systems of the amplifying type, in which an 

FIG. 3. Dependence of the electronic susceptibility X on the 
signal frequency. The resonator modes are shown inside the 
negative-reabsorption band. 

appreciable gain of the initial signal takes place in one 
pass (in the absence of such a signal, the system am- 
plifies the intrinsic noise in the negative-reabsorption 
band-the superamplification stage), i t  is useful to in- 
vestigate the influence of the electron current on the 
field structure. 

We consider the simplest case of colinear scattering 
of plane linearly polarized waves of relatively small 
amplitude (a,,, << 1) in a homogeneous unbounded elec- 
tron beam, where all the electrons have the same un- 
perturbed velocities v#,, and the unperturbed charge 
and current a re  compensated by the ion background. 
This problem reduces, obviously, to a one-dimension- 
a1 problem, since the electron charge density is  

and the longitudinal quasistationary electric field due 
to this charge 

does not depend on the transverse coordinates. In (3.1) 
we used the charge conservation law v,pdt= vop,dto and 
assumed that the longitudinal electron velocity changes 
insignificantly; p, is the unperturbed charge density and 
to is the time a t  which the electrons enter the section 
z =o. 

The transverse component of the current density 
j = -pv- a t  frequencies w ,  and of, with account taken 
of expressions (1.10) and (3.1), will be broken up into 
a linear part ( j ,, ) and a nonlinear part  ( j  .,). Sub- 
stitution of the linear part in the wave equation 

leads to the usual dispersion equation for  transverse 
waves 

where the expression for  the plasma frequency 

contains the transverse electron mass my,. 

The nonlinear part of the current 
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is responsible for the change in the wave amplitude 
(cf. Ref. 11): 

We have neglected in (3.5) the difference between the 
group velocities of the waves and the velocity of light. 

Equations (3.5) lead to a conservation law for the num- 
ber of the transverse-wave quanta in the scattering pro- 
cess: 

I E ,  I ' / o.- IE, I / u,=const. (3.6) 

In conjunction with the equations of motion of the elec- 
trons (2.4), with additional allowance for  the space- 
charge field [we limit ourselves to the f i rs t  term of the 
series (3.2)], Eqs. (3.5) make up a self -consistent sys- 
tem of equations that describes the induced scattering 
of waves by a relativistic electron beam: 

d2B -= ~ b :  

dZZ + - P) ete, yoz x'c- 

In the transition to (3.7) we used a change of variables 
that will be useful subsequently: 

w,, = wb/yo is the "longitudinal" plasma frequency 

GS.t=0b1/40.,iXc. 

The boundary conditions for (3.7) a r e  of the form 

e ( o )  a,, w (0) -0, a,(o) -u.o, al(Z4:! =ai0. (3.8) 

Approximation with small amplitude of the combina- 
tion wave. In the case when the electron motion can be 
described by the linear approximation 9 = 9, + 9(') , Id'' 1 
<< 1, Eqs. (3.7) take the same form as the k n o ~ n ' ~ . ' ~  
modified-decay equations 

In the given-pump approximation (with constant a,) the 
f i rs t  two equations become linear. We represent their 
solution in the form 

a,,pmexp (-iW-'Z), 

and arrive, as expected, to h e  dispersion equation of 
traveling wave tubes, which has been investigated in de- 
tail (see, e.g., Ref. 16) 

(r-6j (r2-qz)+l-0. (3.10) 

In (3.10) 6= bC-', q =  (wbll/xc)C-' i s  the space-charge 
parameter and 

is the analog of the Pierce parameter in an ordinary 
traveling wave tube. 

Case of small space charge. According to (3.101, the 
space-charge field can be neglected if qZ<<l. At a given 
beam density this condition imposes a lower limit on 
the pump intensity: 

In this case the increment of the signal wave reaches a 
maximum at 6 = 0 and its  value is 

For a beam with an energy scatter, this expression is 
valid s o  long as [cf. (2.18)] 

(Arlfi) *yo2C. 

Under conditions of negligibly small space charge we 
obtain from (1.8) and (3.5) simple conservation laws for 
the power flux: 

and for the momentum flux: 

From (3.6), (3.13), and (3.14) we can also obtain for 
the beam an integral similar to (1.11). 

