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A qualitative theory of fluctuations in the critical region, including the critical point, is developed using 
the example of a classical system describable by the Gizburg-Landau equation with a random source. 
The starting points are the conditions for consistency of two limits: passage to the critical point (T-T,) 
and the thermodynamic limit. Depending on the value of 7 = (T - Tc)/Tc four subregions can be 
distinguished: 1) The critical point and its immediate neighborhood, in which the parameter e a l/N is 
not small. The critical indices fl, y ,  and v characterize the power dependences on N. 2) The region of 
scale invariance. The passage to this from subregion 1 occurs when the thermodynamic l i t  is taken. 
The same critical indices determine the power dependences on M. In the regions 1 and 2 the 
renonnalized Gizburg parameter is not a small parameter. 3) The crossover region between region 2 
and the region of applicability of the Landau theory. 4) The region of applicability of the Landau theory. 
The relationship between the critical indices in the regions 2 and 4 is determined by the " W i n  
parameter" ew, the values of which lie in the interval 1 z e w  20. The value 1 corresponds to the region 
of scale invariance and the value 0 to the region in which the Landau theory is valid. In region 4 the 
Ginzburg parameter is small. The respective expressions for the correlation times of fluctuations of the 
order parameter and the volume-averaged polarization are given. They are valid for all the regions 
indicated. For T < T, the dependences of these times on N and T are substantially different. The fonner 
decreases in accordance with the Curie law with increase of M, and the latter tends to infinity as N - m .  

PACS numbers: 64.60.Fr 

1. INTRODUCTION The calculations carried out showed that two of the eight 
critical indices (the indices (Y and 5) a r e  significantly 

The phase-transition theory developed by Landau1 is smaller than the others. In the approximation o! = 0,[ = 0, 
valid only at a sufficient distance from the critical point, from the six relations (1.2) and (1.3) we can determine 
when fluctuations of the order paremeter q a r e  small. the values of all the other indices. For three-dimen- 
In the critical region the role of fluctuations is impor- sional space (d =3) they have the following values: 
tant and the calculation of the fluctuations is one of the p='/,, 7='13, T = ~ / , ,  6-5, E-0,  P='/~. (1.4) 
main problems of the modern theory of phase transi- For comparison we give the values of the critical in- 
tions. This theory i s  based on the well known work of dices in the Landau approximation: 
Kadanoff. patashinski; and Pokrovskii. Wilson. and 
Fisher (see Refs. 1-5). aL=O, SL=O, BL=' /~ ,  y ~ = l ,  Y L = ' I ~ ,  

(1.5) 
According to modern ideas, in the critical region the 

dependence of the order paremeter 7, susceptibility X, 
and correlation length r, on the quantity T = (T - T,)/T, 
(T, is the critical temperature) is, a s  in the Landau 
theory, a power dependence: 

qmltls, xmlrl-T, r,.nltl-: (1.1) 

However, the values of the power exponents-the "crit- 
ical indices" -differ substantially from the correspond- 
ing indices of the Landau theory. 

Altogether, eight critical indices a r e  introduced: 
a, 8, y ,  6, v, E ,  p ,  5 (see Refs. 1-5). Between them there 
a re  five general relations 

2p+y=2-a,  p6=$+7, e ( p +  y )  =2 ,  p ( p + y )  =v, v ( 2 - E )  = y .  (1.2) 

~ h e s e ,  naturally, a re  also valid in the Landau theory. 

A sixth relation can be obtained using the scale-invar- 
iance hypothesis of Kadanoff, and patashinski; and 
~okrovskii. ' .~ It has the form 

v d = 2 - a  (or ~ d = y + 2 p ) .  (1.3) 

Using the relations cited we can express the eight cri- 
tical indices in terms of two independent indices. Cal- 
culations of the critical indices for the model with the 
Landau Hamiltonian have been carried out in papers by 
Wilson and Fisher by the so-called &-expansion method. 

