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We obtain the dependence of the critical temperatures of the dielectric transition (T,) and of the 
superconducting transition (T,) on the parameter w that characterizes the probability of electron 
tunneling from b e n t  to h e n t  in a quasi-onediiensional system. It is shown that with decreasing 
parameter w ,  owing to the mutual influence of the Peierls and Cooper instabilities, the critical 
temperature T, of the superconducting transition increases and reaches a maximum in the region ozA 
(where A is the biding energy between the particles on one fdament). In the region w < A  the fluctuation 
effects suppress the superconducting phase transition, and with further decrease of w the critical 
temperature either vanishes smoothly as w 4 ,  or jumpwise at w = w, z (c~T,?"~,  and at w <w, a 
dielectric phase transition takes place. The calculations were performed by the renormalization-group 
method. The experimental facts concerning phase transitions in quasi-one-dimensional substances are 
discussed in light of the deduced concepts. 

PACS numbers: 71.30. + h, 74.10. + v 

1. INTRODUCTION Thus ,  calculations a t  s m a l l  w should be  based on 

During the l a s t  fifteen y e a r s ,  numerous at tempts  w e r e  
made to calculate  the c r i t i ca l  t empera tures  T, of various 
phase t ransi t ions i n  quasi-one-dimensional sys tems ,  but 
without account taken of the t r a n s v e r s e  coupling between 
the filaments, s o  that Tc was  calculated approximately 
within the frameworks of purely one-dimensional models ,  
for  which the exact T ,  should, according t o  the Landau 
theory,' be  identically equal  t o  zero.  T h e  f i r s t  re l iable  
resu l t s  for  T, appeared relatively recently, when i t  w a s  
learned t o  take into account the weak t r a n s v e r s e  cou- 
pling between the filaments, which frequently is of two 
types: potential-the vertex contains t e r m s  with the  in- 
dices  i and j of different f i laments ,  and kinetic, c o r r e s -  
ponding t o  the possibility of e lectron tunneling f rom fila- 
ment t o  filament and character ized by a t r a n s v e r s e  r e s o -  
nant integral  w. 

F o r  quasi-one-dimensional s y s t e m s  made up of thick 
filaments, Efetov and L a r k i d  and Scalapino e t  aL3 have 
proposed a self-consistent field method in t e r m s  of the 
t r a n s v e r s e  coupling, and th i s  method was  subsequently 
extensively used. Other  s t ~ d i e s ~ - ~ - "  w e r e  devoted t o  
quasi-one-dimensional s y s t e m s  based on one-dimension- 
a1 metallic filaments. T h e s e  models  a r e  m o r e  difficult 
to  study. I t  is known that in  the purely one-dimensional 
c a s e  i t  is necessary t o  take into account simultaneously 
two types of instability, P e i e r l s  and C ~ o p e r , ' ~ . ' ~  and only 
in  the very s imples t  c a s e s  (e.g., f o r  the  Tomonaga- 
Luttinger model14) a r e  the  one-dimensionalparquet equa- 
tions a sufficiently good approximation. Therefore ,  say,  
the resu l t s  of Gor'kov and ~ z ~ a l o s h i n s k i ? ~  and of Lee  
et  a1,8 based on the parquet  approximation that yields  
fa i r  agreement  a t  not too s m a l l  values of w, cannot be  
extended t o  the region of sufficiently s m a l l  w, where the 
role  of the one-dimensional fluctuations is large.  T h e  
l imits  of applicability of the self-consistent-field method 
with respec t  to  t r a n s v e r s e  c ~ u p l i n g ~ - ~  a r e  not c l e a r  to  
th i s  day (this, incidentally, will be discussed below), 

m o r e  exact  approximation. A suitable method was  f i r s t  
descr ibed i n  Ref. 5, where  i t  w a s  proposed to break up 
the en t i re  t empera ture  (frequency) interval  into two re-  
gions: one-dimensional (ID), i n  which only exac t  one- 
dimensional solutions o r  the renormalization-group 
method in the approximation that follows the parquet  ap- 
proximation must  be  used,13 and three-dimensional (3D) 
where the  parquet  of ladder  approximation can be used 
for  the analysis.  In  Ref. 5 we a l s o  indicated a prescr ip-  
tion f o r  matching together  the solution on the boundary 
of t h e  1D and 3D regions. T h i s  method yielded the f i r s t  
r e s u l t s  f o r  T, in  the region of s m a l l  w f o r  sys tems  of 
one-dimensional metallic filaments5*' (in addition, the 
most  accura te  values w e r e  obtained in Ref. 5 fo r  the 
c r i t i ca l  exponents fo r  the admit tances in  the 1D region). 
A s i m i l a r  method w a s  used independently i n  Ref. 7 for 
the c a s e  of t r a n s v e r s e  potential coupling. T h i s  method 
was  subsequently fu r ther  developed in Refs. 9 and 10, 
where the r o l e s  of the kineticg and p ~ t e n t i a l ' ~  couplings 
w e r e  studied. Express ions  w e r e  obtained for  the c r i t i ca l  
t empera tures  of the superconductingg and dielectric'' 
transitions. T h e  mos t  important  resu l t  is the s tatement  
that  in  the c a s e  of a strongly asymmetr ica l  e lectron 
spec t rum,  when t h e  P e i e r l s  t ransi t ion is suppressed 
(but the corresponding fluctuations in  the 1D regions a r e  
not small) ,  the t empera ture  T, of the superconducting 
t ransi t ion as a function of w h a s  a maximum i n  the region 