Case of large space charge (q2>>l). In this case, just 
a s  in an ordinary traveling wave tube," the increment 
is substantially smaller than (3.12), and i ts  maximum 

1 m ( x r ~ ) -  x (8u. % la,l*)"* (3.15) 

is reached a t  zero mismatch (8 - q) between the com- 
bination wave and the slow space-charge wave having 
negative energy (this was called Raman scattering in 
Ref. 3). The substitutions 

p - - hP exp (- i ~ L Z ) ,  a. = a,' exp - I ~ Z  , ( x .  ) 
where a, is the smoothly varying dimensionless ampli- 
tude of the slow space-charge wave, reduces to the 
standard three-wave decay equations 

da,' WI &I - + i (8 - _ ) a /  - G,a,an, = Glu,'a': 
dZ 

da, x c  
(3.16) 

-= dZ Gfi.'a,, Gp = -. 
2~,'0bll  

It follows from (3.16), in particular, that equal num- 
bers  of signal-wave quanta and space-charge wave quan- 
ta (plasmons) a r e  produced in the scattering: 

Saturation mechanisms. The amplification of the sig- 
nal wave, as follows from (3.7), can be limited by two 
factors: (1) exhaustion of the pump, (2) nonlinear dis- 
placement of the electron bunch into the accelerating 
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phase of the combination wave. 

In the first case, which is described by equations (3.9) 
and (3.16), the maximum amplitude of the signal wave 

P 

1a.l- .LIIaIol'14~b (3.18) 
is reached, according to (3.6), when an appreciable 
fraction of the pump quanta is transformed into signal 
quanta, i.e., when the quantum yield 

~ = l a . l h o ~ / l a , , l ~ o .  

is of the order of unity. 

To investigate the second mechanism in "pure form," 
we assume the pump to be given (correspondingly, 
K<<1). Then the nonlinear equations (3.7) reduce to 
the traveling-wave tube equations17 

absorption band becomes commensurate with the work- 
ing frequency, ll - o:, and this makes it more difficult 
to obtain coherent radiation. 

It is possible to obtain a high electronic efficiency 
and retain the resonant properties of the interaction by 
forgoing the large frequency conversion. Indeed, by in- 
creasing the angle cp, between the propagation direction 
of the signal wave and the unperturbed velocity of the 
electron up to values cp, >>yil, and by correspondingly 
decreasing the ratio of the frequencies of the scattered 
and incident waves to 

o , / o , - ~ i - p ~  ~ o s p . ) - ~ a y , ~ ,  (4.1) 

and shortening the interaction length to L - y%,, it is 
possible to increase the electronic efficiency 

q.-M-'-yo'(l-po cos 9.) N-I (4.2) 
in which a = a S a : / y ~ ' , i = c ~ .  The optimal conditions for to values of the order of *ity whih retaining a large 
the bunching of the beam and *Or drawing energy number of oscillations N. 'Ihe fields necessary to real- 
the produced bunches are realized according to (3.19) ize such efficiencies are relatively large: 
when (cf. Sec. II) a,, 1-1. (4.3) 

a-2.-6-1. (3.20) 
To describe such regimes it becomes necessary to Thus, the amplifier length over which the maximum sig- 

use in place of the asymptotic Eqs. (2.7) the more gen- nal amplitude and electronic efficiency are reached is of 
era1 Eqs. (1.8). It is  clear from these equations that 

the order of the increment, '0, the the intense fields (4.3) can, generaly spaking, cause 
corresponding detuning from synchronism is 6,,, -C, 

a sizable drift of the electrons in a plane perpendicular and the maximum signal amplitude is 
to their unperturbed velocity: 

The electronic efficiency of the amplifier is then 
To avoid a strong transverse drift, which can cause the 

~ b l l t  
qe - v1c - 7: (= ~ a ~ i z )  ", (3.22) electrons to land on the surface of the resonator, the 

geometry of the pump fields must be so chosen that they 
form averaged reliefs that focus the particles in a trans- 

and the radiation power passing through an area -A: verse directim (Ref. 10. 3, This requirement is satis- 
is determined by the expression 

fied, for example, by a magnetostatic field whose vec- 
mzc5 O ~ I ?  'I2 la,ly,. 

~ - 7 y k Z )  
(3.23) tor potential near the z axis can be represented in the 

form 

Comparing (3.18) and (3.23), we can express the con- A,=AIII+(h,y)']sin h,z, A , = - A , . [ l + ( h , ~ ) ~ ] s i n h , z ,  (4.5) - 

ditions which the first  or second saturation mechanism A,=O. 
predominates respectively a s  la, 12<<d; and lai I2>>df, In such a field, transverse drift oscillations are pos- 
where the characteristic value of the pump-wave ampli- sible with a frequency4) 
tude is given by 

In those cases when the special selection of the initial 
Estimates shaw that in most cases of practical inter- conditions for the electrons (in particular, when the 
est the saturation of the gain is determined by the non- fields increase smoothly in the direction of their mo- 
linear shifts of the electron bunches into the accelerat- tion), there is no dirft, and the averaged equations of 
ing phase, and the quantum yield is usually small; this motion again reduce to two equations for the energy 
justifies the given-pimp approximation used in Sec. 11. 

