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The localization of electronic states in a one-dimensional conductor with a strong random potential is 
investigated. Multiple scattering of an electron by an individual impurity is taken into account within the 
framework of ~erezinskiT's diagram method. The dependence of the localization length on the value of 
the impurity potential is obtained. The frequency dependences of the conductivity and of the dielectric 
constant are calculated. 
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1. INTRODUCTION ing electrons with a dispersion law ~ ( p ) ,  situated in a 
random potential V(x). We assume that the random po- 

Much interest is  being paid a t  present to Mott local- tential V(x) i s  produced by randomly disposed impurit- 
ization of electrons in one-dimensional disordered con- ies  with a potential u(x): 
ductors. The study of this phenomenon is  particularly 
important in connection with the experimental research  V ( Z ) = ~ ~ ( ~ - Q ~ ) ,  (1) 
on quasi-one-dimensional organic conductors based on 
the TCNQ molecule. Electron localization means that a, a r e  the coordinates of the impurities. 
the ordinary static conduction and electrons diffusion do 
not take place in such conductors. The localization 
phenomenon was qualitatively predicted by Mott and 
Twose,' and was later  quantitatively investigated in a 
number of studies.' A direct  calculation of the low- 
frequency asymptotic form of the conductivity Reo(w) 
a s  w - 0 (Reo(w) = w2 ln2 w) was f i r s t  made by Berezin- 
skii.= He developed a diagram technique and derived 
equations which made it possible subsequently to calcu- 
late the density distribution of the localized electronic 
state4 and the frequency dependence of the conductivity 
a t  arbi trary U J . ~  Another method of calculating the con- 
ductivity was proposed by Abrikosov and Ryzhkin.' 
~ e r e z i n s k i i ' s  diagram method was used to solve the 
problem of calculating the conductivity that appears 
when the electron-phonon interaction is taken into ac- 
count.? It was shown subsequently that this mechanism 
can explain the characterist ic  temperature dependence 
of the conductivity and of the dielectric constant in 
TCNQ salts  with asymmetric cations.' 

In all the cited studies they considered localization 
in a weak random potential. It was assumed that the po- 
tential u(x) of an individual impurity satisfies the Born 
condition 

The present paper i s  devoted to an  investigation of the 
one-dimensional localization of the electrons in a ran- 
dom potential of arbi trary size.  This problem i s  of 
interest because in rea l  quasi-one-dimensional conduc- 
tors  with strong structural  disorder,  Qn(TCNQ), and 
Adz(TCNQ),, the Born condition o! << 1 i s  violated, viz., 
in these substances a - 1 (Ref. 8). 

To determine the character  of the localization, of the 
electr ic  conductivity, and of the dielectric constant, it 
is necessary to calculate the correlation functions of the 
density and current  operators p(x) and jl(x). A diagram 
technique convenient for this purpose was developed in 
Refs. 3 and 7. 

We consider the case of an  arbitrary,  i.e., not small ,  
potential u(x). Therefore not only the paired correla-  
tors ,  but also al l  other correlators of the impurity po- 
tential U,(x,, . . . , x,), n = l ,  2 ; .  . . differ from zero when 
averaged over the impurity positions. The averaging 
over the position of the impurities a, will be carried out 
in accord with the usual "cross" t e ~ h n i q u e , ~  i.e., by in- 
tegrating with respect  to a, and multiplying by L-N,  
where L is  the dimension of the system and N is the 
total number of impurities. It is easily seen that in 
this case the correlator  U,(xl,. . . , x,) takes the form 

where c is  the impurity concentration. 

On the diagrams, the correlator  U, i s  represented by 
wavy lines emerging from the point a and terminating 
a t  the points xi. One of the simplest diagrams of this 
type is  shown in Fig. la. All the diagrams a r e  drawn in 
the coordinate-energy representation and a r e  already 
ordered with respect  to x. We assume that the impurity 
concentration c is  small ,  and therefore the average dis- 
tance c-' between the impurities is large compared with 
the characteristic dimension b of the impurity potential 
and with the electron wavelength A. The characteristic 
scale of integration with respect to a is the average dis- 
tance c-' between impurities. Since the integration with - 

2. SELECTION OF DIAGRAMS AND DERIVATION 
respect  to xi is  over the region (xi - a(- b, we can ne- 

OF FUNDAMENTAL EQUATIONS 
glect, to the extent that bc<< 1 is small ,  the diagrams 
of the type of Fig. 2 ,  in which the integrations with r e -  . - 

We consider a one-dimensional system of noninteract- spect to a and a' land in one and the same region of 
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FIG. 1. Effective diagram for impurity vertex. 

width b. 