( see  Fig. 2 of Ref. 9), where  A charac te r izes  the fo rce  
and the radius of the  interact ion of the electrons located 
on one filaments, and specif ies  the binding energy be- 
tween the  par t i c les  f o r  the one-dimensional m c ~ d e l . ~ * ' ~  
Using a s i m i l a r  method, Lark in  and Sak1' have recently 
reached the  s a m e  conclusion. Suzumura and Fukuyama" 
a l s o  point t o  the possibility of a maximum of To if one 
moves f rom the direct ion of extremely smal l  w .  

and there  a r e  even known c a s e s  when this  method is In the presen t  paper  we propose that the  electron spec- 
certainly not valid." t r u m  is not too asymmetr ical ,  when t h e r e  ex i s t s  a 
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small-w region in which the Peier l s  transition i s  not 
suppress and is investigated on a pa r  with the supercon- 
ducting transition, something impossible in the quasi- 
one-dimensional Tomonaga model.14 We take into ac- 
count here  the renormalization of the width of the band 
in the transverse dimension, which occurs in the region 
of small  W. The  retardation inherent in the electron- 
phonon coupling appears here a s  an effect of softening 
of one of the end-point frequencies in the two-limit tech- 
nique of the renormalization groups for  the four-fermion 
interaction. Retardation effects were  investigated in de- 
tail by Horovitz18 in the framework of the model with 
electron-phonon interaction. The  T , ( w )  and T, (w)  de- 
pendences were obtainedlg by the mean-field method, 
which i s  valid only when w >>A, and therefore provide 
not even a qualitative description in the region w = A  of 
interest, where all the nontrivial events take place. 

2. FORMULATION OF PROBLEM 

Depending on the rat io of the parameters  w and A, we 
shall distinguish between two cases.  

At w << A we choose a s  the initial approximation the 
solution corresponding to the one-dimensional case,  and 
treat the influence of the t ransverse  motion by perturba- 
tion theory, where the small  parameter  is the ratio w/ 
'4. The first-approximation result  corresponds to allow- 
ance for correlated transitions of a pair  of particles,52o 
and in t e rms  of the effective Hamiltonian for  the order  
parameter ,  it corresponds to the mean-field approxima- 
tion with respect  to transverse kinetic ~oupling. ' '~ 

In the region w >>A the kinetic energy of the trans-  
verse  motion must be included in the zeroth Hamilton- 
ian, and the interaction can be treated by perturbation 
theory.4o5 If at  the same time we confine ourselves to 
the mean-field approximation in the interaction, then the 
correction to the interaction will be small  in the param- 
e ter  A/W, but not A/&,, this being due to the enhanced 
role of the fluctuations in the ID region compared with 
the 3D region. We consider below precisely the case  of 
not too small values of the transverse kinetic coupling, 
zu 2 A. The system is in this case  already close in i t s  
properties to a three-dimensiona strongly anisotropic 
one, but in contrast to the la t te r  the effects to i t s  prox- 
imity to one-dimensional a r e  still  large. The  indicated 
one-dimensional effects a r e  not restricted merely to an 
enhancement of the role of the fluctuations near the 
phase-transition point,2e4m5 and can appear much ear l ie r  
in the form of a strong correlation between the fluctua- 
tions of the dielectric and superconducting types.'." 

There  is also another reason why the considered 
range of w may be of interest. Allowance for  the inter- 
action between electrons from different filaments leads 
a s  a rule to a dielectric transition. This  may be a tran- 
siton into an antiferromagnetic state2' o r  a transition in- 
t o  the state of a Pe ier l s  o r  anti-Peierls d i e l e ~ t r i c . ~  
Therefore the only method of obtaining a superconducting 
transition in a quasi-one-dimensional system is to ad- 
mit of the possibility of electron tunneling from filament 
t o  filament. At low values of the transverse kinetic cou- 
pling, the dielectric transition will always compete with 
the superconducting transition. In addition, the value of 

the cri t ical  temperatures turns out to be low because of 
the destructing action of the fluctuations. One can hope 
that in the region of not too low values of w the action of 
such fluctuations turns  out to be weakened, and the di- 
electric transition is suppressed. F r o m  the point of 
view of the superconducting transition, the ca se  consid- 
ered here i s  therefore of greatest  interest. 

I t  is convenient t o  c a r r y  out the investigation using as 
an example a simple model"-a system of metallic fila- 
ments packed to form a planar lattice. Neglecting tun- 
neling, the electron spectrum is flat. Allowance for  the 
transition leads corrugation of the F e r m i  surface, i.e., 

where 

Although the linearization in the longitudinal momentum, 
carried out above, i s  in fact valid only nea r  the F e r m i  
surface, we shall use (1) up to  energies of the o rde r  of 
c,. At sma l l  w << c, this can lead to a change in the 
number under the logarithm sign. We confine ourselves 
in (1) to the f irst  te rm of the expansion in w/E,, and 
therefore the equality 

e ( P I - E # = - [ E  ( P - ~ o ) - E R ] ,  (2 ) 

where qo = (2p0; nti/a; ?rtf/a), i s  satisfied accurate t o  
quantities of o rde r  w2/c,. I t  is just the allowance for  
these t e rms  which leads to suppression of the dielectr ic  
transition. 