The dependences of the critical indices (sic) on 171 

given by the formulas (1.1) a r e  not valid at the critical 
point itself, when (r1=0, since, e.g., the correlation 
length r, cannot exceed the size of the system. In other 
words, it may be said that the dependences (1.1) can 
hold only if the thermodynamic limit has already been 
taken. 

In the present paper, using the example of a system 
of classical atomic oscillators with diffusive coupling, 
we give a qualitative treatment of fluctuations in the 
critical region, including the critical point itself. The 
starting point, a s  is customary in a number of papers,'.' 
i s  the Ginzburg-Landau equation for the polarization 
vector, with a random source included in it. 

It is shown that noncontradictory results can be ob- 
tained only when we have consistency of the two limits: 
the limit T - T, and the thermodynamic limit N- -, V- m 

with N/V =a. The requirements of consistency of these 
limits at the critical point itself lead to the necessity of 
renormalization of the basic quantities and to the intro- 
duction of appropriate critical indices characterizing 
the dependences on N (or V). As we move away from 
the critical point in the parameter &,a: 1/N [cf. (2.13)] 
the power dependences on N change to power depen- 
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dences on 17 1 of the form (1.1). The critical indices 
here coincide with the values (1.4). To determine the 
small critical indices a s  well, the consistency condi- 
tions should be generalized (see Sec. 3). 

The crossover from the region of scale invariance to 
the region in which the Landau theory i s  applicable is  
traced. For the approximation under consideration ex- 
pressions a r e  obtained for the correlation times (and 
the corresponding widths of the spectra) both for fluc- 
tuations of the order parameter and for the volume- 
averaged polarization vector. For 1 T ( # 0 and in the 
thermodynamic limit the correlation time of fluctu- 
ations 6 q  tends to zero like 17 I-', while the correlation 
time of values of the volume-averaged polarization vec- 
tor (Sec. 7) tends to infinity. 

2. THE INITIAL EQUATIONS. THE LANDAU- 
THEORY APPROXIMATION 

We shall consider a system of classical atomic oscil- 
lators with characteristic frequency o, . They a re  
coupled via spatial diffusion. The equation for the po- 
larization vector p(R, t ) = enx(R, t ) with allowance for 
the Lorentz field and the anharmonicity of the individual 
oscillators can be written, for the description of slow 
processes (w<< y, where y i s  the friction coefficient), 
as  a Ginzburg-Landau equation with a random source. 
Here it is more convenient to use the equation for the 
function x(R, t). It has the form 

Below it is  assumed that only one component of the po- 
larization vector is  important. The quantity a can be 
represented in the form 

a=aoz=ao (T-T.) IT,, (2.2) 

a,, b, and g are  constants, E is the external electric 
field, and n =N/V is  the average concentration of atoms. 
The moments of the random source y a r e  determined by 
the expressions 

We expand the functions x and y in Fourier series, e.g., 

X ( R ,  t )  = x x k ( t )  etkn, x k ( t )  = S Z ( R ,  t ) e - r k m d ~ ~ .  (2.4) 
k 

The moments of the random source y, a re  determined 
by the expressions 

D 
<yk)=O, ( yk ( t ) y r ' ( t l )  )=2 -6 ( t - t ' ) .  

N 
(2.5) 

Following Bogoly~bov,~ besides the usual averages we 
shall use quasi-averages. We denote them by (. - -), =, . 
The notation indicates that we must first perform the 
calculation with E P 0 and then pass to the limit E =O. 
We also introduce the notation 

q t ( t )  =( . tk( t )  ) ~ = . ~ = q 8 t ,  a. (2.6) 

Here it is  assumed that the quasi-averages a re  nonzero 
only for the fundamental mode k=O. It follows from the 
formulas (2.4) that the order parameter 

q = ( ~ k = . ~  ( t )  )= < x ( R ,  t )  ) E = . ~ ~ R I V = ( X  ( 1 )  )a=o, S 

i.e., it coincides with the quasi-average of the quantity 
Jx(R, t)dR/V. Neglecting fluctuations, from Eq. (2.1) 
we obtain 

q = ( l a l / b p .  (2.7) 