It is convenient to sum the diagrams intwo steps. It is 
f i r s t  necessary to sum over a l l  the crosses  that a r e  in- 
volved in a single scattering ac t  (see Fig. 3). The sum- 
mation reduces to a replacement of the Born amplitude 
by the total one in a single scattering act  and causes 
the diagram of Fig. l a  to go over into the effective dia- 
gram of Fig. lb. All the crosses  then land in the point 
a (since the integrations with respect  to x, have already 
been made), and the thick wavy lines correspond to the 
total amplitudes f, and f- o r  forward and backward 
scattering. The thick wave line of Fig. 3 a  corresponds t o  
the amplitude f + ,  and the thick wave line of Fig. 3b cor- 
responds to f-. The double wavy lines differ from the 
solid ones by complex conjugation. For convience, the 
amplitudes f, and f - include the factors T~ /v (&) ,  which 
occur when the zeroth Green's fuctions a r e  factored 
out7 (v(t) =dt/dp is the velocity of an electron of energy 
E ) .  The amplitudes f+ and f- a r e  connected by unitarity 
relations that take in the one-dimensional case,  when 
account i s  taken of the additional factor i/v, the form1' 

The backward scattering amplitude f, i s  connected in 
the usual manner with the coefficient y of reflection 
a n  individual impurity: 

The quantity y determines the electron mean free path 
I = l/cy. In the particular case of a 6-function impurity 
potential, u(x) =u06(x), the amplitudes j+ and f- a r e  
simply expressed in te rms of the potential: 

We shall not need the explicit expressions for f+ and f- ,  
since all the results  can be expressed in t e rms  of y. 

The physical meaning of the effective diagram of Fig. 
l b  is that it is  necessary to take into account, in one- 
dimensional problems, the multiple scattering of the 
electron by an individual impurity. Each individual 
scattering takes place with a total amplitude correspond- 
ing to the thick wavy lines, and the binding of the lines 

FIG. 2. 

FIG. 3. 

in a bundle means that a l l  the ac ts  of multiple scattering 
take place on one and the s ame  impurity. 

To calculate the correlation functions of the density 
operators and of the current  we shall use the previously 
developed Each diagram for the polariza- 
tion loop, in the vert ices of which stand the density o r  
current  operators,  i s  divided into three parts  that lie 
respectively to the left,  in between, and to the right of 
the entry vertices x' and x. As will be shown below, 
the number of pairs  of single and double lines in any 
section is the same. We designate these numbers in the 
sections x and x' by m and m'. 

In the selection of the diagram we use the smal l  
parameter  (#,I)-' -kc<< 1. This means that we neglect 
diagrams that contain rapildy oscillating factors of the 
type exp(iP,a,), and retain diagrams containing only 
slowly varying factors of the type exp(iwa,/v), where w 
is the low frequency of the external field. It is easily 
seen  that by inserting into the section of the diagram a 
bundle of wavy lines such a s  in Fig. l b ,  which changes 
the number of pairs  of single lines in the section by an  
amount sl and the number of pa i rs  of double lines by s,, 
we add t o  the diagram a factor  exp{2ia(s, P(E)  - s ,p( t  + w ))} . 
The rapidly oscillating factors of the type exp(ip,a) can- 
cel  out only if s, = s, = s. Therefore the numbers of pa i rs  
of single and double lines change only in symmetrical  
fashion and a r e  always equal to one another. 

Denoting by R,(x) the par t  of the polarization loop 
that l ies  to the right of the input vertex x, and consider- 
ing the passage of individual bundles of wavy lines 
through the section x a s  the lat ter  i s  displaced, we can 
easily obtain equations for R,(x). The diagram-tech- 
nique derivation of these equations is illustrated in Fig. 
4. It is easily seen that a change of the number of pairs 
of single lines in the section by a n  amount s i s  effected 
decreasing i t  by k (this can be done in C: ways, by in- 
sert ing total angle vert ices of the type of Fig. 3b), and 
increasing i t  by k + s (this can be done in cZS -, ways, 
by inserting the corresponding spatially inverted angle 

pairs I I 

FIG. 4. Scheme for the construction of the equations for R,. 
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vertices). The change of the number of pairs  of lines in 
the section is effected only by rotary vert ices of the 
type of Fig. 3b. Nonrotary vert ices suchas  Fig. 3a can 
be inserted in the diagram of Fig. 4 in a rb i t ra ry  
amounts n, starting with n = 0 al l  the way to n = 2m - 2k, 
but they must not land on lines already touched by 
rotary vertices. This can be done in C,"!-,, ways. 
Summation over the number of nonrotary vert ices and 
over al l  the manners of their arrangement leads to the 
appearance of the factors (1 + f+)2m-2k and (1 +f f)2m'2r. 
in the equation. The equations for  the right-hand sides 
of Rm(x) take ultimately the form 