and phase of the electron: 

4. SCATTERING WITH LARGE ELECTRONIC -= dw Ia.a.'I s ~ n  . 0, 

EFFICIENCY d~ ' ~ : ( I - w )  
dB w + 'l,(a." + asz + 2la .a~lcos  0 - wz) (4.7) 

As shown in Sec. II, the electronic efficiency of the - = c  - 6. 
dZ 7o2(1 - 

scattron is determined by the "energy" parameter M: 
qs - M-'. In the case of quasifrontal scattering of the The boundary conditions for (4.7) coincide with (2.8), 
waves, M is close to the number of oscillations N. It and the electronic efficiency i s  determined by expres- 
is therefore clear that by letting N approach unity it is  sions (2.9). In the case of small amplitudes ((Y,,, <<I) 
possible to increase the efficiency right up to q, - 1, but Eqs. (4.7) obviously reduce to Eqs. (2.4). For a gener- 
in this case the interaction of the electrons with the ator whose signal and pump fields have the same Gaus- 
waves loses its resonant character, the negative-re- sian structure 
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the efficiency maximum q, ,,,= 0.24 is reached a t  6yi 
= 0.81/ri= 10 and a(,O)ap = 0.1. 

CONCLUSION 

The practical feasibility of scattrons for any particu- 
lar  band is determined by the possibility of producing 
sufficiently dense and monoenergetic beams of elec- 
trons and photons. It is obviously easy to increase the 
photon density by using high-Q resonators, and in ac- 
cordance with (2.19) the pump-coherence requirements 
can be satisfied even when powers from independent 
generators a r e  added. As to the energy scatter of the 
electrons in beams of high density, which a r e  needed 
to obtain the radiation with the shortest wavelength, 
satisfaction of the corresponding restriction (2.18) ap- 
parently calls for the use of ionic compensation of the 
space charge. 

Estimates show that the use of powerful relativistic 
microwave generators for the pumping and the use of 
strong-current accelerators for  the injection of the 
relativistic electrons would make i t  possible in prin- 
ciple to produce powerful coherent radiation in the mil- 
limeter and submillimeter bands via induced scattering. 
In these bands, however, i t  is much easier to realize 
a relativistic ubitron, where i t  suffices to use for the 
pumping periodic magnetostatic fields of relatively low 
strength, on the order of several  kiloersteds. At the 
present technical capabilities, the frequency band of a 
vacuum relativistic ubitron can be extended a l l  the way 
to the optical range,') but a scattron with laser  pump- 
ing is more realistic for the ultraviolet. Thus, using a 
beam with parameters close to those already realized, 
namely yo-  t 2 0 ,  hy/y, -  1 +0.1% 10'-lo7 A/cm2 and 
using a s  the pump a CO, laser (Xi = 10.6 pm) with the al- 
ready attained power density -1014-10'6 w/crn2, we can 
obtain generation with a frequency tunable in the range 
2000-100 a t  a level up to lo7-10' W. 

The authors thank L. A. ~ G n s h t e i n ,  A. V. Gaponov, 
A. G. Litvak, N. F. Kovalev, and A. V. Smorgonskii for 
useful discussions of the results. 

*)A most attractive aspect is  the realization of such regimes 
in a relativistic laser at cyclotron resonance (ai = wH-is the 
relativistic gyrofrequency) and in a relativistic traveling 
wave tube on the spatial harmonic (Gi = 2nvo/d-is the fre- 
quency of the oscillations of the "blinking dipole" made up of 
the linearly moving electron and its image in a periodic elec- 
trodynamic system). 

2 ) ~ q s .  (2.7) and their consequences have a universal character 
for all systems based on the relativistic Doppler effect. 

3)The electrons can be additionally focused by applying a homo- 
geneous magnetic field HOzO. The scattering of relatively 
weak (aqi << 1) fields by relativistic beams in the presence of 
this field can be easily described by the method developed in 

Ref. 12, using the corresponding results of Refs. 10. 
4 ) ~ n  fields that focus electrons in a transverse direction, in- 

cluding the field of an ionic crystal, interest attaches not 
only to the resonance (1.5) but also to combination resonance 
of the type Q - u,vo = nd2,,. 

5 ) ~ s  noted by A. V. Gaponov and in Refs. 18 and 19, undulatory 
radiation of rather short wavelengths can be obtained by 
channeling relativistic particles in a crystal. The literature 
devoted to solid-state systems (see, e.g. Ref. 20) deals also 
with regimes in which the periodic character of the crystal 
field is insignificant (the nearest vacuum analog of systems 
of this type is the strophotrodl). 
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