From the equation for the order-parameter fluctuation 
Gqr=zr-q6r, o (2.8) 

in the linear approximation there follows the well known 
expression for the susceptibility, 

~ ( o ,  k)=[-~o+a+3011~-tgli']-', (2.9) 

and also expressions for the variance of the order pa- 
rameter 

and the spatial correlation of the fluctuations 

Here we have introduced for the correlation length the 
notat ion 

re= (gx(0,  0) )"'. (2.12) 

We note that the notation used differs from that adopt- 
ed in the book by Landau and ~ifshitz. '  To go over to 
the corresponding formulas of Ref. 1 it is necessary to 
use the correspondence formulas 

Then, e.g., 

Using the results cited we can introduce two dimen- 
sionless parameters. The first of these characterizes 
the relative variance: 

At a finite distance from the critical point ( ( a (  f 0) the 
parameter c, tends to zero in the thermodynamic limit. 

Following ~atashinskir and ~okrovsk i r ,~  we shall call 
the second parameter Gi the Ginzburg parameter (more 
consistently, the Levanyuk-Ginzburg parameter). It 
defines the ratio of the correlation function at the point 
r = r, [the point at which the function ((Ciq)'), rZ is a 
maximum] to q2. Thus, 

It follows from the definitions (2.13) and (2.14) that for 
la1 # 0 the Ginzburg parameter has a finite value in the 
thermodynamic limit. 

From the formulas given it can be seen that the static 
susceptibility and correlation length tend to infinity as  
T-T,. Because of this, a s  T- T, (butwith finiteN, i.e., 
without taking the thermodynamic limit), the variance 
of the order parameter also tends to infinity. 

However, at the critical point the actual values of x 
and r, can tend to infinity only when the thermodynamic 
limit is  taken. In order to remove this contradiction we 
first carry out a very simple generalization of the re- 
sults of the Landau theory. 
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For this we note that, in the critical region, q -6 v ;  
therefore, to generalize the formulas (2.91, (2.10), and 
(2.12) to the critical region we make in them the re-  
placement 

We denote the new characteristics by j ,  Fc , and (5 v ) ~ .  
Then, e.g., 

To find an equation for the quantity (x2) we use the 
Langevin equation for the function x ( t ) .  From it we find 
an equation for the function 2: 

Here, with the aim of obtaining a qualitative result, 
only the contribution determined by the fundamental 
mode has been kept. 

Using the equality ( y,) = D / N ,  with the aid of Eq. (2.17) 
we find the equation 

a(z2 )+b(z4 )=D/N.  (2.1 8) 

Naturally, this equation is not closed, since, besides 
the function (x2), the fourth moment appears in it. The 
simplest approximation which at the same time takes 
into account features of the behavior at the critical point 
i s  

and leads to the closed equation 

(a+b(z2 ) )  ( tZ)=D/iV.  

From this, with neglect of fluctuations, the result (2.7) 
follows, and at the critical point, 

Of course, this result is true only in order of magni- 
tude. 

Using the latter result, with the aid of formulas (2.16) 
and (2.12) we find the values of ji and PC at the critical 
point: 

It follows from this that at the critical point the relative 
volume 

P , J / V ~  v-'L~:v-'/ .  (2.23) 

and is, therefore, equal to zero in the thermodynamic 
limit. 

On the other hand, the corresponding value for the 
Ginzburg parameter at the critical point 

- V ( ( 6 q ) ' )  V Gi - -- - - ce v ' / . m ~ ' / .  
i.' (zZ> r.' 

and, consequently, tends to infinity in the thermodyn- 
amic limit. 

We see that what would appear to be the natural gen- 
eralization of the Landau theory leads to the unsatisfac- 
tory results (2.23,24). 

It is interesting that the contradiction (2.23) is re- 

moved when d =4, i.e., when we consider four-dimen- 
sional space. This illustrates the well known fact that 
four-dimensional space plays a special role in mean- 
field theory. 