The appearance of the second te rm i s  connected with the 
need for eliminating from the sum the te rm with k =Y 
= s =0,  and the third te rm corresponds to s = -m and k 
=Y =m. The equation for  the central  par t s  z,,,(x', x )  
a r e  similar  in form: 

To simplify Eqs. (7) and (8) we use the unitarity con- 
ditions (3) and (4). From (3) and (4) it follows that 

I l+f+12=l-r, (9) 

f-(l+f+') --1-'(i+f+). (10) 

Substituting {9), ( lo) ,  and(5) in (7) and (8) we get  

(11) 
The substitution R,(x) = e 2 ' m m ' D ~ m  reduces (7) to the 
form 

1 
- i v m ~ ~  = Vm,Rm+. - - Rm+Ro~m-', m-1; 2; . . . 

7 8 
r 

(12) 
v,. = C cmkc:::-,cm~c~~-, (-l)k+ryk+r+w (1-7) 2m-k-'. 

k.r 

Here v =2wl/v = 2wr, and R, = 1. The density and current  
correlators and X' a r e  expressed in t e rms  of the 
quantities R, and Z,,, with the aid of the usual re la -  
tionsSJ 

The quantities QO,(w, k) satisfy the difference equation 

Here u = kl. 

We note in connection with the derivation of Eqs. (12) 
and (17) that in one-dimensional systems,  in contrast to 
three-dimensional ones, allowance for the strong inter- 
action with the impurities a t  low concentration of the 
latter does not reduce to a simple replacement of the 
Born amplitude CY by the total amplitude f. The reason 
is that in a one-dimensional system, owing to the strong 
interference of the electron waves, the individual scat- 
tering ac ts  a r e  not independent. Therefore even a t  a low 
impurity concentration, localization causes multiple 
scattering of an  electron by one impurity and the inter- 
ference of the corresponding waves to become impor- 
tant. These processes,  which a r e  described by dia- 
g rams  of the type of Fig. l ,  lead to a substantial depen- 
dence of a l l  the quantities on the parameter y. 

3. LOCALIZATION OF ELECTRONS 

To solve the question of electron localization i t  i s  nec- 
e s sa ry  to calculate the stat ic  conductivity 

o(O)= lilno(w) 
Y.." 

and the asymptotic form of the density correlator  a s  
t-  .o. The conductivity u(w) is determined in accord 
with the Kubo formula by the current  correlator  X': 

where S i s  the c ros s  section a r e a  per  conducting fila- 
ment. 

It will be shown later  that al l  the electronic s ta tes  in 
the system a r e  localized and u(0) =O. To prove this 
fact  i t  i s  necessary to investigate the structure of Eqs. 
(12) and (17) as w - 0. We consider f i r s t  the case of 
smal l  y<< 1. Discarding the te rms of higher order in 
y ,  we obtain from (12) and (17) the Berezinskii equa- 
tions3: 

-ivrnR.,=mz(R ,,,-, kh',, ,-2R,),  (20) 

(21) 
From the form of Eqs. (20) and (21) it follows that a t  
smal l  v<< 1 the major contribution in the sums (18) over 
rn - v-'>> 1. At large m we can go over in (20) and (21) 
from the discrete variable m to the continuous one p 
= -ivm, and go in (18) from summation over m to inte- 
gration with respect to p. 

Changing in (18), (20), and (21) to the variable P, we 
obtain with allowance for the definition (15) 

where the functions R(p) and ql(P) satisfy differential 
equations that do not contain the frequencies v: 

dZq' dq' dR 
pq'=pZ-+2p-+-. 

dp2  d p  d p  

It follows from (22) that u(0) = O  a t  y << 1. To prove 
this in the general case  of a rb i t ra ry  y,  we consider 

897 SOV. Phys. JETP 49(5), May 1979 A. A. Gogolin 897 



Eqs. (12) and (17) a t  large m - v-'. We begin with (12). 
It will be shown later  that in the sums over s in (12) 
the important role is played by small  s- I<< m. There- 
fore R,,, can be represented in the form 

Substituting in (12) 

introducing the new variable n = k +r + s +d,  and repre-  
senting sV in the form (ad/da)"d ], ,, we obtain the fol- 
lowing equation for R, a t  m >> 1: 

We represent  the binominal coefficients C",~,,~$-,-,-, 
and C",-;_dk-,-d-l in the form 

Integration with respect  to x and with respect  to y in 
(27) and (28) is along smal l  circles of radius p <  1 
around zero. 