An important ro le  in the present  problem is the inter- 
action of electrons belonging to different pa r t s  of the 
F e r m i  surface. If we leave out the possible spin depen- 
dence, this interaction breaks up into processes  with 
la rge  transfer  of the logitudinal momentum of the o r d e r  
of 2po-the constantg, , and par t  of processes  with smal l  
t ransfer  of the longitudinal momentum compared with 
p,-the constant12*13 gZ: 

rDpra=g,6,,6pa-gl6,&. (3 ) 

Although i t  is difficult to express  any judgement concern- 
ing the interaction in rea l  sys tems of the type consid- 
ered,  i t  is nevertheless useful to examine the relation 
between the introduced constants for  certain interaction 
mechanisms. In the case  when the interaction i s  due to 
phonon exhange with large t ransfer  of the longitudinal 
momentum, 

where x i s  the electron-phonon coupling constant and W, 

is an energy is of the order  of the Debye frequency. 
This  is a short-range interaction and is cut off a t  an en- 
ergy of the o rde r  of w,, i.e., the energy transferred in  
the interaction does not exceed w,. Phonon exchange 
with smal l  t ransfer  of the longitudinal momentum can 
lead ei ther  to repulsion o r  t o  attraction. F o r  example, 
in the ca se  of the repulsion, if the phonon spectrum is 
flat, then g, = cg, and c = (w,/c,)', which is much l e s s  
than the attraction g,. In the c a s e  of attraction we have 
for an isotropic spectrum g2 fig,. The Little mechanism 
of interaction via excitation of the electron levels  pre- 
supposes that g, =g2 < 0 and that the frequency limit is of 
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the order of E,. In the general case  i t  can be assumed 
that g, +gl and the cutoff parameters  for these two inter- 
action constants w, and w, a r e  correspondingly different. 

3. CALCULATION OF THE SCATTERING AMPLITUDE 
AND OF THE GREEN'S FUNCTION 

The investigation of the thermodynamic instabilities 
reduces to a study of the scat tering amplitude. The  lat- 
te r  can be calculated by summing the most essential dia- 
grams of perturbation theory. In the f irst-order approx- 
imation this is a sequence of diagrams of the pure 
Peier l s  and Cooper types, a s  well a s  diagrams of the 
mixed type obtained by combining the former.'' The dia- 
grams of the las t  type turn out to be essential only en- 
ergies that a r e  la rger  than UI. AS shown in Ref. 11, a t  
energies lower than w they have an additional smallness 
due to the decrease of the phase volume in t e rms  of the 
transverse pa r t  of the momenta, in which both instabil- 
i t ies  a r e  simultaneously realized, and in the principal 
logarithmic approximation they can be left out (see in- 
cidentally also the sequel and the Appendix). 

The indicated diagrams can be summed by Sudakov's 
method. By separating in each of the diagrams the two- 
particle c ros s  section, in which the momenta a r e  c loser  
to the Fe rmi  surface than in other sections, we obtain 
for the amplitudes the graphic equation shown in Fig. 1; 
The dashed and solid lines represent  electrons with p,, 
>O and p,, < 0, respectively. We introduce the logarith- 
mic variables corresponding to the separated scat tering 
channels: 

and define 
0 1  0 2  W 

ar-In - , a2=ln - , p=ln - . 
EP EP EP 

Here and q a r e  the transferred frequency and momen- 
tum in the Peier l s  channel, o and k a r e  the summary 
frequency and momentum in the Cooper channel, and T 
is the temperature. 

Changing over to dimensionless variables and multiply- 
ing them by N0/4, where No =2/nutia2 is the state dens- 

FIG. 1. 

ity on the F e r m i  surface, we get for the effective poten- 
t ia l s  y, and y, the following system of nonlinear integral 
equations1) : 

71 (E, q )  =g1- @f1dt{Y1 ( t , { t ,  P I )  r2(4 { t ,  B ,  1,)) 

r 

Here  {t,,9,?I) denotes max(t,p,.r)). The  appearance of 
different upper integration l imits  in (5) and (6) is due to 
the fact (see Fig. 1)  that in one ca se  the integration with 
respect  t o  the longitudinal momentum (which reduces to 
integration with respect  to energy) is along a closed 
electron line, i.e., over the entire band, and in the sec- 
ond case  the integration region is bounded by the condi- 
tion that the energy brought in by the wavy line does not 
exceed w, o r  w, (the BCS model). I t  was assumed above 
that wl ,c w2 . The  system (5) and (6) can be solved ex- 
actly. We note for  this purpose a t  j3 < (5,171 ,( a, i t  goes 
over into the ordinary parquet equations for  a one-di- 
mensional system.12 At 5 = q  the solution takes the form 

The difference between (71 and the corresponding solu- 
tions of Bychkov e t  al.lz is due to the fact that here  we 
have taken into account the renormalization of gl on ac- 
count of the energy region from wl to E,, where the sol- 
ution i s  represented in the form 

In the region (5.7) ,cj3 Eqs. (5) and (6) can be rewritten 
in the form 

n I 

r 
r l ( E . ~ ) = r r ( B ) - 2  1 I~l'(B,t)-rr(B,t)~;(B,t) ldt 

m 

r 
-2 (t,  B)rl(t,  Plat, (11) 

I 

i.e., the vertex is represented in the form of a sum of 
two ladders corresponding to  independent summation of 
diagrams of the Peier l s  and Cooper types, the only dif- 
ference being that here the irreducible par t  contains not 
the bare  interaction constants, but rl(,9) and Yz(,9) taken 
from (7). 
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The solution (10) and (11) can be written in the form 

The  solution of Eqs. (5) and (6) a t  another relation be- 
tween the parameters B and a, o r  CY, will be given la te r  
[see (23)-(27)J. 