We show now that the position can be improved (for 
d = 3, of course) if we satisfy the requirements that the 
above two limits be consistent. 

3. CONSISTENCY OF THE LIMITS 

We shall start  from two conditions. 

1) At the critical point in the thermodynamic limit the 
correlation volume is proportional to the volume of the 
system, i.e., 

I;." v~cnwcn VO.  (3.1) 

We shall indicate renormalized quantities by an aster- 
isk. 

2) At the critical point the renormalized Ginzburg 
parameter remains finite in the thermodynamic limit, 
i.e., 

Gi'-No. (3.2) 

Here we shall assume first that the relation between the 
renormalized parameters r,* and X* retains the previous 
form (2.12), i.e., 

r;- (gx?"=. (3.3) 

In the following we shall consider the more general case 
when the equality 5 = 0  entailed by the relation (3.3) does 
not hold. 

The first condition cited permits us to determine one 
of the critical indices. Indeed, according to the re- 
quirement (3.1) we can write the following relation for 
dimensionless quantities: 

nr;'- (ni.')"- V .  (3.4) 

The convenience of this way of introducing the index v 
will become clear from the following discussion. 

Using for PC the relation (2.22) and equating the pow- 
e rs  of N in the left- and right-hand sides, we find that 

v = ~ / ~  (3.5) 

and, consequently, 
r,.-n3/J",. (3.6) 

We now use the second of the above conditions. For 
this we first represent the parameter Gi [cf. (2.14)] in 
the form of a product of three dimensionless param- 
eters: 

We then go over to the quantities Fc, 2, and (2) [cf. 
(2.16)] and define the renormalized Ginzburg param- 
eter by the expression 

Here we have introduced two new critical indices y and 
B. 

In accordance with the condition that the parameter 
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Gi* be finite at the critical point in the thermodynamic 
limit, we find one more relation between the power ex- 
ponents: 

3v=y+2g. (3.9) 

For d = 3 this coincides with the second equality of (1.3) 
and, consequently, corresponds to the scale-invariance 
condition. 

Finally, from the equality (3.3) follows one more 
equality 

2v=7. (3.10) 

From the three relations (3.5,9,10) we obtain for 
the three indices p,  y ,  and v the values (1.4); there- 
fore, (under the condition that the dimensionalities 
of all the characteristics a r e  conserved in the renor- 
malization) the renormalized quantities r,*, x*, and 
( x 2 )  * are  connected with PC, 2, and ( x 2 )  by the relations 

Thus, we have obtained the index values correspond- 
ing to zero values of the small indices. In the more 
general case the relation (3.9) remains unchanged, but 
in place of (3.5) and (3.10) we have the more general 
relations 

To obtain, e.g., the second of these equalities, it is  
necessary to replace the condition 2) by the more gen- 
eral condition that the spatial correlations at the criti- 
cal point be finite for all values of r in the region r <  r, . 
For this, in (2.11) we replace 

Here we have introduced the new index 5, character- 
izing the deviation from a l/r dependence. We then put 
X* - 2  and r,* - (PC )'" and take into account the depen- 
dence of (2.22) on N. After this, from the condition that 
the correlations at the critical point be finite for all Y, 

we arrive at the second relation (3.12). It replaces the 
previous relation (3.10). Naturally, for 5 = O  the two 
equalities coincide. 

Since for nonzero values of (Y and 5 the critical in- 
dices depend on the details of the model-in particular 
on the dimensionality of the "spin," the qualitative an- 
alysis performed above proves to be inadequate in this 
case. 

The relations obtained will be considered now for dif- 
ferent regions of values of the parameters. 