Substituting (27), (28), in (26) and f i r s t  summing over 
d and next over k and over r ,  we get 

d z d y  ( a - x )  ( a - y )  "' d  a I a - x  - ] (z) Rru. 

We note that the use of the representation (27) and (28) 
enables us to include in the sum, in natural fashion, all 
the te rms in (26). 

It is easily seen that in the principal approximation of 
large m we have 

1  dxdy  ( a - x ) ( a - y )  "' 
( a )  1 .=, - I - a h [  ( 2 ~ ; ) -  (xy)"+'  n L ( l - x )  ( I - y )  

mC d x d y  ( x  + Y) ', = - j -  -- 
I 

(30) 
(2ni)'  (xy)"+'  1-x 1-y 

It follows therefore that a t  arbi trary value of the param- 
e ter  y the equation for R ,  contains only t e rms  of the 
type mV(d/dm)"~,. Introducing the continuous variable 
p = -ivm, we obtain for  R(p)  the following operator 
equation: 

Summing over n and integrating with respect  to x, we 
reduce (32) t o  the form 

The integration in (33) i s  along a circle of radius y < p 
< 1 around the point y =O. 

We can simply transform Eq. (17) a t  sma l l  v. As a 
result  we get 

The integration in (35) is along the s ame  contour a s  in 
(33). The most convenient contour for (33) and (35) is 
the circle o =y'I2.  

Equations (31) and (34) enable us to calculate the low- 
frequency asymptotic forms of the density and current  
correlators.  From these follow, in part icular ,  the 
localization of the electrons and the vanishing of the 
stat ic  conductivity. The f i r s t  te rm of the exapansion o 
in powers of v then takes the form (22), and the func- 
tions R(p)  and ql ( f i )  = ~ ' ( p ) / i v  a r e  obtained from the 
solution of Eqs. (3 1) and (34) a t  a = 1 and H = 0. 

4. LOCALIZATION LENGTH 

Equations (31) and (34) a t  a=O enable us to find the 
low-frequency asymptotic form of the density correlator  
X"(w, k ) .  Replacing in the l imit  of smal l  v the summa- 
tion over m in (14) by integration with respect  to p ,  we 
obtain a t  a = 0: 

where R(p)  is determined by Eq. (31), and Q0(p,u) i s  
determined by (34) with a=O and P ( p )  =R(p). It i s  seen 
from (36) that the density correlator  X'(t, x)  has a s  
t -  a stationary asymptotic form p(x) :  

1 " d x  
- 

p ( x )  - lim P(t, 2) = - - ei4' j d p ~ ( p )  [ ~ ' ( p ,  x )  + ~ ( p ,  - x )  1. (37) 
I-- 1 2 n  - ' 

The function p(x) characterizes the distribution of the 
density of the localized electronic state. 

An investigation of Eq. (34) for  Q0 enables us to deter- 
mine the asymptotic form of the localized wave functions 
and the dependence of the localization length 2,,, on y. It 
was shown in Ref. 7 that a t  y << 1 the form of p(x) a t  
la rge  1x1 >> 2 is  determined by the position of the branch 
point with respect  to x in ~ ' ( p ,  x). The position of the 
branch point is determined completely by the behavior 
of Q0(p,u) a t  p<< 1. Indeed, Eq. (21) a t  large m takes 
the form 

Substituting in the homogeneous par t  of this equation, 
a t  p<< 1, the value @ =pX,  we get 

We see  therefore that the function QO(p,x) has  a t  y << 1 
a branch point with respect  to x a t  x=i /4 .  The position 
of the branch point determines completely the asymp- 
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totic density distribution p(.\-), namely p(s) a exp(- / X I /  
41) at  X I > >  1. Therefore at y << 1 the localization length 
I,, is equal to 41. In the general case I,,, is a function 
of -,. 