T h e  region of applicability of Eqs. (5) and (6) i s  re-  
stricted by the condition that y,([) < 1 be small. At y , ( [ )  
= 1  i t  is necessary to take into account the corrections 
of next order. They a r e  due to the f i r s t  non-parquet dia- 
grams for  the vertex function and for  the corrections to 
the mass operator.13 These corrections have a purely 
one-dimensional character  and turn out to be substantial 
also only a t  energies higher than w?." At energies low- 
e r  than w they have an  additional smallness and can be 
omitted. Taking into account the character  of the ob- 
tained corrections, the Green's function must be repre-  
sented in the form 

d  
G =  Go = 

1 
, W =  wd. (14) 

Go-' + wg ( p , )  ' 0 -  o(lp,,l-po) 

The function d, which describes the renormalization of 
the residue at the pole of the Green's function i s  con- 
nected with the mass  operator  Z in the same manner a s  
in  the one-dimensional case: d =  (1 - Gi1z)-'. The pa- 
rameter  W in (14) plays the role of the effective width 
of the band in the t ransverse  direction, and can differ 
from w. At energies higher than W, the correct ions 
considered coincide with those for a one-dimensional 

They can be summed by using the renormal- 
ization group method proposed previously for  the one- 
dimensional case.13 As a result  we have 

d ( 5 )  = I ,  a:< EGO: d ( 5 )  =cxp[gz2(E-az)  I ,  a ,GEGap;  (15) 

where g;([) a r e  invariant charges. At f; 2 a, the charge 
g,'=g, and g;([) coincides with yl([) from (8) and (9), if 
g2 i s  neglected compared with unity. 

In the region f; s a,, the quantity g;([) sat isf ies the 
equations 

dg,' -= a,' 
2g,'"(l + g, ') .  - = 

d5 dE 
g,'z(l + g,')  (18) 

with initial conditions &(a,) =g2 and g:(ff,) =y,(@,). 

Expressions (15)-(18) a r e  valid in the energy region 
o a ~ ( [ ) [ f ;  =ln(w/cF)] o r  w 2 T,, where T, is determined 
from the equation 

T,=wd(B) ,  6= ln (T , / cF) .  (19) 

The parameter Tl s e t s  the boundary value of the energy 
o r  temperature, below which the behavior of the system 
changes from one-dimensional to three-dimensional. 
Generally speaking this transition (the corresponding 
equations describing such a transition were obtained in 

Ref. 11) occurs mainly in the Tomanaga-Luttinger mod- 
el. Moreover, near the cri t ical  point on the F e r m i  sur-  
face there a r e  almost flat sections, and therefore the 
corresponding one-dimensional correct ions remain also 
in the most cri t ical  point. However, a t  low coupling 
constants o r  a t  large values of w the indicated sections 
constitute a smal l  fraction of the entire F e r m i  surface. 
In the reciprocal lattice, they accommodate only a frac- 
tion on the o rde r  of (T,/w)~ and they can be omitted rel- 
ative t o  this parameter  outside the vicinity of the es-  
sential singularity of the phase-transition point. In the 
Appendix we analyze their  influence on the phase dia- 
gram. Allowance for parquet diagrams of the mixed 
type leads to the appearance of a certain region in the 
plane of the bare  constants gl and g,, in which the posi- 
tion of the singularities in the Cooper and in the Peier l s  
channels merge,  i.e., the purely one-dimensional par- 
quet solution i s  obtained for  the amplitude.12 However, 
when account is taken of the succeeding one-dimensional 
correct ions to the vertex function and the Green's func- 
tion, the solution in the region of smal l  interaction con- 
stants  o r  large values of w i s  again the same a s  ob- 
tained neglecting the pure one-dimensional correct ions 
in the region of energies lower than w. 

Thus, a t  ( 5 , ~ )  s 6, taking (12) and (13) into account we 
get for  the amplitude 

Equations (20) and (21) pertain t o  the region of param- 
e t e r  values specified by the condition Tl(w) < w, o r  w 
< w,, where w, sat isf ies the equation 

T , ( w , )  =a,. (22) 

The expression for  y([,q) at  w 2 wl can  be obtained by 
solving (5) and (6) and using (15)-(17). As  a result  we 
get at w , c w  s w 2  and (5,77)2a1 

where y,(6) is obtained from (17); if ( 5 , ~ )  s a,, then 

where yl(b, a,) is taken from (23b). 

At w2 s w  s c p  and a, c (5.77) < p i t  follows from (5) and 
(6) that 

r=(S,  q)=gz ,  yr (E, q ) = g t l ( l - 2 g t q ) ;  (25) 

in the region ff, s ([,q) 6 (Yz 
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rl(E, 4) =gi{(l-2giaz) (l+gt(q-ar) ) -2g,)-', (26a) phonon vertex. In the region T < w, and w s w ,  it i s  

and in the region ( 5 ,  q )  < (Y, 

yz(E, I) =g~(~+g~(q-a~))-~-g~+y~(a~a~) (I- (%(a,, at) 
+ - i - ( l  a )  - - a 1 .  (27b) 

We have considered above a model with four-fermion 
interaction, in which w, and w, a r e  defined formally a s  
the interaction cutoff parameters.  If w, and w, a r e  re- 
garded as the limiting values of the energies of the ex- 
citations whose virtual exchange in fact real izes the in- 
teraction of the electrons, then i t  is necessary to take 
into account a l so  the renormalization of w, and w , . ~ . ' ~  
In the case  of phonons w, =S2(q0) and i t s  renormalized 
value must be found from the equation 

~tz-~d(I-glP((al, &I)), (28) 

where w, is the value of the renormalized frequency of 
the phonon spectrum, equal to w, =Qo(qO), and P(q)  i s  
the polarization operator, equal t o  

The renormalization w, - w, is due to the softening of the 
phonon spectrum. Since it is effective only a t  q,,-2p, 
and the constant g, describes the interaction with small  
t ransfer  of the longitudinal momentum, the frequency w, 
must be regarded a s  fixed and for  the isotropic phonon 
spectrum w, - w,. 