4. THE CRITICAL POINT 

The region of temperature values in which the formu- 
las (3.11) are valid can be divided into two subregions. 
The first of these includes the critical point itself and 
its immediate neighborhood, in which the parameter tN 
is not small. At the critical point, using the formulas 
(2.21) and (2.22) we obtain from (3.11) the following ex- 
pressions: 

The corresponding formula for the Ginzburg parameter 
Gi* has the form 

Gi'-Db/g%'/~. (4.2) 

Here, a s  we see, there is no dependence on M. Thus, 
the expression (4.2) defines a new dimensionless pa- 
rameter characterizing the values of the correlations at 
the critical point. 

5. THE REGION OF THE SCALE INVARIANCE 

We shall consider the region at a distance from the 
critical point such that the parameter 

en =Db/Naza t (r2>DbilVao2). (5.1) 

However, the parameter Gi is not small. 

According to (2.20), in the zeroth approximation in the 
parameter E N  the quantity ( x 2 )  = q 2  and, consequently, 
the formulas for 2 and PC coincide with the correspond- 
ing expressions of the Landau theory, i.e., with the 
formulas (2.9) and (2.12). Thus, for a<O, 

and, consequently, the expressions (3.11) take the form 

Thus, the power dependences (1.1) hold, with the ex- 
ponents (1.4). 

For the region a>O, instead of (5.2) we must use the 
expressions 

>-i la ,  7,=(gla)"*, <x2)=DINa. (5.4) 

These follow from the formulas (2.16) and (2.20) for 
0 0 ,  b =O. Then the formulas (3.11) take the form 

x.ca T-a/=, ro.m T-=l=, (5.5) 

We see that the values of the critical indices abwe and 
below the critical point are  the same. This result cor- 
responds to general conclusions of the theory of phase 
transit ions. 

The Ginzburg parameter Gi* for the subregion under 
consideration, a s  follows from the formulas (3.8) and 
(5.2), is  again determined by the expression (4.2). 

6. CROSSOVER TO THE RESULTS OF THE LANDAU 
THEORY 

With increase of the temperature difference IT - T,I 
the next region is the crossover region between the 
region of scale invariance and the region in which the 
Landau theory is applicable. 

Since the Landau theory corresponds to the self-con- 
sistent field approximation, in which the correlations 
a re  assumed to be negligibly small, for the parameter 
characterizing the crossover region it is  natural to use 
a parameter that is  related in some way to the Ginzburg 
parameter. We shall denote it by E, (the Wilson pa- 
rameter) and define it a s  follows: 

~ ~ = G i / ( l + G i ) .  (6.1) 
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Since the parameter Gi depends on f T) and increases 
like 1 ~ 1 - l ~  as the critical point is  approached, the pa- 
rameter &, varies within the limits 

Large values of Gi (the region of scale invariance) cor- 
respond to values of &, close to unity, and small values 
of Gi correspond to small values of E, . In the latter 
case, a s  is  well known, the Landau theory1*' is valid. 

In the calculations of critical indices by the &-expan- 
sion method the index values calculated in a space of 
four dimensions (d =4) are taken a s  the starting point. 
They coincide with the critical indices of the Landau 
theory. The required indices are calculated in a space 
with d = 4 - E, dimensions, under the condition &, << 1, 
and are represented in the form of series in c,. Thus, 
the zeroth approximation corresponds to the Landau 
theory. 

In the final results the parameter E, is put equal to 
unity. A formal transition to ordinary three-dimension- 
al space is achieved in this way, since d = 4 - E, = 3 
when E, = 1. 

On the basis of the above account we shall try to give 
a qualitative physical idea of the crossover from the 
region of scale invariance to the region of applicability 
of the Landau theory. 