In order to calculate the function l I o , ( ~ )  it IS necessary 
to find the position of the branch point at  arbi trary y. 
Substituting in the homogeneous part  of (34) a t  p<< 1 the 
quantity Q0 = p a  and making in (35) the substitution v 
=y'12ef ', we obtain for X the equation 

f (1.) - 1 / y = i x ,  (40) 

where P,  is a Legendre function. The branch point in x 
l ies  a t  pure imaginary x = i z  and i s  obtained from the 
condition 

Its position determines the arugment of the exponential 
in the asymptotic form of ( x ) :  

The function i s  determined by the relation 

where A, i s  the root of Eq. (42). It is easily seen  that 
f(X) = f(-1 -A). Therefore Eq. (42) has a solution X, = -i 
in the interval - l <  A< 0. The plot of l,,(y) is shown in 
Fig. 5. It is seen from this figure that when the param- 
e t e r  y changes from 0 to 1 the localization length, ex- 
pressed in mean f ree  paths 1, decreases monotonically 
from 4 to 1. In the region O< y <  0.25 this decrease is  
s t i l l  insignificant and l,,, can be estimated by using the 
results  of Ref. 7. 

At 1 1  I>, 1 the ~ntegratlun wlth respect to r~ I +  over the 
regtvn 1 and we ran make use c ~ f  the proxlnllt) of A 

to I,,. From (45) it follows that a t  \ , 1 

Therefore at al l  y the pre-exponential factor in the 
asymptotic expression for p(x) takes the form \x \ -~ / ' .  
This  statement is valid a t  a l l  O <  y < 1 ,  but i t  is violated 
a t  y = 1. The reason is that a s  y - 1 the minimum of the 
function in the interval -1< A< 0 vanishes. As a result ,  
the character  of the branch point and the pre-exponential 
factor in (46) change a t  the point y = 1. 

5. CONDUCTIVITY AND DIELECTRIC CONSTANT 

Relation (22) and Eqs. (31) and (34) determine the 
f i r s t  te rm of the expansion of u in powers of w .  This 
t e rm i s  pure imaginary and determines the value of the 
stat ic  dielectric constant 

It is  easily seen  that the solution of Eqs. (31) and (34) 
should be sought in the form of a s e r i e s  in powers of p. 
The function R(p)  must satisfy the boundary condition 
R(0) = 1. From the form of Eq. (31) it follows that a t  p 
<< 1 the expansion of R(p )  in powers of p takes the form 

Therefore in the general  case  R(p )  must be sought in 
the form of the s e r i e s  

- 
R @ ) =  ( b .  ln p+c,)p"; b,=O; c ,= l .  

"-0 

(48) 

Substituting (48) in (311, we obtain the following recur-  
rence relations between b, and c,: 

The branch point with respect  to x determines not only p.b.+ (6,- i / y )c .=c , - , ,  (49) 
the argument of the exponential in the asymptotic ex- (&-117) b,,=b,,-, 
pression for p(x), but also the pre-exponential factor. 

(50) 

In fact, a t  the point X =Ao  the function f(X) reaches its (51) 
minimum and fN(X,)>O. Therefore the singularity in x 
is a branch point of second order.  Shifting the contour 1 " 
of integration with respect  to x in (37) into the upper 

(52) 

half-plane in such a way that i t  follows the edges of the 
cut drawn from the branch point 'pward the imag- It is easily seen that the f u n c t i o n ~ ( p )  defined in this 
inary axis ,  and making the substitution ix + l/y - f(X,) manner sat isf ies the integral equation 
= -77'. we obtain a t  [xi>> I 

-121 1 " lzl - 
~ ( x ) ~ e x ~ ( ~ ) ~ ! ~ d ~ e x ~ ( - n ' ~ ) ~  ~PR(P)[P.(~~)-Q'(P.-~)I. (53) 

(45) With the aid of the recurrence  relations (49) and (50) 
we find the value s of b, and express the coefficients c, 
with n >  1 in t e rms  of c,. The value of c,  is determined 
from the  condition that the function R(p )  must  decrease 
a t  infinity. In particular, a t  smal l  y << 1 we have c, 
=2C - 1,  where C =0.5772 . . . is the Euler  constant. It 
follows from (31) that R(p )  decreases rapidly a t  large 

FIG. 5. Plot of the local- p>> 1. In fact, substituting in (31) R(p)  with large p in 

ization length us y . the form exp(-P(p)) we obtain in the principal logarith- 
mic approximation 

I 
0 0.5 ' 7 We can show in perfect analogy that a t  p<< 1 
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Q' (P)  =iv (a,' InZ p+b,' ln p f c ; + ~  ( p )  ). (54) 

Introducing for  convenience ql(p) =Q1(p)/i v, we obtain 
for  this function a solution in s e r i e s  form: 

- 
q l ( p )  =z (a,' InZ p+b,' lnp+cn')pn. 