4. CRITICAL TEMPERATURE 

The results  obtained in the preceding section a r e  best  
plotted on the (T,w)  plane (see Fig. 2). Different regions 
of the values of T and w correspond to different equa- 
tions for  the determination of the scat tering amplitude. 
In the region w, s T G E, a r e  summed diagrams of the 
Peier l s  type, which a r e  responsible for  the renormaliz- 
ationof the phonon spectrum a t  q,, -2p,. At T s w, the in- 
teraction specified by the constant g,, is turned on and 
this interaction must be taken into account in the calcu- 
lation of the polarization operator  and of the electron- 

FIG. 2. 

necessary to take into account al l  the diagrams of the 
parquet type, and a t  T << w, a lso  the diagrams of the 
next order .  On going into the region T a  T,(w) (three- 
dimensional region) the aggregate of the essential dia- 
g rams  is limited to  diagrams of pure Pe i e r l s  and Coop- 
e r  type, the fo rmer  being important only a t  T >T,(w)w/ 
c, because of the suppression effects that occur a t  low- 
e r  temperatures. 

The  appearance of the singularities in y,, ,([, q )  points 
t o  the possibility of a phase transition in the quasi-one- 
dimensional system, and their  position determines the 
cri t ical  temperature. In  the region w << w,, according to  
(20) and (21), the temperatures of the superconducting 
and dielectric transitions a r e  

where gi =g:(6), a = -gg{ +g,' =-~r,((Yl) +g,, while gi(6) 
and y , ( (~ , )  a r e  obtained from (18) and (8), respectively. 
Inverting the dependences of gi on ~ , [ 6  =ln(~ , /c , ) ]  and 
of T, on w, we have according to (18) and (19) 

Equations (31)-(33), in which g; was regarded a s  a pa- 
rameter  that varies in the range -1 cg: < y,(ar , ) ,  de- 
termine implicitly the dependences of T, and T, on w in 
the region w --c w,. 

The  singularities of (20) and (21), whose positions a r e  
given by the equations 

correspond to a transition to  a superconducting state 
with tr iplet  pairing (TP) and to an  antiferromagnetic 
transition with formation of an Overhauser spin density 
wave (SDW).' Separating at  the given g, and g, the phase 
transition with the la rges t  value of the cri t ical  tempera- 
ture,  we can obtain the phase diagram of the states 
shown in Fig. 3 [here y , ( ~ l )  is connected with g, in ac- 
cord with (8)]. I t  must be borne in mind here  that the 
dielectr ic  transition (CDW, SDW) is suppressed if i t  turns 
out that w/cF 3 T,/T,. We shall focus our  attention be- 
low on the regions y , ( ~ , )  < 0 o r  g, < 0. 

As  indicated in our ea r l i e r  paper: the cri t ical  temper- 
ature a s  a function of w can have a maximum. At a 

FIG. 3. 

817 Sov. Phys. JETP 49(5), May 1979 V. N. Prigodin and Yu. A. Firsov 817 



< yl(@l)< 1 i t  occurs a t  w a T, a A, where the parameter  
A [see (32)] coincides with the binding energy in the one- 
dimensional ~ a s e . ~ * ' ~  On the other hand i t  follows from 
(18) that gl[ln(~/&,)] = 0.72, and consequently the condi- 
tion w 2- A determines the region of applicability of the 
renormalization-group method ( g i  < 1). The  value of the 
parameter  g; from (31)-(33) a t  the point of the maxi- 
mum is determined from the equations 

(the minus and plus signs a r e  taken for  T, and T,, re-  
spectively) and turns out to be smal ler  than gi[ ln(~/&,)] .  
If w << A, then the region 14 s T << A does not lend itself 
t o  a quantitative analysis, for i t  i s  impossible a t  all the 
separate here  the essential diagrams. Nonetheless, Eq. 
(31) gives a qualitatively correc t  result  a l so  a t  w c< A: 

T , , = ~ ( w l h ) ~ ' " - " .  (35) 
Here  h i s  the exponent of the power-law singularity of 
the scattering amplitude, calculated a t  w =O(y, = w-'"). 
I t  depends substantially on the presence and on the value 
of the fixed point of the invariant charge, and in thepres-  
ent approximation i t s  value i s  h = f  + a'. 

Generally speaking, a t  w << A we can expect the cor- 
rect  result  to be obtained by the mean-field method in w 
(Refs. 2,201, where h from (35) is already connected 
with the exponent of the power-law singularity of the cor- 
relator  that characterizes the corresponding phase 
transition ( X  a w-~('"). I t  must be noted, however, that 
a t  w << A the region of the essential singularity near  the 
phase transition point: AT,, =T,, (T,, : T , ) ~ ,  turns out 
t o  be AT,, =T,, . In Fig. 2 this corresponds to the fact 
that if scaling is observed in the one-dimensional re-  
gion, then on going to the three-dimensional region we 
immediately land in the region of developed three-dimen- 
sional fluctuations. If we use for  an est imate of x in (35) 
the results  of the next approximation in the  renormaliza- 
tion-group method:' then h e  3, which is already close 
to the value of h used in the mean-field method in w?'" 