We note first of all that in four-dimensional space the 
correlation volume must be defined a s  Y: . Then, taking 
(2.22) into account, we obtain 

and, consequently, this ratio is finite in the thermodyn- 
amic limit. For this reason, in four-dimensional space 
there is  no reason to distinguish a region of scale invar- 
iance. This circumstance has been known for a long 
time. It cannot yet serve a s  an adequate foundation for 
the Wilson &-expansion, but it suggests a way of finding 
the relationship between the critical indices v, 8, and 
y in three-dimensional space and the corresponding 
critical indices v, , 0, , and yL of the Landau theory 
[cf. (1.5)]. This consists in replacing the quantities 
d by 4 - E, in the formulas (1.3) (with a =O). Then the 
critical indices v, y, and /3 can be represented in the 
form 

With E, = 1 they coincide with the values of the critical 
indices for the region of scale invariance [cf. (1.4)], 
and with &, = O  they coincide with the values of the crit- 
ical indices of the Landau theory. Intermediate values 
of the indices correspond to the crossover region. 

Naturally, the formulas (6.4) give only a very simple 
qualitative idea of the relationship between the critical 
indices. More-exact results can be obtained only by 
solving the initial equation (2.1). 

7. CORRELATION TIMES AND SPECTRAL WIDTHS 

We shall show that the results described lead to ex- 
pressions for the correlation times of the order-param- 
eter fluctuations 6qk =,, [cf. (2.8)] and the quantity x(t) 
=J X(R, t)dR/V. We shall denote these by T, and T, , 
respectively. The meaning of the quantity T, requires 
clarification. 

The definition used above for the order parameter was 
based on the introduction of quasi-averages and, con- 
sequently, assumes that the choice of the positive or 
negative direction along the given axis (we recall that 
we are considering only one component of the polariza- 
tion vedor) is  determined by an external field. 

Naturally, a phase transition in the system is also 
possible in the absence of an external field. Then, in 
an ensemble of identical systems, one direction or  the 
other will be chosen with equal probability, and there- 
fore the average value (x)=O. For this reason the pres- 
ence of a phase transition can be judged from e.g., the 
character of the behavior of the correlation (x(t)x(t - 7)). 

In fad, at temperatures T>Tc the correlation time T, 
is  finite for all values of N, including N - m o  On the 
other hand, at temperatures T<Tc the correlation time 
should depend on N in such a way that T, -- when the 
thermodynamic limit is taken. This behavior of the cor- 
relation time a s  we pss through the critical point 
serves as an indication of the presence of a phase tran- 
sition. 

We shall denote the corresponding spectral widths by 
Ao, and Ao, . It follows from what has been said that 
for T<Tc the spectral width Ao, tends to zero in the 
thermodynamic limit. A state with an infinitesimally 
narrow spectrum implies the existence of an order pa- 
rameter in the system. 

Naturally, in the absence of an external field there is  
degeneracy with respect to the possible values of the 
direction of the order parameter. There is  in this a 
certain analogy with the process of passing across the 
generation threshold, e.g., in lasers, in which, in the 
absence of an external field, there is  degeneracy with 
respect to the phase. 

We shall start by considering the quantities T, and 
Aw,. For this, using the linear equation for the fluc- 
tuation 617, we find expressions for the spatial-tempor- 
a1 and spatial-spectral densities: 

It can be seen from these formulas that the quantities 
Ao, and T, can be expressed in terms of the static sus- 
ceptibility ~ ( 0 ,  k) [cf. (2.9)] : 

~,(k) --i/Ao,=~(0, k). (7.2) 

Hence, using the second formula (3.11), we find the 
correlation time of the order-parameter fluctuations 
6wk = ,, with allowance for the renormalization: 
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The function X i s  determined by the expression (2.16). 

From this, using the formulas (4.1) and (5.3), we find 
IP 

z, - - 
(Db)'h 

for a=0, z" -*- 

We see that a t  the critical point the correlation time 
T , = N ~ / ~ .  In the region of scale invariance the time 7, 

decreases like 171 -"' with increase of ( T 1 ,  and in the 
region of applicability of the Landau theory decreases 
like 1 T I - '  (Ref. 9). 

To find the quantities 7, and Ao, we use the equation 
for the function (x(t ) x(t - 7)). In the same approxima- 
tion in which Eq. (2.20) was obtained, from the initial 
equation (2.1) we find 

As the initial solution (with T = 0) we must use the solu- 
tion of Eq. (2.20). 