" -0  

The coefficients 4, b: , and c i  satisfy the recurrence 
relations 

( 6 , ,+ , -1 / y )a~ '=a i -~ ,  (56) 

2pn+la,'+(6.+l-l/y)bn'+(n+l) b,+,=b:-,, (57) 

~.+~a,'+p.+,b.'+(6,+,-~/y)c.'+b.+,+(n+l)c,=c~'-~, (58) 

Relations (56)-(58) a r e  valid a t  n 2 1. At n = O  the co- 
efficients 4 and b; satisfy the relations 

2$,ad+b,=O, (60) 
e,a,'+p,b,'+b,i-c,=0. (61) 

The function ql(p) satisfies the integral equation 

The stat ic  dielectric constant &' is determined by the 
relation 

A plot of the calculated by numerical methods is 
shown in Fig. 6. It is seen from this figure that &' de- 
c reases  quite rapidly with increasing y. The reason is 
the decrease of the localization length I , , .  When y 
changes from 0 to 1 the value of &'/c0 decreases by 
almost a factor of 10, from 26(3)=2.42 to 0.25. 

To  est imate the f i r s t  te rm of the s e r i e s  in v for Reu, 
i t  suffices to expand Eqs. (12) and (17) to the next te rm 
in m-'-v<< 1. An analysis of (29) shows that the next 
te rm in m-' in the equation for  R, vanishes identically, 
and we can use for R(P) Eq. (31) a s  before. Expanding 
(17), we get 

f -T dcp ( 2 fcos rp -2y  
x . (y)= -J ) 2n-1, ~ + y - 2 7 %  cos cp i+y-2;('" cos cp * (66) 

It will be shown below that allowance for  t e rms  of the 
type ( - i ~ ) p ~ - ~ ( d / d p ) ~ Q ~  leads to logarithmic divergences 
in the integrals with respect  to p a t  the lower limit, i.e., 
a t  p - (-iv). These deivergences correspond to logarith- 
mic coefficients of $ in the expansion of Reu. To cal- 
culate them it suffices to use the expansion (54) a t  p 
<< 1 in the principal logarithmic approximation: 

Representing Q1(p) in the form Q1(p) = iv41n2p + $Q:(P), 
we get from (65) 

Q,'(p)  =adp-' l n p .  (68) 

It follows from (49), (52), and (60) that 

b,=i /p , ,  a , ' = - i / ~ ~ , ~ ,  (69) 

p l = - y - i l n ( i - ~ ) .  (70) 

Therefore, substituting (68) in (22), we obtain for  Reo 
a n  estimate a t  small: 

Expression (71) yields only an upper bound of Reu. 
The reason is that the accuracy of the method used to 
calculate Reo is limited by the e r r o r  that arises when 
the summation over m in (18) i s  replaced by integration 
with respect  to p. The replacement of the summation 
by integration leads to a n  e r r o r  on the order of the pro- 
duct of the sma l l  s tep  -iv by the maximum of the inte- 
grand Q1d~/dp,  which i s  reached a t  p- (-iv). Using 
the expansions (48) and (54) it can be shown that the e r -  
r o r  in the determination of Reo is of the s ame  order  of 
magnitude a s  (71). Nevertheless, it follows from (71) 
that a t  v<< 1 

where @ is a polynomial of In lv 1, and i t s  degree is not 
higher than 3. Berezinskii has shown that a t  y << 1 we 
have *(lnlv))=ln21vl. Therefore the degree of @ does 
not exceed two. The high-frequency expansions for  
Reu(v) and &'(v) a t  any y have the usual Lorentz shape 
and can be easi ly obtained from (12) and (17) a t  v>> 1: 

Re a ( v )  =8n0/v2, e' ( v )  =-4eo/vX. (73) 

The frequency dependence of cl(v) and Reo(v) for ar- 
bitrary v and y can be obtained numerically. Indeed, 
because of the rapid decrease of R, and QO, a t  large m 
>> 1 one can retain in the sums  over m a t  v# 0 only a 

FIG. 6. Static dielectric 
constant us y . 

FIG. 7. Frequency dependences of &' (v) (a) and Reo (v) (b) as 
7-0 (solid line), at y= 0.5 (dash-dot line) , and at y = 1 (dashed 
line). 
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finite number M>> 1 of terms.  Assuming that a l l  the R , 
and Q: with m > M a r e  equal to zero ,  we terminate the 
infinite system of linear equations (12) and (l7), af ter  
which they can be easily solved numerically. By way 
of example, Figs. 7a and 7b show the plots of cl(v) and 
Re&) a t  y =0.5. It i s  seen  that the maximum of the 
conductivity remains practically unchanged in value and 
shifts towards la rger  v. The point c' = O  in the function 
E'(v) also shifts towards la rger  v. Figure 7 shows also 
plots of cl(v) and Reo(v) a s  y - 0 and a t  y = 1. 