The parameters w, o r  w, in (33) a r e  obtained from the 
solution of Eqs. (22) and (28). The la t te r  exists  in the 
region of the parameters that satisfy the inequality 

At g, << g1 it can be rewritten in the form 

(TO, is the temperature of the Peier l s  transition for  a 
one-dimensional system, calculated in the mean-field 
approximation). We then have for  w, and w, = w,(w,) in 
accord with (22) and (28) 

i 1 . , ~ = o , ~ = a ~ ~ 2 g ,  l n ( T p o / o D ) .  (38) 

Assume that (36) does not hold o r  that z, ((g,  ()'"w, if 
g2 <<gl. I t  follows from (26), (27), (23), (24), and (8) 
that 

where T,(w) = w (W/W,)~;. I t  was assumed above that c z, w,. At '109 3 0,, according to (9) and (25), T, = c. 
If g, << g,, then expressions (39)-(41) can be rewritten 
in  the form 

i.e., the interaction given by g, can ei ther  enhance o r  
suppress the dielectric transition, depending on the sign 
of g,. I t  should be noted that expressions (39)-(42) de- 
scribe a transition in an ion system, since the corres-  
ponding pole singularity appears then in  the expression 
fo r  y, at  T,>wl. 

At w =w,, where W, sat isf ies the equation 

if g, << g,, the dielectric transition i s  suppressed, and a t  
w > w, a superconducting phase transition is possible 
with a cri t ical  temperature [see (26) and (27)] 

T , = o z  e x p { l / g 2 ) ,  (44) 
if in this ca se  T, > w,(w), o r  

if T ,c  w,(w). Here w a w, and wf (w)=  W;(I - 2g1@). 

At w 9 W, i t  follows from (23) and (24) that 
T,=T,  (w)elJB2, (46) 

if T, 2 wl(w), where w,(w) equals according to (28) 
o,l(w)-oD2(1-2glaa+gz(exp[-2ga(6-az) I - I ) / g , ) .  (47) 

At T, c w,(w) we have 

In the region of parameters  satisfying (36), the cri t ical  
temperature of the dielectric transition at  w cwl ,wl  
c w  cw,, and w >w, is obtained respectively from (31), 
(39), and (40). The temperature of the superconducting 
transition a t  w >w, is described a s  before by Eqs. (44)- 
(48), and a t  w c W, it is obtained from (31). F igures  4 
and 5 show typical examples of plots of T,(w) and T#(w). 

FIG. 4. Dependence of the critical temperatures of the super- 
conducting (T,) and dielectric (T ) transitions on w at the 
parameter values cF/cD= 15, T$&,= 0.1, a d  T ~ u . =  0.1. 
The dashed line shows the behavior of T, in the region of 
small w when account is taken of the interaction of the elec- 
trons from different filaments. 
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FIG. 5. Dependence of Tc and Tp on w at the parameter values 
WD/WF= 0.03, T:/wD= 0.03567, and T ~ w , =  0.2246. 

Here 

where 

We recall  that in the three-dimensional BCS model use 
is made of a short-range i n t e r a ~ t i o n , ' ~  which corres-  
ponds to g, =g2 =g and w, = w, = wD.12 If i t  i s  recognized 
that the dimensionless coupling constant g is equal here  
to ~ ~ ( 0 ) / 4 ,  then expression (49) for  T, coincides with 
that obtained in the BCS modeLZ3 

5. CONCLUSION 

One of the most important results  of the present paper 
is the statement that T, in a quasi-one-dimensional sys- 
tem can be noticeably higher than in a three-dimensional 
strongly anisotropic metal (see,  e.g., Figs. 4 and 5). 
Although all the calculations were made for  a model 
with four-fermion interaction, we describe the results  
in te rms of electron-phonon interaction, since a cor res-  
pondence exists between the diagrams for  the two types 
of Hamiltonian. The  increase of T, in the quasi-one-di- 
mensional case is connected both with the softening of 
thephononmode and with the inverse effect-the influ- 
ence of the fluctuations of the superconducting type on 
the anomalies of the phonon spectrum. Both effects 
manifest themselves particularly strongly in those ener- 
gy regions where the influence of the corrugation of the 
Fe rmi  surface can be neglected, i.e., the increase of T, 
has a purely one-dimensional character .  Let  us illus- 
t ra te  this statement in somewhat grea ter  detail. 

In the region T 2 w, with decreasing temperature, a 
softening of the phonon spectrum takes place with a 
longitudinal momentum of the order  of 2p, and with an 
arbitrary t ransverse  momentum. The  width of the longi- 
tudinal-momentum s t r i p  in which the softening takes 
place is of the o rde r  of T/U. The one-dimensional dis- 
tinguishing feature i s  that i t  is precisely this pa r t  of the 
phonon spectrum with the longitudinal momentum of the 
o rde r  of 2p0, with a width of the o rde r  of wD/u, and with 
an arbitrary transverse momentum which determines the 
effective attraction between the electrons (g, =-h2/w,). 
This  leads in final analysis to an increase of the effec- 
tive interaction with decreasing temperature. At T << w 
the softening takes place in a narrow range of trans- 
verse-momentum values near q,,, = *lrti/a (it is precisely 
the narrowness of this interval which we take to mean 

the smallness of the phase volume). As a result ,  a t  T 
<< w, such a softening manifests itself integrally weakly 
in the effective interaction, and we omit it. The  cri t ical  
temperature obtainable thereby is only undervalued. 