Thus, the required correlation time (as yet without 
renormalization, i.e., without the replacement (x2) 
-(xZ) *) is determined by the expression 

Here we have used Eq. (2.20). Ry virtue of Eq. (2.20) 
the two definitions in (7.6) a r e  equivalent. However, the 
second definition is the more convenient, since it con- 
tains the explicit dependence on the strength D/N of the 
random source. 

In the region of applicability of the Landau theory, 
when (x2) =la 1 /b, it follows from (7.6) that T, a N .  Thus, 
when we take the thermodynamic limit the correlation 
time tends to infinity. Correspondingly, the spectral 
width tends to zero. This indicates the presence of the 
phase transition. 

To describe the behavior of 7, in the critical region 
we replace (x2) - (xZ) *. As a result, 

z=-(zz)'N/D. (7.7) 

The quantity ( x 2 )  * is determined by the last of the form- 
ulas (3.11). At the critical point, according to (4.1), 

T , - N ~ ( D ~ )  -'IS, (7.8 

i.e., it is of the same order a s  T, [cf. (7.4)]. 

Thus, the use of the function (x(t )x(t - 7)) permits us 
to describe the phase transition without defining the or- 
der parameter a s  a quasi-average [cf. (2.6)]. It can be 

shown that the susceptibility characterizing the fluctu- 
ation 6x2=xZ - ( x 2 )  behaves qualitatively similarly to the 
susceptibility X .  There is an analogous correspondence 
for the dependences of the correlation times 7,z and T, 

on the values of N and T. 

This account gives a qualitative idea of the behavior 
of various characteristics of the system in the critical 
region in the whole range of temperatures and for a 
finite number of particles. A more detailed description 
requires a more detailed study of the solutions of the 
initial equation (2.1). As yet it is still unclear whether 
the methods used a t  present to calculate the critical 
indices in the region of scale invariance can be applied 
to solve the more general problem of the calculation of 
the fluctuations in the entire critical region. At present, 
apparently, such calculations have been carried out only 
for the two-dimensional Ising model. 

We take the opportunity to thank L. A. ~al 'kovskii  and 
D. E. ~hmel 'nitskii  for a discussion of the results of 
this work. 

'L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika 
(Statistical Physics), Nauka, M. , 1976, Chap. 1 (English 
translation of earlier edition: Pergamon Press ,  Oxford, 
1969). 

'A. Z .  patashinski: and V. L. ~okrovski:, Fluktuatsionnaya 
teoriya fazovykh perekhodov (Fluctuation Theory of Phase 
Transitions), Nauka, M. , 1975 (English translation published 
by Pergamon Press ,  Oxford, 1979). 

3 ~ .  G. Wilson and J. Kogut, Phys. Rep. 12C. 75 (1974) [ ~ u s s .  
transl. , Mir, M. , 1975). 

4 ~ .  E. Fisher, Rev. Mod. Phys. 46, 597 (1974). 
'R. Balescu, Equilibrium and Nonequilibrium Statistical 

Mechanics, Wiley, N. Y.,  1975 (Russ. transl., Mir, M.,  
1978). 

6 ~ .  C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 
435 (1977). 

IS. Ma, Modern Theory of Critical Phenomena, Benjamin, 
Reading, Mass., 1976. 

'N. N. Bogolyubov, Kvazisrednie v zadachakh statistichesko; 
fizike (Quasi-averages in Problems of Statistical Physics), 
JINR Preprint R-1451, Dubna, 1963 (English translation in 
"Lectures on Quantum Statistics", Vol. 2 ,  p. 1 ,  Gordon and 
Breach, N. Y . ,  1970). 

'L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk. SSSR 
96, 469 (1954) [ ~ n g l i s h  translation in: The Collected Papers 
of L. D. Landau, Pergamon Press ,  Oxford, 19651. 

Translated by P. J. Shepherd 

833 Sov. Phys. JETP 49(5), May 1979 Yu. L. Klirnontovich 833 