6. STRONG SCATTERING 

The singularities connected with strong scattering of 
electrons by impurities manifest themselves most 
strongly in the case y = 1. In this case Eqs. (12) and (17) 
can be solved exactly, and we can obtain explict expres- 
sions for E'(v) and Reu(u). Physically, y = 1 corresponds 
to locking of the electron between two neighboring scat-  
ters .  

Retaining in (12) and (17) only the lowest t e rms  in 1 
-y<< l ,  we get 

Substituting (74) and (75) in (18) and summing over m,  
we get 

where $(x) i s  the logarithmic deviative of the function. 
Plots of cl(v) and Re+) a r e  shown dashed in Fig. 7. 
We note that at  smal l  v<< 1 we have ~ e u ( v )  =exp(-2n/lvl). 
The reason is that in the case  of strong scattering by 
impurities the character  of the low-frequency absorp- 
tion changes radically. In a weak potential the electron 
transitions take place between spatially separated lo- 
calized state s o  that the Mott estimate" Reo = $ i s  
valid. In strong scattering each electron i s  solidly 
blocked between two nearest  impurities, its energy 
spectrum becomes str ict ly discrete,  and the low f re-  
quency absorption is due only to the expotentially un- 
likely fluctuation formation of very wide wells. We 
note that the coefficient of the v2 te rm in (71) vanishes 
a t  y - 1, a fact corresponding to the vanishing of the 
power-law absorption. A s imi lar  problem a r i s e s  in the 
investigation of the motion of a charge-density wave in 
a one-dimensional random potential.'' In this case  a t  
small  wr << 1,  just a s  in (76), we have Reo(w) 
%exp(-n/)w~ I). The high frequency asymptotic form 
corresponds to absorption by almost  f ree  electrons, 
and Reu a v-' and E ' a V-'. We note that the function 
acquires a maximum of height 0.55 c, a t  ~ ~ 0 . 9 .  At 

.small  v<< 1 we have 

E ' ( v )  = E O  ( ' / L + ~ V + ~ ( V ' )  ). 

From (74) and (75) i t  follows that the density correla-  
tor P ( V , X )  has a logarithmic branch point a t  ~ = i .  
Therefore the asymptotic form of p(x) takes a t  large 
Ixl>> l the form 

7. CONCLUSION 
By now, much experimental material  had been accum- 

ulated on the electr ic  and optical properties of quasi- 
one-dimensional conductors based on TCNQ (see the 
re vie^'^). A number of such substances were shown to 
have a large degree of disorder.13 Attempts were there- 
fore  madesn8 to interpret the experimental data on the 
frequency and temperature dependences of c' and o in 
TCNQ sa l t s  on the basis of localization theory. It turned 
out that these dependences agree  well with the notion of 
localization of the electronic states.  Agreement between 
theory and experiment was obtained, however, a t  over- 
estimated values of the individual parameters. Thus, 
to reconcile simultaneously the functions U(T) and E'(T) 
in Qn(TCNQ), and Adz(TCNQ), it was necessary to in- 
troduce in Ref. 8 large shift Aw,, of the phonon frequen- 
cy on account of the interaction with the electrons: AwPh - 800 K. In Ref. 5 the frequency dependences of ct(w) 
and a(w) in TTF-TCNQ (Ref. 14) was reconciled with 
theory a t  the large value 7-'= 1000 cm-l. 

It follows from our present results  that this overesti- 
mate of the parameters is  due in part  to the use of the 
Born approximation for the impurity potential. In fact, 
using expression (64) and the curve of Fig. 6, we obtain 
for Q~(TCNQ), a t  c' - 1200, v, = 7.0 x 10' cm/sec, c 
= 1/4b, S = 84 (Ref. 8) the values y 2 0.7 and I = 66 in- 
s tead of I =2.5b (b = 3.8 A) i s  the lattice constant. In 
Adz(TCNQ), s imilarly y ~ 0 . 5  and I= 8b instead of 1 
= 4.5b. The increased electron mean f r ee  path for  
scattering by impurities leads to a proportional increase 
of the mean f ree  path for  scattering by photons. There- 
fore the effective electron-phonon interaction constants, 
which served a s  the adjustment parameters in Ref. 8, 
decrease and Awph= 500 K. This value i s  closer to the 
estimate Awph= 300 K obtained from the optical data.'= 

We can analogously estimate the value of &' in TTF- 
TCNQ. Comparing the frequency dependences given in 
Ref. 14 for  c'(w) and Reo(w) with the plots in Fig. 7 a t  
y =0.5 we obtain 7-'= 600 cm-' in place of 1000 cm-l. 
This yields a mean f r ee  path on the order of ten lattice 
constants and agrees better with the estimates of the 
degree of disorder in TTF-TCNQ. Thus, allowance for 
the strong interaction of the electrons with the impurit- 
ies  leads to more reasonable values of the fit param- 
e ters .  