Since the longitudinal-momentum region of the effec- 
tive softening of the phonon spectrum becomes narrower 
(=T/v) a t  T < w,, i t  s eems  a t  f i r s t  glance that the influ- 
ence of the softening on the integral coupling constant at  
T < w, become weaker. This  is not so,  however, for  a t  
T < w, the electron-electron interaction due to phonon 
exchange is turned on, and an inverse effect s e t s  in- 
the influence of fluctuations of superconducting type on 
the softening of the phonon spectrum. I t  can be seen, 
with the parquet approximation in the one-dimensional 
ca se  a s  an example:' that we have here  not only a nar- 
rowing of the q,, interval in which the softening takes 
place, but a l so  an increase of the softeningitself; there- 
fore the effective interaction continues to increase just 
a s  when T > w,. This  leads to a growth of T, with de- 
creasing w, like Tc - 'IO,(T;/W)'/~ in the region w >>TO,, 
and g, =2g2, a s  was f i r s t  pointed out by Gor'kov and 
~ z ~ a l o s h i n s k i ~ . ~  A s  w -'IO,, however, the r a t e  of growth 
of T, slows down and can no longer be described within 
the framework of the parquet approximation. This  per-  
tains a l l  the more to the region on the  left of the maxi- 
mum, where T, - 0 a s  w - 0. In  this region the effective 
coupling constant g tends to saturation, and reaches  val- 
ues of the order  of unity, a fact described not by the 
parquet equations, but by Eqs. (18). From formula (31) 
i t  i s  seen that the decrease  of T,(w) is due to the pre- 
exponential factor T, [see (32) and (33)], which tends to 
z e r o  a s  w -0. According to  Efetov and Larkin: this re-  
flects the increase of the destructive role of the fluctua- 
tions, on account of the eve r  increasing "one-dimension- 
alization" of the problem. 

Much experimental material  has by now been accumu- 
lated for  different c lasses  of quasi-one-dimensional 
systems.24 The  grea ter  par t  of the organic compounds 
of a quasi-one-dimensional type a t  low temperatures 
turn out to be dielectrics. Th i s  situation is due to their  
high anisotropy, inasmuch a s  in the ca se  of a weak 
t ransverse  coupling the phase transformations a r e  due 
to interaction of electrons on different filaments, and 
this contributes to a dielectric t r a n s i t i ~ n . ~ ~ * ~ ~  

At the present  t ime we know of two organic com- 
pounds, HMTSeF-TCNQ (Ref. 25) and (TSeT),Cl (Ref. 
26) which undergo a metal-semimetal transition at  low 
temperatures. The  finite conductivity of these com- 
pounds, down to infralow temperatures, is an indication 
that the tunneling of the electrons between the filaments 
is not too smal l  here. Otherwise the conductivity would 
tend to ze ro  because of one-dimensional localization of 
the electrons in the random field of the impurities, o r  
else because of the dielectric transition. 

The  tunneling transition can be increased by using 
pressure.  The corresponding experiments show (see, 
e.g., Ref. 27) that at  high pressure  there exists a metal- 
lic phase that is stable a t  low temperatures. The  fact 
that the system does not become superconducting a t  
these temperatures is due ei ther  to the smallness of the 
effective interaction constant, o r  means that repulsion 
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prevails in the interaction. This  might lead in principle 
to a dielectric transition, but the lat ter  is suppressed 
because of the tunneling of the electrons from filament to 
filament. 

A different situation is realized in the compound 
(TTTLI,, ?' At low temperature i t s  conductivity has a 
peak of amplitude that increases  with increase  of the pa- 
rameter  6 that characterizes the deviation from stoi- 
chiometric composition o r  the degree of noncommensur- 
ability of the two sublattices for  TTT and I. The  position 
of the peak shifts in this  ca se  towards lower tempera- 
tures, and the peak itself becomes sharper.  Abrahams 
et al?' believe that the three-dimensional dielectric 
transition is suppressed by the random phase difference 
of the wave functions of the holes belonging to  different 
TTT stacks. This  is due to the lack of correlation in the 
positions of the chains made up of the complexes (I,)-. 
As  a result,  the temperature region in which strong one- 
dimensional fluctuations of the super-conducting type oc- 
cu r  becomes broader, a s  is indeed observed in experi- 
ment. Allowance for  the possibility of tunnelingfromfil- 
ament to filament also leads to this tendency. Another 
example of a system in which a correlation i s  observed 
between the dielectric and the superconduction transi-  
tions is provided by the compounds of polychalcogenides 
of transition metals of the type MX, and MX,, where M 
-Nb, T a  and X-Se,Te,S. The  best  investigated among 
them a r e  niobium triselenide NbSe, and the 2H modifica- 
tion of NbSe, (W-NbSe,), whichhas a layered  structure.24 
NbSe, was previously classified a s  a quasi-one-dimen- 
sional substance, but the latest  data favor a layered 
s t r u ~ t u r e . ~ ~  The  structural  transition in NbSe, with for- 
mation of a charge-density wave does not lead to radical 
changes of the electron spectrum. Therefore 2H-NbSe, 
remains a metal and goes over a t  lower temperatures 
into a superconducting state. Under pressure ,  a de- 
c rease  of the cri t ical  transition for  the cri t ical  transi- 
tion (T,) is observed in NbSe, (Ref. 31) and in NbSe, 
(Ref. 32), and an increase for  the superconducting tran- 
sition. The decrease of T, can be attributed to  the in- 
creased rigidity of the crystal  lattice upon compression. 
In this case, however, a decrease of T, should also oc- 
cur. In  NbSe, (Ref. 32), T, increases  with pressure  
even more rapidly than the change of T,. I t  is therefore 
difficult to attribute this behavior to only a change of the 
crystal-lattice properties. 

In the case  of the quasi-one-dimensional spectrum con- 
sidered above, the system becomes a dielectric o r  a 
semimetal after the appearance of the superstructure. 
The  superconducting transition is hindered in this case. 
This not s o  for  a layered system. The spectrum be- 
comes dielectric here  only on congruent sections of the 
Fe rmi  surface. The dynamic connection between the two 
singularities in the layered system becomes enhanced 
with increasing curvature radius of the indicated sec- 
tions of the Fe rmi  surface. In analogy with the results  
obtained above (see the Appendix) one can expect this 
connection in a layered system also to increase a s  the 
critical temperatures a r e  approached. This  leads to an 
increase in the value of the lower critical temperature. 
F o r  a quantitative comparison, a detailed calculation is 
necessary. 

The experimental data on the pressure  dependence of 
T, in polysulfurnitride (SN), (Ref. 33) can be regarded a s  
pertaining t o  the region of w near the maximum of T, 
[it is possible to describe with the aid of w the connec- 
tion between the individual f ibers i a  the (sN),] crystal. 
In this case  the increase of T, with pressure  (due to the 
increase of w) can give way, after  going through a max- 
imum, to an abrupt decrease  followed by assumption of 
the three-dimensional value of T,, o r  e l s e  the super- 
conducting transition is completely suppressed by the di- 
electric one. The  equations derived above allow for 
such a possibility. 

The  quasi-one-dimensional s ta te  of H&-,AsF, state 
has  interesting superconducting properties. No experi- 
ments were made, however on the influence of pressure  
on T,. 

APPENDIX 

Proceeding in analogy with our ea r l i e r  study" and using 
the same approximation, we obtain for  the scattering 
amplitude the following system of equations a t  energies 
lower than W :  

4 
at' = ' / , (b, '  + biz - b,' - b 2 )  + - 3 a:, a,' = */,(b,' - bZZ + 3baZ - 3b,z),  

where 

Knowing a,,  b,, and c, we can obtain the total scat tering 
amplitude y, ( t ,  q ,  5 )  (Ref. 11). The  dimensionless ampli- 
tudes introduced above can be interpreted in the follow- 
ing manner: %,, determine the effective interaction 
constant of the electron pertaining to the vicinities of the 
points The  corresponding sections of the F e r m i  
surface can be regarded a s  parallel,  and the one-dimen- 
sional situation obtains f o r  them. In the reciprocal lat- 
tice, a fraction ,u of the o rde r  of ,u =eZ(Ec -B) ,  where [, 
is the position of the singularity of the amplitude and 
must be found from the solutionof (A. 1). The amplitudes 
c,,, and c , ,  correspond t o  the effective interaction 
constants in  the Cooper and Peier l s  channels for elec- 
t rons f a r  from the vicinity of the points indicated above. 
The  amplitudes b , ,  and 4 ,  characterize the interaction 
between separated groups of electrons in the Cooper and 
Peier l s  channels, respectively. 

If ,( p, p )  < 1, then p << 1 and consequently a,(@) << 1 
and b , ( p )  << 1. Therefore we can leave out in (A .I), out- 
s ide the phase transition point, the corresponding terms.  
As a result  we ar r ive  at  the system of equations consid- 
ered in the main text of the article. 

Near  the cri t ical  point it becomes important t o  take in- 
to account a ,  and b,. F rom (A.l) i t  i s  easy to  see. that  
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in the  region of the interaction constants al(B) < %(B) 
< - q ( p )  the one-dimensional parquet result'2 is restored 
in this case, i.e., the dielectric and superconducting 
transitions have the s ame  transition temperature. Near  
the cri t ical  point we have fo r  the amplitude the following 
asymptotic behavior: 

ala (E-%.I -I, b , . ~ =  (E-e,) -", c,,,= (e-e.) - I h ,  

and the corre la tors  that characterize the tendency to  di- 
electric and superconducting pairing behave in the fol- 
lowing manner: 

C(E) (E-E.)-'", P ( E )  ce-e.)-". 

However, nea r  the phase-transition point the next 
t e rms  of the expansion may also turn out t o  be substan- 
tial. Thus, for example, allowance for  the next one- 
dimensional correct ions due to the presence of almost  
plane sections on F e r m i  surface, reconstructs  the re-  
sul t  of the f i r s t  approximation for  the amplitude. In- 
deed, if we calculate the correct ions of next order  to 
the vertex function and t o  the mass  operator, using the 
same approximations a s  before in the calculation of the 
mixed-type diagrams," namely, using the substitution 

then the following t e rms  a r e  added to the right-hand side 
of (A.l): in the equation for  a, the te rm $ cj: and t e rms  
of the type b,(ai  +$a: for  b,. The equations for  a, and 
ct remain unchanged in this case. In this  case  in the 
region of small  p ,  at  a, #O,  the position of the singular- 
i t ies  in c, and c, differ, and nea r  the cri t ical  point they 
take a s  before the pole form: 

The  position of the pole singularity is sufficiently well 
satisfied here  by expressions (31)-(33). 
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