The problem of calculating the frequency dependences 
of c' and Reo in the case of weak disorder was solved 
by using numerical simulation in Ref. 16. The curves 
given in Ref. 16 a r e  close to our present results  a t  
smal l  y. The distribution of the electron density and 
the localization length were investigated by a similar  
method in Refs. 17 and 18. Some difference between the 
values of I,,, a r e  due to the fact  that this value was de- 
termined in Refs. 17 and 18 from the asymptotic value 
of the averaged wave function $(x), which decreases 
more  rapidly because of the averaging of the phase. 

In conclusion, the author i s  greatful to V. L. Berezin- 
ski i ,  V. I. Mel'nikov, and E. I. Rashba for  a useful dis- 
cussion of the results  of the work. 
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Stimulation of superconductivity in an inhomogeneous bridge 
in a microwave field 

L. G. Aslamazov 
Moscow Institute of Steel and Alloys 
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Zh. Eksp. Teor. Fiz. 76, 1775-1780 (May 1979) 

Stimulation of superconductivity in a bridge whose neck has a lower critical temperature than the shores 
is investigated. It is shown that, depending on the microwave-field frequency, the relative contributions 
made to the stimulation by the "trembling" of the potential well and by the electric field vary, and this 
leads to different types of phase diagrams of the bridge. 

PACS numbers: 85.25. + k, 74.10. + v 

Irradiation of a superconductor by a microwave field fects  of stimulation can lead to a preserva t ion  of the 
changes the electron energy distribution, and this  dis-  superconductivity up to tempera tures  close t o  T,,. 
equilibrium can cause a substantial inc rease  of the 
cr i t ical  p a r a m e t e r s  of the superconductor.' In super  - 1. SUPERCONDUCTIVITY STIMULATION DUE TO 
conductors with constrictions (bridges, point contacts,  THE TREMBLING OF THE POTENTIAL WELL 
etc.) the electron energy diffusion is caused both by 

The change of the  e lec t ron  distribution function in the 
d i rec t  accelerat ion by the e lec t r ic  field,ls2 and by the 

microwave field depends on the i r radiat ion power. At 
"trembling" of the potential well produced as a resu l t  

sufficiently high i rradiat ion powers  a n  equipartition is 
of the lowering of the value of the o rder  parameter  in 

establ ished of the energ ies  of the e lec t rons  t rapped in 
the constriction r e g i ~ n . ~  The energy of the electrons 

the region of the contact: 
t rapped in the constriction region increases  upon re- 

- - 

flection f rom the walls of the t rembling well,  and the f (E) =Ao/2T, s<Ao, (1) . . 
magnitude of the effect depends substantially on the 

where  A, are the values of the o r d e r  parameter  at the 
charac te r  of the dependence of the o r d e r  parameter  on 

s h o r e s  of the bridge.= The  electrons with energ ies  
the coordinates. 

E > A,, f o r  br idges that  a r e  not too long, can  diffuse 
F o r  a homogeneous superconductor, the decrease  of 

the o rder  parameter  A in  the constriction region is due 
t o  the increase  of the density of the superconducting 
current .  At the c r i t i ca l  value of the cur ren t ,  A has  a 
power-law dependence on the coordinates, and the 
t rembling of the well leads to  a substantial inc rease  of 
the cr i t ical  cur ren t  of the bridge in the microwave field. 

This  paper deals  with a n  inhomogeneous br idge in  
which the neck h a s  a cr i t ical  t empera ture  T, somewhat 
lower than the c r i t i ca l  t empera ture  T, of the s h o r e s  of 
the bridge. The dependence of the o r d e r  parameter  on 
the  coordinates is exponential. In such a bridge the ef - 

freely f r o m  the contact and therefore have a n  equilib- 
r i u m  energy distribution (the microwave cur ren t  density 
in  the s h o r e s  is negligibly small).  A s  a resu l t ,  the 
nonequilibrium t e r m  in the Ginzburg-Landau equation 
f o r  the o r d e r  parameter3  takes in  the  l imi t  of high ir- 
radiation power the f o r m  

The superconducting t ransi t ion tempera ture  T: of the  
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